
Stock analysis Language (SLang)
Ray Siu

rls2121 (at) Columbia (dot) edu

Table of Contents

Stock analysis Language (SLang)... 3

Introduction... 3
SLang .. 3
Simple ... 3
Powerful.. 3
Platform independent .. 4
Example .. 4

Stock analysis Language (SLang)
Overview

Introduction

There are many languages that allow developers to make and test custom formulas for
stock analysis; however these languages are either too broad or hyper proprietary.
Languages like MatLab and Java can be used for stock analysis purposes however they
were not designed specifically to do so and as such go overboard with many unused and
unnecessary features. Other languages like AFL are very good but are tied in with
specific services like AmiBroker which can get quite expensive. SLang is a simple
alternative to currently available tools by providing only a bare bone and necessary
functionality.

SLang

SLang is a language with a simple set of math related functions and a data structure set
designed specifically for stock analysis. It allows the developer to use the simple default
functions of SLang to build more complex custom functions.

Simple

SLang offers simplicity in two ways: simplicity of architecture and ease of use.
Languages like AFL use an expensive service to pull data into the code. SLang is free of
such dependencies by allowing the user to read in any text file with stock data in a
specific format. This allows the user to obtain stock data from any source they want or
even create their own hypothetical price histories. SLang also offers a streamlined syntax
that is easy to understand with a set of functionalities that is simple but powerful.

Powerful

SLang has a custom data structure designed specifically to hold stock information as well
as an easy interface whereby data from a file can be populated. Additionally SLang
defines a set of commonly used functionalities and simple data types that will allow the
user to compose new functionality. SLang will also allow the user to print results to
STDOUT where it can be manipulated by other programs or visualized by other graphing
applications like GNU plot.

Platform independent

The SLang compiler will be JAVA based and so will be highly portable between systems.
Also, all file I/O will be distinguished via URIs which will free the language from being
tied down to any particular OS or file system implementation.

Example

Before we get into the specifics of SLang we must first specify the data format that the
language expects. Since Yahoo’s Y! Finance service seems to be the more popular
source for free stock price back data, we choose to use a simple CSV format based on
Yahoo’s format.

Each new line is a day and each day has the following values separated by commas: date,
opening stock price, day’s high, day’s low, closing price, volume, and adjusted closing
price.

We would provide some simple interface to grab the file by specifying a URI for a local
or network resource with this CSV:

 SDATA intel = OPEN(file:///c:/local/data/intc.csv);

We could then provide simple interfaces into this stock data.

 INT size := intel::SIZE;
 INT index := 0;

 DOUBLE open := 0.0;

 FOR(index := 0; index < size; index := index + 1)
 {
 IF(open < intel::OPEN(index))
 {
 open := intel::OPEN(index));
 }
 }

 PRINT(open);

The above program will get the largest opening price for Intel for the period reported by
“intc.cvs”.

