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0.1 Introduction

The rapid creation of algorithmically complicated data tables is currently not facilitated

to a useful extent by current software such as Excel. Spreadsheet applications allow for

the writing of algorithms, but it is both time consuming and cumbersome. Inputting data

by tabbing through cells alone takes a long time. Data in a spreadsheet is not presentable

because it is used to generate the final numbers.

TableGen will be the solution to these problems: it will be a powerful interpreted pro-

gramming language with enough power to specify complex functions which can transform

data. It will have an efficient syntax for assigning values to cells in a data table without any

clicking, scrolling, or tabbing. Users will be able to utilize basic data structures such as ar-

rays to easily list their data and to subsequently and conveniently compute the final results.

All of this functionality will be implemented in a clean manner – unnecessary punctuation

will be excluded from the language to make it less of a burden to program with.

The purpose of TableGen is to work on large input and to generate large output. It is not

efficient to use TableGen to conduct a computation over x variables and output one value

at the end. All output in TableGen is made into cells of a table, so if you are not planning

to make a table, don’t use TableGen.

0.2 General Plan

We plan to implement a language whose syntax and semantics help people fill the cells of

a table or tables with their data. Our language will allow people to:

• Fill cells, rows, or columns with minimal typing.

• Fill cells, rows, or columns by manipulating existing data.

• Output plain text, TeX/LaTeX, HTML tables.
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• Allow the user to make “output modules” so that they can specify output organization

other than HTML, LaTeX, etc (in language the compiler will be written in).

• Allow user to utilize statistical functions such as average, standard deviation, etc.

• Allow the user to easily add statistical functions and other functions (in our lan-

guage).

We will do the following if we have time:

• Allow people to generate charts and graphs; in HTML (using css) and other formats.

• Allow the user to access and create conversion tables that can be used for convenient

conversion between measurement units and systems.

0.3 Technical Plan

We plan to write the interpreter for the language mostly in java (backend and most of the

frontend). The other parts will be in Perl (frontend). Java makes sense for a couple of

reasons:

1. All of us know how to code in it.

2. Antlr is a java application, so it would be natural to utilize the same language. Perl

makes sense for part of the frontend because it much easier to control the java binaries

with it and to implement various command-line options with it.

The testing infrastructure will be written using a combination of Make and Perl. We plan

to use Perl for the following reasons:

1. The testing infrastructure will require a lot of string comparisons, something Perl is

very good at.

2. Most of us know how to code in it.
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0.3.1 Language Design

Keywords and Reserved Variables or Functions

All reserved variables and functions begin with an underscore (” ”).

We have a list of standard keywords:

• for

• while

• if

• foreach

• in

Some of the reserved variables:

• _row_head

• _col_head

• _row_next

• _col_next

Some of the reserved functions:

• _avg(list): Average

• _var(list): Variance

Types

Simple types and type inference keep users focused on the programming while cleaning

up the syntax. The language still checks all types when performing operations, but only

intrudes when any loss of information is possible.

The three data types are:
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• Number

• String

• List

Using these three types, programmers can refer to integer and floating point numbers,

strings of characters as well as lists of numbers or table data.

Users can specify types by doing:

num:var1 = 1

str:var2 = one

list:var = var1 var2

Or they can let the language decide:

var1 = 1

var2 = "one"

var = var1 var2

Anything with digits will be treated as a number. Anything in quotes will be treated as a

string. Lists and arrays can be created by simply including multiple things on one line.

Data Entry

All rows are columns are lists. These lists act as arrays and can act as hashes. The idea is

that a user can refer to cells via array elements or define a key referring to a value. Users

can specify a column header (_col_head) and row header (_row_head). These will serve

to identify the first row and first column, and allow the user to easily cycle through them.

_col_head = "Monday" "Wednesday" "Tuesday" "Thursday" "Friday"

_row_head = "8:00" "12:00" "16:00" "20:00"
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Users can assign keys to the members of the lists by using the ”>” symbol. Users can

always refer to the values as arrays.

_col_head = "Name" "Wage" "Hours Worked" "Earned"

_row_head = "Maria" "Stanley" "Vladimir" "Glen"

wage_rate>20 hours>12 -> _row_next

wage_rate>2 hours>120 -> _row_next

wage_rate>30 hours>1 -> _row_next

wage_rate>3 hours>600 -> _row_next

func enter_pay

foreach row in _row_head

calculate_pay(rate:row.wage_rate, hours:row.hours) -> row.pay

func enter_pay2

foreach row in _row_head

calculate_pay(rate:row[0], hours:row[1]) -> row.pay

func calculate_pay num:rate num:hours

if rate < 0

return -1

else

return rate * hours

This program should print:

Name Wage Hours Worked Earned

Maria 20 12 240
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Stanley 2 120 240

Vladimir 30 1 30

Glen 3 600 1800

Syntax and Semantics

• Whitespace is important. The statement block will not end until indentation stops.

• Variable initialization done by using an ”=”; whitespace allowed at either end of the

”=” and between variable name and/or value.

• Variable initialization or setting done anywhere.

• A variable’s active scope is within the block in which it is declared (global scope if

not in any block).

Sample Code:

_row_head

""

a>"Monday"

b>"Tuesday"

c>"Wednesday"

"Average"

_col_head

d>"11:00-13:00"

e>"13:00-15:00"

f>"15:00-17:00"

for _row_head.a _row_head.c
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"My class" -> _col_head.d

for a b c

3 4 5 -> f

_avg(_col_head.f) -> 4, 0

Is the same as:

row_header "", a="Monday", b="Tuesday", c="Wednesday"

column_header d="11:00-13:00", e="13:00-15:00", f="15:00-17:00"

for a, c put "My class" at d

for a, b, c put 3, 4, 5 at f

at f put avg_row()

"Average" -> 4, 0

Output:

Monday Tuesday Wednesday Average

11:00-13:00 My class My class

13:00-15:00

15:00-17:00 3 4 5 4

Strings

• Standard ”\” escapes in case users desire a quote within a string.

• String variables have to be concatenated; otherwise they are just a string. e.g.

var1 = "Hel"

var2 = "lo"
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var1 , var2 -> 0,0

var1var2 -> 0,1

Output:

Hello

var1var2

• A ”+” denotes string concatenation

Numbers and Units

• Interpreter will always assume any number is a floating point number, but will au-

tomatically chop off the ”.0” in 5.0. It will also round when you get something like

5.000000000000000001. If a user desires to rounding, rounding a certain decimal

point, we will have special command-line options to allow the user to specify round-

ing.

• Automatic unit conversions and/or attachment of units to variables (if implemented):

length = 3-in 4-cm 4-ft 203-mm

length[0]+length[4]-in -> 0,0

length[3]-length[2]-mm -> 0,1

Output:

4.57 inches

1259.2 millimeters

• All unit types are keywords and have to be affixed with a “-” in front. Has to be an

number or number variable preceding the unit keyword.
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• User will be allowed tell interpreter via command line how to output computed units

(i.e. to affix the full feet or just ft).

Subroutines and Control Structures

• local variables can be specified in scope. e.g.

globalVar = 2

localVar = 3

func compute

localVar = 2

localVar + globalVar -> 0,0

localVar + globalVar -> 0,1

Output:

5

4

• ”for” statements take in list of things (can be variables, strings, or numbers) sepa-

rated by ”,” and does either one thing or something for each member. ”in” specifies

where to do the operations. In this sample, the operations are done at _row_head el-

ements. The “list of things” contains string variables. Language assumes these string

variables refer to _col_head.

• Standard while loops.

• Subroutines are called with () at the end. Calls can be made like so:

convert_time (3, 32, "sec")

or so:
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convert_time (min: 32, unit: "sec", hour: 3)

• Subroutines are specified like so:

func convert_time (num:hour, num:min, str:unit)

if (unit == "sec")

return (60 * min) + (60 * 60 * hour)

else if (unit == "min")

return 60 * hour + min

else if (unit == "hour")

return hour + (min / 60)

else

exit ("Error: You specified a unit unknown to me.")

• Parameters in a function call may be called in an arbitrary order since they include

labels indicating what should match with the variables of a function.

• return is java-like.

• exit halts the interpreter where it is.

Miscellaneous

• All output will be in terms of a table.

• Rows start from the left, columns start from the top (think of x, y coordinates).

• All cells of a tables can be identified by coordinates starting with 0.

• The first row and first column can be referenced by the reserved variables _row_head

and _col_head respectively.
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• Reserved variables _row_next and _column_next represent the next completely

empty row and column respectively.

• All values are printed into cell by using a ”dash arrow” -¿.

• Basic data structure is a list, which can be accessed randomly by numerical index.

• All variables are lists; single variables are merely one-member lists.

A simple program:

list1 = "A" "B" "C" "D"

list2 = "1" "2" "3" "4"

list1 -> _row_next

list2 -> _col_next

"" "" "E" "F" list1[2] -> _row_next

Output:

A B C D 1

2

3

4

E F C

Pascal’s Triangle as Table

// Factorial algorithm using a cache to compute factorials.

factCache = 1

func factorial (num:n)

if n <= _length (factCache)
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return factCache[n]

prod = _tail (factCache) // prod = last element of factCache

while (_length (factCache) <= n)

// Append prod onto end of factCache array.

factCache = factCache (prod *= _length (factCache))

return prod

func pascalCombination (num:n, num:k)

return factorial (n) / (factorial (k) * factorial (n - k))

max = 10 // Set maximum # of rows to output

i = 0

j = 0

while (i <= max)

while (j <= i)

pascalCombination (i, j) -> (i, j)

j++

i++

j = 0

Output:

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1
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1 6 15 20 15 6 1

1 7 21 35 35 21 7 1

1 8 28 56 70 56 28 8 1

1 9 36 84 126 126 84 36 9 1
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