
Organic Form Language
Final Report

Eric Larson
el2264

May 1, 2006
COMS W4115

-----Overview:
Self-similiar organic forms of unlimited complexity has
applications in computer graphics for generating organic images
such as those of plants, and and other branching patterns. For this
purpose, Organic Form Language, or OFL, was designed. An
interpretor will translate OFL code, into drawings.

OFL was inspired by L-systems, which is a mathematical way of
defining organic forms, and by functional languages such as Scheme,
which simplifies the building of complicated programs.
L-systems was pressed into use as a programming language, though
it was originally intended as mathematic formula notation.
Functional languages are an intuitive way of representing
recursion, which is the predominate characteristic of
L-systems. By bringing these concepts together, OFL makes building
more sophisticated organic forms easier.

Concept:
Every OFL program starts with a call to a rule.

The program is executed in iterations. During each iteration,
each call to a rule is replaced by that rule's definition.

The programmer selects the number of iterations that the
program will run. When the program has executed the final
iteration, the result is translated into graphics.

----Design Goals:

--Functions:
To make OFL a powerful language, it is necessary to be able
to represent as many organic shapes as possible. A goal of OFL
is to be able to represent all the organic shapes
representable in L-systems. One way to reach this goal
is to design OFL with analogies to the two features which give L-
systems
its expressiveness, iteration and state frames.

--Simplicity

To make the language easy to learn, complete English words are used
instead of symbols when sensible. There are only ten keywords
and two special symbols.

The only drawing concepts are lines and the angles between
them. There is no concept of a point or location. Because the
language
is only concerned with forms, points are not needed.

-- Language Tutorial

There are two key principles to understanding how to program in
OFL,
indentation, and replacement.

The indentation of a statement determines which changes of position
and direction from preceding statements will effect it.
If, for example, you have a statement preceded by three white spaces,
it will inherit the changes of position and direction of any statement

above it which is indented by two or one spaces. In the following
code example, only changes caused by executing statemen1 will
effect
where statement3 begins executing.

 statement1
 statement2
 statement3

Replacement is the way each iteration of the program changes the
plant.
Rules are defined in an OFL program, and during each generation,
the
definition of a rule replaces any references. The complex patterns
in images generated come from rules referring to themselves.
For instance, this rule will be referred to by the string "bushy",
and will generate a progressively complicated image with each new
iteration of the program. Definitions begin with a name and a colon.

bushy:
 Draw
 bushy
 Right
 bushy

"Draw" causes a line segment to be painted, "Right" causes all
inheriting
statements to execute in a direction moved clockwise by a few
degrees.

Every OFL program must have a "Start:" to show where to begin
executing. Start should call some user defined rule.

All user defined rule must begin with a newline followed immediately
by
a string which begins with a lower case letter and is followed
by a colon.

Comments begin with a pound sign and end at the end of a line.

Here is a simple program that will draw a red tree.

#Simple red tree

Generations=10
Red=1

#Begin execution here
Start:
 rightLine

#Every iteration will replace the string rightLine with
#all indented lines following it.

rightLine:
 Right
 Draw
 rightLine
 Left
 Draw
 rightLine

This image will be produced.

---Language Reference Manual

1. Language Overview
Organic Form Language, OFL, is based on L-systems. OFL adds
structure through blocks and methods. Code blocks define scoping.
A method is a code block with a name. Indentation is used to define
code blocks.

2. Lexical Conventions
There are six types of tokens: keywords, identifiers, comments,
operators, new line followed by white spaces, and integers.
Operators, white spaces, and newlines are used to separate tokens.

2.1. Keywords
The keywords begin with an upper case ASCII letter, which is
followed by only upper and lower ASCII letters.

The keywords are:
Right, Left, Draw, Thickness, Length, Angle, Red, Green
Blue, Generations, Start, and Final.

2.2.identifiers
 Identifiers begin with a lower-case ASCII letter, and may
have only upper and lower-case ASCII letters, integers, and
underscores, '_'.

2.3.Comments
Comments begin with a pound-sign, '#', and continue until
the first newline.

2.4. Integers
Integers are one or more decimal digits between '0' and '9'.

2.5. White Spaces following a Newline
A white space immediately after a newline indicates a
code block. Otherwise white spaces are ignored.

2.6. Operators
Non-letter ASCII symbols are used as operators. They
are one character long.
They are:

':','=','-','+'
3. Grammar

3.1 Indentation

Like Python, the structure of the code in OFL is indicated
with indentation. Only code blocks are indented.
Initialization of environment members,3.2.1.2, and
Generations,3.2.2.2, always begin on a new line and are not

indented. Any method declaration will not be indented, and
will immediately precede one code block.

Indentation expresses environment inheritance in which
instructions will be executed. Each instruction inherits the
environment from the last instruction more shallowly
indented. The execution environment is not effected by
those instructions more deeply indented.
Only an instruction which is more shallowly indented than
the immediately subsequent instruction will have any effect
on the execution environment of another instruction.

For example, here are a series of commands in OFL.
 a1
 b2
 c3
 d4
In this case, a1 will not effect c3 because b2 is not more
deeply indented than a1. The only execution environment
being modified is c3 because it will inherit b2's environment,
and any changes to the environment caused by b2.

3.2. Keywords
In OFL, a keyword is a directive, environment member, or a
flow control statement.

3.2.1Directives and Environment Members
Both directive and environment members change the runtime
environment of an OFL program, but directives also direct the
display program.

 3.2.1.1.Directives
Directives either rotate the direction in which future drawing
is done, or direct the display program to draw.

They do not take a value, so they only can share a line with
white spaces.

3.2.1.1.1Turning Commands
Right and Left rotates the direction of drawing clockwise or
counter clockwise by the value of Angle, 3.2.1.2.4.
3.2.1.1.1.1.Right
Turns direction of drawing clockwise.
3.2.1.1.1.2. Left
Turns direction of drawing counter-clockwise.

3.2.1.1.1.3. Draw
Directs the display program to create a visible mark of
Length, 3.2.1.2.2, long from the current position in the
direction of drawing with a width of Thickness,3.2.1.2.1,
pixels in of the Color,3.2.1.2.3 . This is the only means in OFL
to paint on the screen.

3.2.1.2. Environment Members
Environment members only change the state of the runtime
of an OFL program.

They always take an integer value, so
they are always followed by an equals sign, '=', and either an
integer or a plus or minus sign, '-', '+'.

3.2.1.2.1. Thickness
The value of Thickness dictates the thickness of lines
painted when Draw is called.
3.2.1.2.2. Length
The value of length dictates the length of a line painted
when Draw is called.
3.2.1.2.3. Red, Blue, Green
The value of these colors dictates the color of a line painted
when Draw is called.
3.2.1.2.4 Angle
The value of Angle dictates how much direction of drawing
is changed when Right or Left is called.

3.2.2.Flow Control Statements
Flow control is based around the concept of a generation in
recursive calls. A generation is a unit of growth of the drawn
form. Methods may be declared to be “per generation”,
which tells the system that they may only be invoked once
for each generation in each call path.

For example, if “twig” is a per generation method and
recursively calls itself twice, and is called by “branch” twice,
twig will execute twice during the first generation, then four
times the second generation, then eight times during the
third generation. If twig is not per generation, then it will
run indefinitely.

3.2.2.1.Generation
Sets the total number of times rules will be
replaced in each call path. This always takes an
integer value, so it is followed by an equals sign '='
and an integer. It is only set once in any program,
and it is always on its own line with no preceding
spaces but may have trailing white spaces before
the subsequent newline.

3.2.2.3. Start
The value of Start is the first method call made during
the start of any run of the OFL program.

This always takes an identifier value, so it is followed
by an equals sign ':' and an identifier. It is only set
once in any program, and it is always on its own line
with no preceding spaces but may have trailing white
spaces before the subsequent newline.

3.2.2.4. Final
Final is an optional control statement after the name of
a new rule, but before the colon. It is the alternative
value of the method during the final generation. It is
similar to an identifier definition in that it has a
declaration line followed by a code block which is
more deeply indented than the declaration.

3.3. Identifiers
An identifier names a user defined method.

3.3.1.Identifier Definition
The Identifier definition is an identifier declaration line
followed by a code block.

3.3.2.Identifier Declaration
An identifier declaration names the method and includes any
modifiers.
The identifier is followed by a modifier and colon, or just a
colon. Following the colon is a newline.

3.3.3. Identifier Method Block
A method block contains only indented lines. Only method
blocks contain indented lines.

3.4.Operators
3.4.1.Assignment Operators

The assignment operators give a value to a keyword or identifier,
which are the “lvalue”.
An equals sign is used if, and only if, an integer value being set.

3.4.1.1.Colon
Colons set the lvalue to code block.
A colon may possibly have a modifier between it and the lvalue.
A colon is the end of a statement on a line, so it is only followed
by white space before the newline.

3.4.1.2 Numeric Assignment
Numerical assignment maybe abbreviated by using an increment
or decrement value instead of an integer.

3.4.1.2.1 Equals
An equals sign is required to set an lvalue to an integer. It sits
between an lvalue, and either an integer value or a minus or plus
sign.

3.4.1.2.2 Minus
Minus may be used instead of a integer in a numeric assignment
to indicate decrement by one the value of lvalue.

3.4.1.2.3 Plus
Plus may be used instead of a integer in a numeric assignment to
indicate increment by one the value of lvalue.

3.4.2 Pound
Pound indicates the beginning of a comment. Everything
between a pound sign and the first subsequent newline is a
comment and is ignored. A comment may not share a line with
any other statement.

---- Project Plan

The project was developed serially with the goals established
before the design, which was completed before the coding. Small
corrections in the preceding steps were necessary along the way.

The coding of the compiler was analogous to the steps of execution
of the compiler; the front end was developed first, then the first
execution phase of the back-end, and finally the PostScript output
generator.

Originally CVS was going to be used to manage the history of all
code files, but was unnecessary because nearly all code was
developed
in one Antlr file. Using only a single file for code also greatly

simplified the build system.

The schedule was based on the class schedule deliverables, with the
completion of the front end coinciding with the due date of the
Language Reference Manual. The back-end was not divided into
separate tasks.

Testing was frequent because the time needed to execute a build/run
cycle was never more than one minute. The testing begin with simple
programs as soon as the lexer was ready. I maintained a group
of test input files which for regression testing and ran them
with a script whenever significant changes where made to the
compiler.
The output was manually inspected.

Development was done on a Linux machine using Antlr and IntelliJ
Idea, which became critical for debugging and development
of the complicated tree walker in my compiler.

---- Design

The compiler is unique in that the program which it compiles
is executed in the AST tree walker. The AST is altered by
the execution of the statements of the OFL program. There are
actually four tree walkers in the OFL compiler. The first finds the
rule definitions and keyword values. The subsequent walkers only
walks the tree which represents the “Start” rule. The second walker
is the Mutator and it is called repeatedly. It replaces all references to
user rules with their values found in the preceding tree walk. The
third walker replaces rule references with their “Final” values. The
last walker is the PostScript Generator. It prints the ASCII PostScript
code of the image.

The Main Switch component acts as a switching station between the
components generated by Antlr: Lexer, Parser, Definition Walker,
Mutator, Final Mutator, and PostScript Generator. The Main passes
the Lexer to the Parser, then passed the AST to rest of the
components. It is the only code defined outside of the Antlr input file.

The Parser is also interesting in that it has to compare the values in
the indentation tokens. Each indentation token has a value
representing how deeply the subsequent statement is indented. That
indentation needs to be compared with previous indentations to find
where the subsequent statement belongs on the AST.

--Lessons Learned
Design your language with an eye toward the tools you are using.
The way my program used indentation consumed about 30% of the
time I spent on development. Most of the compiler is easy to design
with Antlr because it is a good tool, but working against it is very
difficult.

Likewise, using the AST tree walker was not a good way to execute
the final OFL program. That consumed about 60% percent of my
development time, and the majority of that was debugging.

--Code Examples
Each program listing is followed by the figure is generates.

#Long green grass

Generations=7
Green=2
Length=23
Thickness=4

Angle=15

#straight line
stalk:
 Draw
 Draw

#Program begins execution here
Start:
 stalk
 stalk
 Right
 wash

#Definition of the user word wash
wash:
 Draw
 wash
 Left
 wash

#Definition of what to do when printing wash
wash Final:
 Right
 Draw

#Tall aqua stalk with a wisp on top

Generations=9
Red=0
Blue=1
Green=1
Length=37

Thickness=4
Angle=15

#just a long poll
stalk:
 Draw
 Draw
 Draw
 Draw
 Draw
 Draw

Start:
 stalk
 rl

#Which direction the plant leans
lean:
 Right

#bushiness
rl:
 Draw
 lean

 rl
 lean
 Draw
 Draw
 rl

rl Final:
 lean
 Draw

#Thick green plant

Generations=6

#greenish yellow

Red=1
Blue=0
Green=1
Length=40
Thickness=4

#Make a bush
#Add tall branch leaning to the right
Start:
 Right
 rl
 rightlong

rightdraw:
 Right
 Draw

#Right leaning branch
rightlong:
 Right
 rightdraw
+-- 5 lines:
rightdraw--

#Branch a lot
rl:
 branchr
 Draw
 rl
 rl
 branchl
 Draw
 rl

rl Final:
 Right
 Draw

branchr:
 Right

branchl:
 Left

