
Organic Form Language
Language Reference Manual

Eric Larson
el2264

March 1, 2006
COMS W4115

1. Language Overview
Organic Form Language, OFL, is based on L-systems. OFL adds
structure through blocks and methods. Code blocks translate into
scoping directives. Methods are named code blocks. Indentation is
used to define code blocks.

2. Lexical Conventions
There are six types of tokens. They are keywords, identifiers,
comments, operators, new line followed by white spaces, and
integers. Operators, white spaces, and newlines are used to
separate tokens.

2.1. Keywords
The keywords begin with an upper case ASCII letter, which is
followed by only upper and lower ASCII letters.

The keywords are:
Right, Left, Draw, Thickness, length, Angle, Color,
Generations, Start, Final, PerGen.

2.2.identifiers
 Identifiers begin with a lower-case ASCII letter, and may
have only upper and lower-case ASCII letters, integers, and
underscores, '_'.

2.3.Comments
Comments begin with a pound-sign, '#', and continue until
the first newline.

2.4. Integers
Integers are one or more decimal digits between '0' and '9'.

2.5. White Spaces following a Newline
A white space immediately after a newline indicates a
code block. Otherwise white spaces are ignored.

2.6. Operators
Non-letter ASCII symbols are used as operators. They
are one character long.
They are:

':','=','-','+'
3. Semantics

3.1 Indentation

Like Python, indentation defines code blocks. Only code
blocks are indented. Initialization of environment
members,3.2.1.2, and Generations,3.2.2.2, always begin on a
new line and are not indented. Any method declaration will
not be indented, and will immediately precede one code
block.

Indentation expresses scoping within code blocks.
Each instruction inherits the environment from the last
instruction that is more shallowly indented. The execution
environment is not effected by those instructions more
deeply indented. Only an instruction which is more shallowly
indented than the immediately subsequent instruction will
have any effect on the execution environment of another
instruction.

For example, here are a series of commands in OFL. Let
underscore, '_', represent white space.
__a1
__b2
____c3
__d4
In this case, a1 will not effect c3 because b2 is not more
deeply indented. The only execution environment being
modified is c1 because it will inherit b1's environment, and
any changes to the environment caused by b1.

3.2. Keywords
A keyword is a directive, environment member, or a flow
control statement.

3.2.1Directives and Environment Members
Both directive and environment members change the runtime
environment of an OFL program, but directives also direct the
display program.

 3.2.1.1.Directives

Directives either rotate the direction in which future drawing
is done, or direct the display program to draw.

They do not take a value, so they only can share a line with
comments and white spaces.

3.2.1.1.1Turning Commands
Right and Left rotates the direction of drawing clockwise or
counter clockwise by the value of Angle, 3.2.1.2.4.
3.2.1.1.1.1.Right
Turns direction of drawing clockwise.
3.2.1.1.1.2. Left
Turns direction of drawing counter-clockwise.
3.2.1.1.1.3. Draw
Directs the display program to create a visible mark of
Length, 3.2.1.2.2, long from the current position in the
direction of drawing with a width of Thickness,3.2.1.2.1,
pixels in of the Color,3.2.1.2.3 . This is the only means in OFL
to paint on the screen.

3.2.1.2. Environment Members
Environment members only change the state of the runtime
of an OFL program.

They always take an integer value, so
they are always followed by an equals sign, '=', and either an
integer or a plus or minus sign, '-', '+'.

3.2.1.2.1. Thickness
The value of Thickness dictates the thickness of lines
painted when Draw is called.
3.2.1.2.2. Length
The value of length dictates the length of a line painted
when Draw is called.
3.2.1.2.3. Color
The value of Color dictates the color of a line painted when
Draw is called.
3.2.1.2.4 Angle
The value of Angle dictates how much direction of drawing
is changed when Right or Left is called.

3.2.2.Flow Control Statements
Flow control is based around the concept of a generation in
recursive calls. A generation is a unit of growth of the drawn
form. Methods may be declared to be “per generation”,

which tells the system that they may only be invoked once
for each generation in each call path.

For example, if “twig” is a per generation method and
recursively calls itself twice, and is called by “branch” twice,
twig will execute twice during the first generation, then four
times the second generation, then eight times during the
third generation. If twig is not per generation, then it will
run indefinitely.

3.2.2.1. PerGen
PerGen is a modifer in the declaration of a method
indicating that the method should only be invoked
once in any call path per generation.

This never takes a value, but is only used
as a modifier for a method declaration, so it only
appears after white space following an method
identifier, but before the method identifier's colon.
For example, “<\n>my_method PerGen:<\n>”

3.2.2.2.Generation
Sets the total number of times PerGen methods will
be invoked in each call path. This always takes an
integer value, so it is followed by an equals sign '='
and an integer. It is only set once in any program,
and it is always on its own line with no preceding
spaces but may have trailing white spaces and
comments before the subsequent newline.

3.2.2.3. Start
The value of Start is the first method call made during
the start of any run of the OFL program.

This always takes an identifier value, so it is followed
by an equals sign ':' and an identifier. It is only set
once in any program, and it is always on its own line
with no preceding spaces but may have trailing white
spaces and comments before the subsequent newline.

3.2.2.4. Final
Final is an optional control statement in a method. It is
the alternative value of the method during the final
generation. It is similar to an identifier definition in
that it has a declaration line followed by a code block
which is more deeply indented than the declaration. It

is different in that the declaration line is indented. The
Final statement begins with the string “Final” followed
immediately by a colon. Except for a comment and
trailing spaces, the declaration line must otherwise be
empty. The Final definition ends at the first line
following the declaration with indentation equal or
more shallow than that of the declaration line.

3.3. Identifiers
An identifier names a user defined method.

3.3.1.Identifier Definition
The Identifier definition is an identifier declaration line
followed by a code block.

3.3.2.Identifier Declaration
An identifier declaration names the method and includes any
modifiers. The identifier must be unique.
The identifier is followed by a modifier and colon, or just a
colon. Following the colon could be either a comment or a
newline.

3.3.3. Identifier Method Block
A method block contains only indented lines. Only method
blocks contain indented lines.

3.4.Operators
3.4.1.Assignment Operators

The assignment operators give a value to a keyword or identifier,
which are the “lvalue”.
An equals sign is used if, and only if, an integer value being set.

3.4.1.1. Colon
Colons set the lvalue to code block.
A colon may possibly have a modifier between it and the lvalue.
A colon is the end of a statement on a line, so it is only followed
by white space or a comment before the newline.

3.4.1.2 Numeric Assignment
Numerical assignment maybe abbreviated by using an increment
or decrement value instead of an integer.

3.4.1.2.1 Equals
An equals sign is required to set an lvalue to an integer. It sits
between an lvalue, and either an integer value or a minus or plus
sign.

3.4.1.2.2 Minus
Minus may be used instead of a integer in a numeric assignment
to indicate decrement by one the value of lvalue.

3.4.1.2.3 Plus
Plus may be used instead of a integer in a numeric assignment to
indicate increment by one the value of lvalue.

3.4.2 Pound
Pound indicates the beginning of a comment. Everything
between a pound sign and the first subsequent newline is a
comment and is ignored. A comment may appear after any
statement.

