

TingStim
[Language Reference Manual version 1.0]

COMS W4115 [Spring 2006 CVN]

Programming Languages and Translators

By Alvin Ting

at2337@columbia.edu

2006/02/26

TingStim:

Stimulator / Interface Test Driver

1 Language Reference Manual

1.1 Lexical Conventions

1.1.1 Line Terminators

Input characters are divided into lines by line terminators. Lines are terminated by the

standard ASCII characters CR, or LF, or CR LF. The two characters CR immediately

followed by LF are counted as one line terminator, not two.

LineTerminator:

 the ASCII LF character, also known as “linefeed”

 the ASCII CR character, also known as “carriage-return”

 the ASCII CR character followed by the ASCII LF character

InputCharacter:

 Is Not LineTerminator

1.1.2 Comments

Comments are textual descriptions and are ignored by the compiler. There are two kinds

of comments:

/* text */ Multi-line comment: All the text from the ASCII characters /* to

 the ASCII characters */ is ignored.

// text Single-line comment: All text from the ASCII characters // to the

 end of the line is ignored.

Comment:

 MultiLineComment

 SingleLineComment

Comments do not nest. The ASCII characters /* and */ have no special meaning when

preceded with the ASCII characters //. In turn, the ASCII characters // has no special

meaning in comments that begin with /*.

1.1.3 White Space

White space is defined as the ASCII space, horizontal tab, form feed characters, and line

terminators. White space will be ignored when used to terminate a comment (a line

terminator).

WhiteSpace:

 the ASCII SP character, also known as “space”

 the ASCII HT character, also known as “horizontal tab”

 the ASCII FF character, also known as “form feed”

 LineTerminator

1.1.4 Tokens

Tokens are subdivided into 4 classifications: identifiers, keywords, literals, separators,

operators, and patterns. Tokens must be separated by white space.

Token:

 Identifier

 Keyword

 Literals

 Separator

 Operator

 Pattern

1.1.4.1 Identifiers

An identifier consists of letter, digits and underscores “_”. The first character of an

identifier should be a letter or underscore. Upper and lower case letters are considered

different.

1.1.4.2 Keywords

The following sequences of characters, formed from ASCII letters, are reserved for use as

keywords and cannot be used as identifiers:

close interact true

catch if false

disp open

else send

expect wait

exit while

1.1.4.3 Literals

Literal:

 IntegerLiteral

 StringLiteral

 BooleanLiteral

 CharacterLiteral

1.1.4.3.1 Integer Literal

Integer literals are divided into 4 classifications relative to the base of the number system:

decimal, hexadecimal, octal, or binary.

IntegerLiteral:

 DecimalLiteral

 HexIntegerLiteral

 OctalIntegerLiteral

 BinaryIntegerLiteral

DecimalLiteral:

 DecimalNumeral

HexIntegerLiteral:

 ASCII character x HexNumeral

OctalIntegerLiteral:

 ASCII character o OctalNumeral

BinaryIntegerLiteral:

 ASCII character b BinaryNumeral

DecialNumeral:

 (0-9) one or more times

HexNumeral:

 (0..9) one or (A-F) one or more times

OctalNumeral:

 0..7 one or more times

BinaryNumeral:

 (0 | 1) one or more times

For example,

 dec: 10000214

 hex: xDEAD

 octal: o077

 binary: b01010101

1.1.4.3.2 String Literal

A string is a sequence of characters enclosed by ASCII double quotes “ ”.

StringLiteral:

 “ StringCharacters “

StringCharacters:

 StringCharacter

 StringCharacters StringCharacter

StringCharacter:

 InputCharacter but not “

1.1.4.3.3 Boolean Literal

The boolean type has two types, represented by the literals true and false, formed from

ASCII letters.

BooleanLiteral:

 true | false

1.1.4.3.4 Character Literal

A character literal is expressed as a character or an escape sequence, enclosed in ASCII

single quotes ‘ ‘.

CharacterLiteral:

 ‘ SingleCharacter ‘

 ‘ EscapeSequence ‘

SingleCharacter:

 InputCharacter but not ‘ or \

1.1.4.4 Separators

The following three ASCII characters are separators (punctuators):
{ } ; /

1.1.4.5 Operators

= == !=

The ASCII character = is the assignment operator. Two consecutive ASCII = characters

is the equal-to operator. An ASCII character ! followed by the ASCII character = is the

not equal-to operator.

1.1.4.6 Pattern

A pattern is everything enclosed between an ASCII character / and ASCII character /

Where pattern can consist of combinations of the following:

regex English
S literal S

* \\ \” \’ \(\) literal

*

literal

\

literal

“

literal

‘

literal

(

literal

)
^ beginning of string
$ end of string

[a-z] any character in the range a to z
[^a-z] any character not in the range a to z

[abc] a, b, or c
. any character
X* X character zero or more times
X+ X character one or more times
X? X character once or none at all
X{n} X character exactly n times
X{n,} X character at least n times
X{n,m} X character at least n but not more than m

times
() Capturing group, multiple characters are

treated as a single unit

For example: /^[a-z]+z{1,3}/ is the pattern to find a string which begins with a

lowercase letter followed by none or more lowercase letters, and then anywhere from one

or three consecutive z.

1.2 Expressions

Expressions consist of identifiers, literals, equality, and pattern expressions.

1.2.1 Identifier

An identifier itself is a left-value expression. It will be evaluated to some value bounded

to this identifier.

1.2.2 Literal

A literal is a right-value expression. It will be evaluated to the literal itself.

1.2.3 Equality

The equality operators are syntactically left-associative (they group left-to-right).

EqualityExpression:

 EqualityExpression == RelationalExpression

 EqualityExpression != RelationalExpression

The == (equal to) and the != (not equal to) operators may be used to compare two

operands that of the same type. If both operands are some form of an integer literal, then

both operands are first converted into decimal form prior to making the comparison. All

other cases result in a compile-time error.

1.2.4 Pattern

A regular expression is a right-value expression. It will be evaluated to the pattern itself.

PatternExpression:

 Pattern

1.3 Declarations

Variables are implicitly declared upon assignment.

1.4 Statements

Statements are the basic elements of a scenario. A sequence of statements will be

executed sequentially, unless flow-control statements indicate otherwise.

Statement:

 ExpressionStatement

 AssignmentStatement

 ConditionalStatement

 LoopStatement

 NullStatement

 DisplayStatement

 CommunicationsStatement

 ExitStatement

1.4.1 Expression

Expressions may be used as statements by following them with a semicolon.

Syntax:

 <expr>;
Constraints:

 - none

1.4.2 Assignment

The assignment operator = is syntactically right-associative (they group right-to-left). The

value of the left operand is set to the value of the right operand.

Syntax:
 <identifier-expr> = <literal-expr>;

 <identifier-expr> = <pattern-expr>;

 <identifier-expr1> = <identifier-expr2>;

Constraints:

- In all cases, the left operand must be an identifier.

- The right operand may be a literal, a different identifier or a pattern.

1.4.3 Conditional

Conditionals are done with if (expression) statement else statement. If the equality

expression returns true, the first statement is executed, otherwise the second statement is

executed.

Syntax:
 if (<equality-expr>)

 {

 <statement-list>

 }

 else

 {

 <statement-list>

 };

Constraints:

 - Every “if” must have a corresponding “else.”

1.4.4 Loop

The check is done before the execution of the statement, and will be repeated as long as

the test expression is true.

Syntax:
 while (<equality-expr>)

 {

 <statement-list>

 };

Constraints:

 - none

1.4.5 Null

A null statement has no programmatic function and is stated only for completeness.

Syntax:

 ;
Constraints:

 - none

1.4.6 Display

The display statement is used to print the value of an identifier or literal to the standard

output.

Syntax:
 disp <identifier-expr>;

 disp <literal-expr>;

Constraints:

 - none

1.4.7 Wait

The wait statement pauses scenario execution for the designated period of time.

Syntax:
 wait <time_milliseconds>;

where

 <time_milliseconds>:

 decimal number
Constraints:

 - Time is limited to the largest size integer.

1.4.8 Communications

1.4.8.1 Send

The send statement writes the designated literal(s) to the communication output. In the

form which takes a list of integer literals, the literals are concatenated to form one

numerical value prior to sending. Integer overflow is handled by setting value to the max

value. The following are all valid send statements:

send 2002;

send b0101 b0010 b0001 b0001; // integer = 21,009

send x001A xFFFF; // integer = 1,769,471

send o001 o123 o327; // integer = 304,855

send “Hello, world\n”;

Syntax:
 send <decimal-literal>;

 send <other-integer-literal-list>;

 send <string-literal>;

where
 <other-integer-literal-list>:

 HexIntegerLiteral

 OctalIntegerLiteral

 BinaryIntegerLiteral

Constraints:

- The subsequent integer literals in the list must be of the same type as the first

literal specified.

- The order of list integer literals is such that the first literal contains the most

significant bits and the last literal contains the least significant bits.

- The maximum integer value is equivalent to java.lang.Integer.MAX_VALUE.

1.4.8.2 Expect

The expect statement will block on reading from the current communication input. Once

an input unit has been read, it will compare the input value with one or a series of valid

expressions. When the first valid expression is found, the actions associated with it will

be executed and the statement is considered complete.

Syntax:
 expect <valid-expr> { <action_list> };

 expect

 {

 <valid-expr> { <action_list> }

 <valid-expr> { <action_list> }

 …

 };

where
 <valid-expr>:

 DecimalLiteral

 <other-integer-literal-list>

 StringLiteral

 CharacterLiteral

 Pattern

 <action_list>:

 Send

 Interact

 Wait

 Loop

 Display

 Assignment

 Conditional

Constraints:

- Expect statements do not nest.

- <other-integer-literal-list> is the same as that defined in send statement.

- Read timeouts are currently not implemented or handled.

1.4.8.3 Catch

The catch statement is used to handle the case when unexpected input is received.

Syntax:
 expect ValidExpression { <action_list> };

 catch { <action_list> };

 expect {

 ValidExpression { <action_list> }

 ValidExpression { <action_list> }

 …

 }

 catch { <action_list> };

Constraints:

- <action_list> is same as those in expect statement.

- No other statements may go between an expect and catch statement.

- A catch statement without a proceeding expect statement is invalid.

1.4.8.4 Interact

The interact statement is used to enable the operator to alter the flow of the scenario

during execution. It will block until the operator enters a keystroke. The resulting

keystroke is compared with the series of expected character literals. Once a matching

literal is found, the associated list of actions is executed and the statement is considered

complete. If no matching literal is found then an alert will be displayed and the scenario

simply continues execution.

Syntax:
 interact CharacterLiteral { <action_list> };

 interact

 {

 CharacterLiteral { <action_list> }

 CharacterLiteral { <action_list> }

 …

 };

Constraints:

 - <action_list> is same as those in expect statement.

1.4.8.5 Open

The open statement opens the specified communication link. Only the first open

statement is executed. Any subsequent open statements are invalid and are ignored.

Syntax:
 open type=<type_option>;

where

 <type_option>:

 “RS232”

 “Ethernet” (unimplemented)
Constraints:

 - none

1.4.8.6 Close

The close statement closes the current communication link. It is not necessary to include

the close statement and is included only for completeness.

Syntax:

 close;

Constraints:

 - none

1.4.9 Exit

The exit statement will terminate the scenario and no other statements are executed.

Syntax:

 exit;
Constraints:

 - none

1.5 Scope Rules

1.5.1 Lexical scope

This language is open scope and has only a global namespace.

1.6 Example

/* This line is a comment */

disp "Initializing Communications...";

open type="RS232";

// Display options

disp “Press enter to continue”

disp “Press 0 to exit”

interact {

 ‘\n’ { disp "Go!"; }

 ‘0’ { exit; }

};

// Delay for 10ms

wait 10;

// Send stuff

send b0001 b0101 b1111 b0101;

// Expect flipped bits

expect {

 b1110 b1010 b0000 b1010 { disp “It worked!”; }

 xDEAD {

 disp “something bad happened!”;

 exit;

 }

 “nothing” { disp “This is a test”; }

}

catch { disp “I didn’t expect that!” }

close;

exit;

