

Digital Signal Processing Language

Final Report

Jeff Cropsey

Dave Lariviere

Mike Lynch

Varun Maithel

Varun Mehta

Contents
 1 Introduction

 1.1 Brief Overview of Intel SIMD
 1.2 Vector Operations
 1.3 Portability
 1.4 Data Types
 1.5 Operators
 1.6 Control Keywords
 1.7 Calling functions
 1.8 Syntax Example

 1.8.1 C Base Program
 1.8.2 Equivalent DSPL

 2 Language Tutorial
 3 Language Manual

 3.1 Lexical Conventions
 3.1.1 Tokens
 3.1.2 Comments
 3.1.3 Identifiers
 3.1.4 Keywords
 3.1.5 String Literals

 3.2 Syntax Notation
 3.3 Meaning of Identifiers

 3.3.1 Basic Types
 3.3.2 Derived Types

 3.4 Objects and Lvalues
 3.5 Programs
 3.6 Conversions
 3.7 Expressions

 3.7.1 Additive Operators
 3.7.2 Multiplicative Operators
 3.7.3 Unary Operators
 3.7.4 Atomic Values

 3.8 Declarations
 3.9 Statements

 3.9.1 Assignment Statement
 3.9.2 Selection Statement
 3.9.3 Iteration Statement
 3.9.4 C Call Statement

 4 Project Plan
 4.1 Processes

 4.1.1 Planning
 4.1.2 Specification
 4.1.3 Development

http://160.39.192.108/school/plt/wiki/index.php?title=Final_Report&printable=yes#Introduction
http://160.39.192.108/school/plt/wiki/index.php?title=Final_Report&printable=yes#Brief_Overview_of_Intel_SIMD
http://160.39.192.108/school/plt/wiki/index.php?title=Final_Report&printable=yes#Vector_Operations
http://160.39.192.108/school/plt/wiki/index.php?title=Final_Report&printable=yes#Portability
http://160.39.192.108/school/plt/wiki/index.php?title=Final_Report&printable=yes#Data_Types
http://160.39.192.108/school/plt/wiki/index.php?title=Final_Report&printable=yes#Operators
http://160.39.192.108/school/plt/wiki/index.php?title=Final_Report&printable=yes#Control_Keywords
http://160.39.192.108/school/plt/wiki/index.php?title=Final_Report&printable=yes#Calling_functions
http://160.39.192.108/school/plt/wiki/index.php?title=Final_Report&printable=yes#Syntax_Example
http://160.39.192.108/school/plt/wiki/index.php?title=Final_Report&printable=yes#C_Base_Program
http://160.39.192.108/school/plt/wiki/index.php?title=Final_Report&printable=yes#Equivalent_DSPL
http://160.39.192.108/school/plt/wiki/index.php?title=Final_Report&printable=yes#Language_Tutorial
http://160.39.192.108/school/plt/wiki/index.php?title=Final_Report&printable=yes#Language_Manual
http://160.39.192.108/school/plt/wiki/index.php?title=Final_Report&printable=yes#Lexical_Conventions
http://160.39.192.108/school/plt/wiki/index.php?title=Final_Report&printable=yes#Tokens
http://160.39.192.108/school/plt/wiki/index.php?title=Final_Report&printable=yes#Comments
http://160.39.192.108/school/plt/wiki/index.php?title=Final_Report&printable=yes#Identifiers
http://160.39.192.108/school/plt/wiki/index.php?title=Final_Report&printable=yes#Keywords
http://160.39.192.108/school/plt/wiki/index.php?title=Final_Report&printable=yes#String_Literals
http://160.39.192.108/school/plt/wiki/index.php?title=Final_Report&printable=yes#Syntax_Notation
http://160.39.192.108/school/plt/wiki/index.php?title=Final_Report&printable=yes#Meaning_of_Identifiers
http://160.39.192.108/school/plt/wiki/index.php?title=Final_Report&printable=yes#Basic_Types
http://160.39.192.108/school/plt/wiki/index.php?title=Final_Report&printable=yes#Derived_Types
http://160.39.192.108/school/plt/wiki/index.php?title=Final_Report&printable=yes#Objects_and_Lvalues
http://160.39.192.108/school/plt/wiki/index.php?title=Final_Report&printable=yes#Programs
http://160.39.192.108/school/plt/wiki/index.php?title=Final_Report&printable=yes#Conversions
http://160.39.192.108/school/plt/wiki/index.php?title=Final_Report&printable=yes#Expressions
http://160.39.192.108/school/plt/wiki/index.php?title=Final_Report&printable=yes#Additive_Operators
http://160.39.192.108/school/plt/wiki/index.php?title=Final_Report&printable=yes#Multiplicative_Operators
http://160.39.192.108/school/plt/wiki/index.php?title=Final_Report&printable=yes#Unary_Operators
http://160.39.192.108/school/plt/wiki/index.php?title=Final_Report&printable=yes#Atomic_Values
http://160.39.192.108/school/plt/wiki/index.php?title=Final_Report&printable=yes#Declarations
http://160.39.192.108/school/plt/wiki/index.php?title=Final_Report&printable=yes#Statements
http://160.39.192.108/school/plt/wiki/index.php?title=Final_Report&printable=yes#Assignment_Statement
http://160.39.192.108/school/plt/wiki/index.php?title=Final_Report&printable=yes#Selection_Statement
http://160.39.192.108/school/plt/wiki/index.php?title=Final_Report&printable=yes#Iteration_Statement
http://160.39.192.108/school/plt/wiki/index.php?title=Final_Report&printable=yes#C_Call_Statement
http://160.39.192.108/school/plt/wiki/index.php?title=Final_Report&printable=yes#Project_Plan
http://160.39.192.108/school/plt/wiki/index.php?title=Final_Report&printable=yes#Processes
http://160.39.192.108/school/plt/wiki/index.php?title=Final_Report&printable=yes#Planning
http://160.39.192.108/school/plt/wiki/index.php?title=Final_Report&printable=yes#Specification
http://160.39.192.108/school/plt/wiki/index.php?title=Final_Report&printable=yes#Development

 4.1.4 Testing
 4.2 Programming style guide
 4.3 Project Timeline
 4.4 Roles and Responsibilities
 4.5 Software Development Environment
 4.6 Project Log

 5 Architectural Design
 6 Test Plan

 6.1 Test Suites
 6.2 Testing Scenarios

 6.2.1 Scenario 1: Program output matches correct output
 6.2.2 Scenario 2: Program output does not match correct output
 6.2.3 Scenario 3: Invalid program caught by semantic analysis
 6.2.4 Scenario 4: Invalid program incorrectly passes semantic

analysis
 6.3 Credits

 7 Lessons Learned
 7.1 Individual Insights

 7.1.1 Jeffrey Cropsey
 7.1.2 David Lariviere
 7.1.3 Michael Lynch
 7.1.4 Varun Maithel
 7.1.5 Varun Mehta

 7.2 Advice for Future Teams
 8 Appendix

http://160.39.192.108/school/plt/wiki/index.php?title=Final_Report&printable=yes#Testing
http://160.39.192.108/school/plt/wiki/index.php?title=Final_Report&printable=yes#Programming_style_guide
http://160.39.192.108/school/plt/wiki/index.php?title=Final_Report&printable=yes#Project_Timeline
http://160.39.192.108/school/plt/wiki/index.php?title=Final_Report&printable=yes#Roles_and_Responsibilities
http://160.39.192.108/school/plt/wiki/index.php?title=Final_Report&printable=yes#Software_Development_Environment
http://160.39.192.108/school/plt/wiki/index.php?title=Final_Report&printable=yes#Project_Log
http://160.39.192.108/school/plt/wiki/index.php?title=Final_Report&printable=yes#Architectural_Design
http://160.39.192.108/school/plt/wiki/index.php?title=Final_Report&printable=yes#Test_Plan
http://160.39.192.108/school/plt/wiki/index.php?title=Final_Report&printable=yes#Test_Suites
http://160.39.192.108/school/plt/wiki/index.php?title=Final_Report&printable=yes#Testing_Scenarios
http://160.39.192.108/school/plt/wiki/index.php?title=Final_Report&printable=yes#Scenario_1:_Program_output_matches_correct_output
http://160.39.192.108/school/plt/wiki/index.php?title=Final_Report&printable=yes#Scenario_2:_Program_output_does_not_match_correct_output
http://160.39.192.108/school/plt/wiki/index.php?title=Final_Report&printable=yes#Scenario_3:_Invalid_program_caught_by_semantic_analysis
http://160.39.192.108/school/plt/wiki/index.php?title=Final_Report&printable=yes#Scenario_4:_Invalid_program_incorrectly_passes_semantic_analysis
http://160.39.192.108/school/plt/wiki/index.php?title=Final_Report&printable=yes#Scenario_4:_Invalid_program_incorrectly_passes_semantic_analysis
http://160.39.192.108/school/plt/wiki/index.php?title=Final_Report&printable=yes#Credits
http://160.39.192.108/school/plt/wiki/index.php?title=Final_Report&printable=yes#Lessons_Learned
http://160.39.192.108/school/plt/wiki/index.php?title=Final_Report&printable=yes#Individual_Insights
http://160.39.192.108/school/plt/wiki/index.php?title=Final_Report&printable=yes#Jeffrey_Cropsey
http://160.39.192.108/school/plt/wiki/index.php?title=Final_Report&printable=yes#David_Lariviere
http://160.39.192.108/school/plt/wiki/index.php?title=Final_Report&printable=yes#Michael_Lynch
http://160.39.192.108/school/plt/wiki/index.php?title=Final_Report&printable=yes#Varun_Maithel
http://160.39.192.108/school/plt/wiki/index.php?title=Final_Report&printable=yes#Varun_Mehta
http://160.39.192.108/school/plt/wiki/index.php?title=Final_Report&printable=yes#Advice_for_Future_Teams
http://160.39.192.108/school/plt/wiki/index.php?title=Final_Report&printable=yes#Appendix

Introduction

Digital Signal Processing Language was created and designed for the purpose of providing an
efficient language that can easily be compiled to make use of vector instructions that have been
introduced in Intel’s recent instruction sets. The language receives its name from the strong
applicability these improvements have to many operations common in digital signal processing.

Since the introduction of Intel’s MMX technology processor families, Intel has introduced four
extensions into their architectures that support single-instruction multiple-data (SIMD). These
extensions provide a group of instructions that perform SIMD operations on packed integer
and/or packed floating-point data elements. Using these instructions enhances the performance of
compatible processors for a variety of uses, including advanced 2-D and 3-D graphics, motion
video, image processing, speech recognition, audio synthesis, telephony, and video
conferencing.1

Brief Overview of Intel SIMD

Intel first introduced SIMD with MMX, which was available on some Pentiums as well as
Pentium II’s. MMX offered instructions for parallel operations on packed byte, word, or double
word integers.

SSE (Streaming SIMD Execution) was first introduced in Pentium III, offering instructions for
packed single-precision floating-point values.

SSE2 was introduced in the Pentium 4 and Intel Xeon processors, offering instructions for packed
double-precision floating-point values, as well as new instructions for 128-bit integer operations.

SSE3 was most recently introduced in the Pentium 4 supporting Hyperthreading (P4+HT), which
further added additional instructions, some of whose utility are demonstrated in Section XI.

DSPL will specifically target P4+HT and later architectures, in order to take full advantage of all
SIMD instructions (MMX, SSE, SSE2, and SSE3).

Vector Operations

The main feature that DSPL offers is its ability to take advantage of SIMD (Singleinstruction
Multiple-Data) instructions when compiled. These instructions allow for the parallel execution of
multiple operations that would otherwise require separate instructions. The DSPL compiler uses
these instructions when the language performs operations on arrays. For example, if a, b, and c
are arrays of type int with an arbitrary number of elements, in DSPL it is possible to perform the
following operation:

1 ftp://download.intel.com/design/Pentium4/manuals/25366520.pdf

a = b + c; //where a[0] = b[0] + c[0], a[1] = b[1] + c[1], etc

The compiler uses SIMD instructions when creating assembly code for this statement, such that
several additions can be performed simultaneously. In prior languages a for loop would be
required, which would add each of the elements individually, resulting in many more instructions.
Further, if the array sizes are known at compile time, it is possible to unroll the loop, further
improving speed. Although this may seem like a rather simple improvement, in the applications
noted above these operations are performed frequently and consequently optimization of this
process has a dramatic overall effect.

Portability

A driving motivation behind DSPL is its use of all available SIMD instructions available on
current-generation Intel processors. Therefore, DSPL has been designed to offer superior
efficiency on modern systems (supporting SSE3), rather than worry about backwards
compatibility with previous architectures. It is, however, conceivable to port the DSPL compiler
to other architectures.

Data Types

As the focus of DSPL language is to increase ease and efficiency of vector calculations, DSPL
uses a small set of data types. The data types implemented are int, uint, byte, ubyte, float,
as well as the corresponding single-dimension array types int_array[], uint_array[],
byte_array[], ubyte_array, and float_array[].

Operators

DSPL uses operators in very powerful ways. It implements the basic mathematical operators +, -,
*, / (addition, subtraction, multiplication, and division), which are capable of operating on every
data type (including single-dimension arrays. The use of array operators leads to cleaner, more
elegant code that is less prone to mistakes by the programmer and more easily optimized by the
compiler.

Control Keywords

The language supports a basic set of control characters needed for manipulating sets of data in
calculations, consisting of for, while and a conditional structure if – else.

Calling functions

In order to provide a simple and clean way for a DSPL programmer to work with sets of data, the
language includes the ccall funciton which allows the calling of C functions such as printf.

Syntax Example

C Base Program

/*
 Direct fourier transform
 * taken from http://local.wasp.uwa.edu.au/~pbourke/other/dft/
 * Removed sin/cos... so it doesn't actually compute DFT but something extremely close.
 * allows comparison with something DSPL is capable of (since we don't have sin/cos yet).
 */
#define FALSE 0
#define TRUE 1
int DFT(int dir,int m,float *x1,float *y1)
{
 long i,k;
 float arg;
 float cosarg,sinarg;
 float *x2=NULL,*y2=NULL;

 x2 = malloc(m*sizeof(float));
 y2 = malloc(m*sizeof(float));
 if (x2 == NULL || y2 == NULL)
 return(FALSE);

 for (i=0;i<m;i++) {
 x2[i] = 0;
 y2[i] = 0;
 arg = - dir * 2.0 * 3.141592654 * (float)i / (float)m;
 for (k=0;k<m;k++) {
 cosarg = k * arg; //cos(k * arg);
 sinarg = k * arg; //sin(k * arg);
 x2[i] += (x1[k] * cosarg - y1[k] * sinarg);
 y2[i] += (x1[k] * sinarg + y1[k] * cosarg);
 }
 }

 /* Copy the data back */
 if (dir == 1) {
 for (i=0;i<m;i++) {
 x1[i] = x2[i] / (float)m;
 y1[i] = y2[i] / (float)m;
 }
 } else {
 for (i=0;i<m;i++) {
 x1[i] = x2[i];
 y1[i] = y2[i];
 }
 }

 free(x2);
 free(y2);
 return(TRUE);
}
int main() {
 float x1[2048];
 float y1[2048];
 int i;

 for (i=0; i<2048; i++) {
 x1[i] = (float) i;
 y1[i] = (float) i * 1.0;
 }

 DFT(1, 2048, x1, y1);

 for (i=0; i<8; i++) {
 printf("%d = %f, %f\n", i, x1[i], y1[i]);

 }
 for (i=2040; i<2048; i++) {
 printf("%d = %f, %f\n", i, x1[i], y1[i]);
 }
 return 0;
}

Equivalent DSPL

And now the equivalent for DSPL:

/**
 * @author: Big D
 * Fake DFT program. Add sin/cos --> =). Add complex/complex_array --> =) =) =) =) =)
 */
int i;
int k;
int m;
int dir;
float arg;
float cosarg;
float sinarg;
float_array[2048] x1;
float_array[2048] y1;
float_array[2048] x2;
float_array[2048] y2;

dir = 1;
m = 2048;

for (i=0; i<2048; i=i+1) {
 x1[i] = i;
 y1[i] = i * 1.0;
}

for (i=0;i<m;i=i+1) {
 x2[i] = 0;
 y2[i] = 0;
 arg = -1 * dir * 2.0 * 3.141592654 * i / m;
 for (k=0;k<m;k=k+1) {
 cosarg = k * arg; //cos(k * arg);
 sinarg = k * arg; //sin(k * arg);
 x2[i] = x2[i] + (x1[k] * cosarg - y1[k] * sinarg);
 y2[i] = y2[i] + (x1[k] * sinarg + y1[k] * cosarg);
 }
 }

 /* Copy the data back */
 if (dir == dir) {
 for (i=0;i<m;i=i+1) {
 x1[i] = x2[i] / m;
 y1[i] = y2[i] / m;
 }
 }

 else {
 for (i=0;i<m;i=i+1) {
 x1[i] = x2[i];
 y1[i] = y2[i];
 }
 }

for (i=0; i<8; i=i+1) {
 ccall printf("%d = %f, %f\n", i, x1[i], y1[i]);
}
for (i=2040; i<2048; i=i+1) {
 ccall printf("%d = %f, %f\n", i,x1[i], y1[i]);
}

The above compiled sample programs output almost exactly the same results of.... For C:

0 = 0.000000, 0.000000
1 = 0.000000, -8572.362305
2 = 0.000000, -17144.724609
3 = 0.000000, -25717.082031
4 = 0.000000, -34289.449219
5 = 0.000000, -42861.796875
6 = 0.000000, -51434.164062
7 = 0.000000, -60006.472656
2040 = 0.000000, -17487624.000000
2041 = 0.000000, -17496186.000000
2042 = 0.000000, -17504760.000000
2043 = 0.000000, -17513336.000000
2044 = 0.000000, -17521916.000000
2045 = 0.000000, -17530470.000000
2046 = 0.000000, -17539056.000000
2047 = 0.000000, -17547618.000000

and for DSPL:

0 = 0.000000, 0.000000
1 = 0.000000, -8572.362305
2 = 0.000000, -17144.724609
3 = 0.000000, -25717.080078
4 = 0.000000, -34289.449219
5 = 0.000000, -42861.796875
6 = 0.000000, -51434.160156
7 = 0.000000, -60006.476562
2040 = 0.000000, -17487626.000000
2041 = 0.000000, -17496184.000000
2042 = 0.000000, -17504760.000000
2043 = 0.000000, -17513336.000000
2044 = 0.000000, -17521916.000000
2045 = 0.000000, -17530470.000000
2046 = 0.000000, -17539056.000000
2047 = 0.000000, -17547618.000000

The difference is most likely in GCC sometimes representing fp constants as integer expressions
to simplify the assignment using movl, whereas DSPL follows ICL's habit of always creating
double-precision FP constants.

Language Tutorial
The DSPL compiler is invoked by running the dsplc java compiled file. Put your dspl code into
a file with .dspl extension, and run it through the compiler, as per the usage:

java dspl.dsplc [-c] [-t] inputFile outputFile

The options are as follows:

 -c: Invoke gcc and generate an executable program (named outputFile)
 -t: Display the parsed AST frame

If -c is not specified, assembly code will be output into the outputFile.

Language Manual

Lexical Conventions

A program consists of a series of tokens which are grouped together to create declarations and
statements.

Tokens

Like C, there are six classes of tokens: identifiers, keywords, constants, string literals, operators,
and other separators. White-space, which includes blanks, horizontal and vertical tabs, newlines,
formfeeds, and comments, are used to separate tokens and are otherwise ignored.

Comments

The characters "/*" introduce a comment, and "*/" terminate a comment. In addition, the
characters "//" introduce a single-line comment, thus the next newline terminates the comment.
Comments do not nest, and do not occur within string or character literals.

Identifiers

Identifiers are sequences of letters, digits, and/or underscores. The first character must be a letter
or underscore. Upper and lower case letters are different.

Keywords

The following identifiers are reserved as keywords and may not be used as identifiers:

 byte
 byte_array
 ccall
 else
 float
 float_array
 for
 if
 int
 int_array
 ubyte
 ubyte_array
 uint
 uint_array
 while

Constants There are six kinds of constants, including signed and unsigned bytes and integers,
strings, and floating point numbers.

Byte Constants Integer constants consist of a sequence of digits. The associated keywords are
byte and ubyte. byte can be -128 to 127. ubyte can be 0 to 255.

Integer Constants Integer constants consist of a sequence of digits. The associated keywords are
int and uint. int can be -(2^31) to (2^31)-1. uint can be from 0 to (2^32)-1.

Floating Constants Floating constants consist of a sequence of digits, a decimal point, and a
sequence of digits. The associated keyword is float

String Literals

String literals, also known as string constants, are a sequences of characters surrounded by
double-quotes. Strings may consist of any character except for the double-quote. String literals
are associated with no keyword, and are meant only to be used as arguments to ccall functions. A
null byte \0 is appended to the end so that programs can find the string's end.

Syntax Notation

In the syntax notation used for this LRM, ANTLR-like code is used.

Meaning of Identifiers

Identifiers refer to objects. An object is a location in storage, and its interpretation depends on its
storage type. The type determines the meaning of the values found in the identified object. The
lifetime of all objects in DSPL is permanent and global; there is no scoping of variables.

Basic Types

There are several fundamental types. Strings are any combination of characters except for the
double-quote. There are signed (int) and unsigned (uint) integers, which are 4 bytes long.
There are signed (byte) and unsigned (ubyte) bytes, which are 1 byte long. Floating-point
numbers (float) are 4 bytes long.

Derived Types

Besides the basic types, there may also be arrays of any numeric basic type (int_array,
uint_array, byte_array, ubyte_array, float_array). byte_array and
ubyte_array must be declared with a length that is a multiple of 16. int_array,
uint_array, and float_array must be declared with a length that is a multiple of 4.

Objects and Lvalues

An object is a named region of memory, whereas an lvalue is a name referring to an object.

Programs

A program is a list of declarations followed by statements:

program:
 (declaration)* (statement)*

Sub-programs are block of code nested in braces, used in loops and branching statements:

sub-program:
 '{' (statement)* '}'

Conversions

All operators will automatically convert their operands to be compatible with each other; explicit
typecasting is not possible. For any assignment statement, all operands will be converted so that
they are of the same type as the destination before any operations are performed. This excludes
array operations as arrays cannot be converted.

Expressions

There are two types of expressions in DSPL, boolean expressions and numerical expressions.
Numerical expressions are typically used in assignment statements and boolean expressions
pertain to control flow and looping.

Boolean expressions in DSPL are comparisons between atomic values:

boolean-expression:
 unary-operator ("==" | "!=" | '<' | "<=" | '>' | ">=") unary-operator)?;

Both sides of the operand must be of the same numerical type.

Numerical expressions in DSPL are combinations of numerical operations:

numerical-expression:
 additive-operator

Because these expressions are only used in assignment statements, automatic type-casting is
possible (all values are converted to the type of the value being assigned to before any
operations). This excludes array operations as arrays cannot be converted. The handling of
overflow, divide check, and other exceptions in expression evaluation will result in unpredictable
results.

Additive Operators

The additive operators + and - group left-to-right.

additive-operator:
 multiplicative-operator (('+' | '-') multiplicative-expression)*

The result of the + operator is the sum of the operands. The result of the - operator is the
difference of the operands. If performed on arrays, the two arrays must be of same length and
type (no automatic type-casting), and the result is an array for which each element is the result of
the operation on the corresponding elements of the original arrays' elements.

Multiplicative Operators

The multiplicative operators * and / group left-to-right.

multiplicative-operator:
 parentheses (('*' | '/') parentheses)*

The operands of * and / must have arithmetic type or array of arithmetic type. The binary *
operator denotes multiplication. The binary / operator yields the quotient; if the second operand
is 0, the result is undefined. If performed on arrays, the two arrays must be of same length and
type, and the result is an array for which each element is the result of the operation on the
corresponding elements of the original arrays' elements.

Unary Operators

Expressions with unary operators group right-to-left.

unary-operator:
 '-' (int-constant | float-constant)
 | '+' unary-operator cast-expression
 | '<code>byte_array</code> and <code>
 | value
parentheses:
 '(' numerical-expression ')'
 | unary-operator

The unary negation - operator only works on constants.

Atomic Values

The types of lvalues and values are:

value:
 lvalue
 | int-constant
 | float-constant
 | string-literal

lvalue:
 identifier ('(' numerical-expression ')')?

lvalues can thus either be single numbers, strings, whole-arrays, or elements of an array.

Declarations

Declarations specify the interpretation given to each identifier; they do not necessarily reserve
storage associated with the identifier. Declarations that reserve storage are called definitions.
Declarations have the form

declaration:
 ("int" | "uint" | "byte" | "ubyte" | "float") identifier ';'
 | ("int_array" | "uint_array" | "byte_array" | "ubyte_array" | "float_array")
'[' int-constant ']' identifier ';'

Note that values can not be initialized in the declaration and that all arrays must have their sizes
declared.

Statements

Except as described, statements are executed in sequence. Statements are executed for their
effect, and do not have values. They fall into several groups.

statement:
 assignment-statement
 selection-statement
 iteration-statement
 ccall-statement
 | ';'

Assignment Statement

The assignment assigns values to the object an lvalue refers to.

assignment-statement:
 lvalue '=' numerical-expression ';'

The = operator requires an lvalue as left operand, and the lvalue must be modifiable. In DSPL,
this means it may be an array, as well as a primitive type. The value of the expression replaces
that of the object referred to by the lvalue. Both operands do not necessarily have to have the
same numerical type unless an array is being assigned. Arrays must be of the same length.

Selection Statement

The selection statement choose one of several flows of control.

selection-statement:
 "if" '(' bool-expression ')' subprogram ('else' subprogram)?

In both forms of the if statement, the boolean expression is evaluated and if it compares true, the
first substatement is executed. Optionally, if there is an else, the second subprogram is executed if
the expression is false.

Iteration Statement

The iteration statement specifies looping.

iteration-statement:
 "while" '(' bool-expression ')' subprogram
 | "for" '(' (assignment-statement (',' assignment-statement)*)? ';' bool-
expression ';' (assignment-statement (',' assignment-statement)*)? ')' subprogram

In the while statement, the substatement is executed repeatedly so long as the value of the
expresion remains true. The test, including all side effects from the expression, occurs before
each execution of the statement. The for executes its subprogram while the bool-expression
evaluates true. The first set of assign-statements are executed prior to its first evaluation, and the
second set are evaluated afer every execution of its subprogram.

C Call Statement

The C call statement calls libraries from C:

ccall-statement:
 "ccall" identifier '(' (unary-operator (',' unary-operator)*)? ')' ';'

It should be noted that only atomic values can be passed to a ccall function.

Project Plan

In this section we will explain the development of DSPL as a team project.

Processes

The process of creating DSPL was a long and detailed process. The core of the language revolved
around automating and optimizing arithmetic operations on sequential elements of an array. First,
a detailed analysis and research of Intel's current instruction set architecture was performed.
Then, it was necessary to learn x86 assembly syntax, and generate simple programs utilizing the
optimized x86 instructions for array operations. With the types of array operations and the
necessary assembly output required in mind, the actual features of the language were then
created.

Planning

We decided early on that we wanted to create a compiler that made use of Intel's advanced SSE
instructions. We decided to start off with a limited version of C that would provide some
additional functionality, such as a new type, complex, as well as the ability to have mathematical
operations work with entire arrays as operands. We would also add the convolution operator ~,
which would take arrays as operands. However, as we learned more about compiler design during
the course, we soon realized that our initial plans were a bit too ambitious. In order to maintain
SSE functionality, we decided to further scale back some features of C that were not absolutely
necessary, such as AND/OR operators.

Specification

We captured the initially-planned specifications in the first round of our Language Reference
Manual. However, it evolved as work on the project continued. The general rule in choosing
language features was that if it was possible to maintain functionality, it was acceptable to
eliminate certain features. Examples of this are using &&/|| in if statements, instead of just listing
multiple if statements and repeating code. Another example was i++. The major factor deciding
language features was intended/hoped use for the language. Images are typically unsigned byte
arrays, thus we absolutely needed unsigned and byte sized support. FFTs typically operate either
on signed integer or float arrays, thus the need for both integers and floats. At one point, it was
decided to drop FP-element (non-array) operations, but after a refresher on DFT/FFT code
snippets, it was quickly realized that array FP support alone was not enough. Also, originally
conversions were specified, but later removed due to complexity. Eventually it was deemed
absolutely necessary, however, again due to implementing a DFT. The final specification actually
added a lot more functionality than was removed.

Development

Development of DSPL was separated into three architectural components: the front-end,
intermediate stage, and back-end. The front-end was created using ANTLR, which generated an
abstract syntax tree. The intermediate stage, consisting of a TreeWalker also created with
ANTLR, converted the output of the front-end into DSPL's intermediate format. The back-end
finally took this representation and converted it to assembly code. The compiler would generate a
GCC-friendly AT&T-style assembly (*.s) file, which could finally be compiled with GCC into an
executable program.

The intermediate representation, consisting of Instruction types and DSPL Variable types was
created first. The intention was to create a solid and complete IR, before commencing on the
backend or front-end. The IR represented a contract by which the front and back-ends had to
adhere to. This drastically reduced integration efforts between the front and back ends, as the
output and input, respectively, of each was already set. The most vigorous argument and type
checking was done in the IR.

Once work started on the backend, it became clear that certain operations, mainly the formatting
of variables for use in asm instructions, would be required extremely often, and sometimes
required very complex formatting, depending on the situation. In order to solve this, a paradigm
similar to the one used in the IR was applied, but only done for the Variables. Four main X86
Operand types were created: registers, immediates, memory, and indexed memory elements.

Registers corresponded to actual X86 registers, including both the 8 general purpose registers, as
well as the newer 128-bit SSE registers. Immediates were constants that could be supplied
directly within the instruction, for example movl $5, %eax, which would set the value of the
%eax register to 5. Memory operands were where the memory location could be represented with
a single variable, as in movl intA, %eax, where intA is the memory location of an integer
value.

The most complicated operand format, indexed-memory locations, was the primary reason for the
creation of the backend operand format. When accessing elements in an array, one the
recommended x86 format is some variant of movl 0(%eax,%ebx,4), %ecx, where the
contents of the memory location stored at (0 + %eax + (%ebx * 4)) is moved into register
ecx. This may seem unnecessary, but given the focus of our project on optimizing array
operations, having a method of efficiently accessing their elements was absolutely necessary.

Testing

Testing, like the specification process, required consistent adaptations to the dynamic
implementation of features. Test cases were created that tested both the functionality, or things
that should work, and syntax errors, or things that shouldn't work. The testing script was written
in Python and allowed the creation of suites of tests. Every time a new feature was added, test
cases were created, and if a feature was changed, the corresponding test cases were as well.

Programming style guide

The two main restrictions everyone had to adhere to when programming were to use javadoc-
style comments so a comprehensive javadoc could easily be generated, and to adhere to the class
structure we had agreed on for each of the various parts.

Project Timeline

 2006-10-15: Complete initial specifications
 2006-10-31: Complete initial front-end
 2006-11-15: Complete full compilation of basic Hello World Program
 2006-11-31: Complete full compilation of 2nd Hello World Program
 2006-12-05: Begin active testing phase
 2006-12-15: Complete final specifications and almost all implementation aspects
 2006-12-18: Complete project

Roles and Responsibilities

 Jeffrey Cropsey: Intermediate Stage (AST to IR and Semantic Analysis)
 David Lariviere: Back-end, Team Leader
 Michael Lynch: Testing
 Varun Maithel: Documentation
 Varun Mehta: Front-end

Software Development Environment

The team wrote most of the compiler for DSPL in Java, utilized ANTLR in the front-end to
generate the parser and lexer Java code, and used Python in the testing scripts. The IDE used was
Eclipse, and CVS was used to manage versioning.

Project Log

 2006-09-13: Wrote first ASM program, queries CPUID string of the compiler, compiled
on Fedora Core 2 Linux box

 2006-09-20: Determined necessary changes to compile ASM programs in Windows using
Cygwin

 2006-10-05: Completed Regression tester script
 2006-10-09: Finished writing complete ASM program to multiply two pairs of complex

numbers utilizing SSE3 and print the result.
 2006-10-19: Intial LRM Completed.
 2006-10-23: Front-end creates ASTs
 2006-11-01: 20 test cases created for regression suite
 2006-11-12: Intermediate Format (Instructions/Variables) completed
 2006-11-13: Backend Infrastructure completed. IR of HelloWorldv1 compiles sucessfully
 2006-11-18: Initial tree-walker created.
 2006-11-29: Completed work on compiling ASM modules and calling from c programs
 2006-12-04: HelloWorldv2.dspl fully compiles and properly runs
 2006-12-06: Regression Tester up and running utilizing functional compiler
 2006-12-08: Indexing into arrays completed
 2006-12-09: Regression Tester modified to recognize error codes, allows single source

file tests
 2006-12-16: Final specifications updated in LRM
 2006-12-17: Over 100 test cases
 2006-12-18: Project completed
 2006-12-19: Final report submitted

Architectural Design

The process of compilation in DSPL can be broken down into three main stages: front-end,
intermediate, and back-end.

Input File
Sequence of ASCII Text

Abstract Syntax Tree
Tree of Grammatical Elements

DSPL Intermediate Format
Series of 3-address Code Instructions

Assembly Code
Sequence of Assembly Instructions

Front-end

Intermediate Stage

Back-end

Machine Code
Sequence of Machine Instructions

gcc

The front-end parses the input file and identifies tokens, creating an abstract syntax tree. During
the intermediate stage, a tree-walker converts the abstract syntax tree into DSPL's intermediate
format, which is described in further detail below. Finally, during the back-end stage, assembly
code is created from the intermediate representation.

As there are three principal components, there are two corresponding interfaces which are the
output of one and the input of the next: the abstract syntax tree and the intermediate format. The
abstract syntax tree represents the program as a hierarchy of grammatical elements. DSPL's
intermediate format is a simplified version of the abstract syntax tree, in that the hierarchy
represented is of 3-address code statements that are analogous to assembly instructions. Lastly,
the back end consists of a series of interfaces and x86 implementations responsible for processing
each IR instruction type and generating the appropriate assembly code.

dspl package

Frontend package

Intermediate package

Backend package

x86 package

Operands package

AST

AST to Intermediate Walker

Lexer

Parser

Token Types

Token Types

Instructions package

Instruction

Arithmatic Instruction

Branch Instruction

Partial Branch Instruction

CCall Instruction

Loop Instruction

Relation Instruction

Instruction Set

Variable package

Variable

Byte

Unsigned Byte

Integer

Unsigned Integer

Float

String

Operand

Immediate Operand

Index Memory Operand

Memory Operand

Register

Arithmatic Instruction Processor

Branch Instruction Processor

CCall Instruction Processor

Loop Instruction Processor

Variable Manager

Software Architecture of the DSPL Compiler

Asm Formatter

Assembly File Generator

Instruction Processor

dsplc

Symbol Table

Implementation credits:

 front-end (Grammar/Treewalker): Varun Mehta
 intermediate (Treewalker): Jeff Cropsey
 back-end (IR/IR->x86): Dave Lariviere

Test Plan

We used Python to write several utilities that maintained a suite of test cases monitoring the
stability of our language. The most important was a regression tester, which compiled and
executed code from our suite of test source files and compared the results to expected output. In
cases where the source code was expected to be rejected by the compiler following semantic
analysis, the expected output was an error code corresponding to the error that the compiler
should have returned upon exiting. In cases where the source was expected to compile and
execute successfully, the expected output would be the output that program should generate
(determined either by human inspection of the code or output of an equivalent C program).

For each source file, filename.dspl, processed by the regression tester, 2-4 output files would be
created:

 filename.log - Compilation log containing the command used to execute the compiler as
well as its output

 filename.s - Assembly code generated for the source file
 filename.exe - Compiled executable for the source file (if semantic analysis was

successful)
 filename.out - Output of the compiled program upon successful compilation and

execution of the source file

The regression tester had three different modes of operation:

 single file - Perform a test on a single specified source file
 file suite - Perform a test on each file from a list of source programs from a plaintext file
 global - Perform a test on each file in the test folder

Test Suites

As test cases were written, they were added either to the "syntax" suite, for files that are geared
toward testing elements of the compiler's semantic analysis, or the "functionality" suite, for files
that test the actual execution of the program once compiled. Once a file was working correctly in
the current build, it was added to the "working" suite, which contained all files that compiled and
executed successfully. The working suite was very important, as no changes could be committed
to the repository unless it passed every test in the current working suite.

The test cases written were each designed to test an isolated feature of the language so that it
could be clear to the programmer which compiler features were failing without having to pore
through lines of a test case to find specifically where an error occurred. The entire collection of

test cases contains over 100 different source files, which can be found in the appendix. The
collection of tests is intended to cover every significant feature of DSPL, though our most
aggressive and exhaustive testing was on numerical operations including arithmetic on both
atomic and array variables.

Testing Scenarios

In testing our source files, the results would fall into four different scenarios, each of which the
regression tester would inform the user of.

Scenario 1: Program output matches correct output

When a source file was compiled and executed successfully, its output would match the correct
expected output and the regression tester would report this. In the case of our test case
comment2.dspl:

/** Tests different types of comments **/
ccall printf("this line should be printed.\n");
//ccall printf("this one shouldn't be\n");
ccall /* some people think comments are unnecessary */ printf("but this one should
be\n");
/* ccall printf("this is a comment and should be ignored by the compiler\n"); */
ccall printf("the beginning of this line should be printed..."); // ccall printf(" but
not the end");
ccall printf("\n");

This program is syntactically correct and should compile with the expected output:

this line should be printed.
but this one should be
the beginning of this line should be printed...

Since the actual output matches the correct output, the regression tester would output

Running test for `testcases\comment2.dspl': OK!

Scenario 2: Program output does not match correct output

If the compiler had an error that caused the previous program's output to be the following:

this line should be printed.
an erroneous line!
the beginning of this line should be printed...

The regression tester would reflect this in the test and display the part of the output that differed
(with the verbose flag):

Running test for `testcases\comment2.dspl': MISMATCH - WRONG OUTPUT
 `testcases\correct\comment2.out' != `test_output_12-19-2006_14-33-15\comment2.out'
 2c2
 < but this one should be

 > an erroneous line!

Scenario 3: Invalid program caught by semantic analysis

In cases where we expected the source to fail semantic analysis, the expected output file would
contain only an integer representing the expected error code on which the compiler is expected to
exit. The following program should be rejected by the compiler since it incorrectly assigns a
variable in its declaration.

/* tests immediate assignment of a variable */
int i = 5;
ccall printf("This line should not print\n");

If the compiler rejects this program and exits with the proper code, the regression tester would
output:

Running test for `testcases\assignment2.dspl': OK!

Scenario 4: Invalid program incorrectly passes semantic analysis

If the compiler contained an error that allowed the previous program to be compiled successfully,
the regression tester would notify the user with the following output:

Running test for `testcases\assignment2.dspl': MISMATCH - UNEXPECTED COMPILE

Credits

The regression tester and the majority of test cases were created by Mike Lynch. The rest of the
group contributed some test cases as well.

Lessons Learned

Individual Insights

Jeffrey Cropsey

I can confidently say that “starting earlier” would not have helped us in this endeavor, as we
began right after our group was formed. However, there were some things that would have made
our compiler design move much faster in the end if they were present in the beginning. The
language was in flux for a while after the initial specification as we learned that certain features
would be more complicated than others and that some features, while they might add finesse (like
the ++ operator) didn’t add new functionality. The flux of the language caused a several changes
in the grammar and tree walker, the components on which I worked.

The introduction of a strong IR helped to reduce the complications that grammar changes made to
the walker. Nevertheless, when my focus changed from walking to semantic analysis, the
problems caused by the changes returned. One specific example was in the implicit conversion of
types in an expression. We chose to convert all values to the assign type before evaluation of the
expression. I added functions to the walker to create the proper assignment and conversion
instructions. However, after a few days, the analysis would break with the addition of a new type
that started working, such as the addition of floating point support. On the other side of things we
dropped support for complex numbers, but many other files relied on the definition of a complex
data type to be present. Not having the time to go back and remove it at all stages, we had to
catch the declaration of such variables in the walker.

There are three things that would have made the job of walking and semantic analysis easier for
our group and me. First, taking more time in the beginning to more deeply evaluate exactly what
types and operations and their combinations could be in the language would have fewer changes
to the grammar necessary in the long run. In addition to this longer and more through definition
phase, creating a well defined way to add and remove functionality that might fall “on the
bubble” of being in or out of the language so its addition or removal would not create as much of
a ripple in the code. Second would have been the addition of helper classes in semantic analysis.
Because of the way functionality came online, each time there was a new check it was only “a
few more lines of code.” Instead, having an assistant to the walker that encapsulated all of these
little things would have made the walker cleaner to operate on in later stages. Finally, if time had
allowed, it would have been helpful to build a java backend to the language early on while the
assembly back end added functional support. In this way, we could have included support to
visualize the IR in addition to test the walker’s ability to produce the IR for all types and features
before assembly support was added. Such a backend would further separate dependency on the
assembly backend for testing.

In all, it was quite exciting to build a compiler for the class. I am sure that some of my wishes
(like the java backend) could take too much time to implement and cause problems of their own.
Even when starting early, one is limited by other classes and the length of the semester. I know

however that even though this project was a toy compared to the “real world” it still represented
the most complex system many of us have designed so far and the experience will be applicable
as the scale of systems we develop increases. I would be excited to see, given another semester
and an overhaul to the front end as described, how far our little language of DSPL could go.

David Lariviere

I learned so much while doing this project. My main hope was that I would finally learn
assembly. I have made many brief attempts over the years, but could never quite get myself to
spend the time to learn it sufficiently. After doing this project, however, I feel quite capable
programming in x86 assembly, using a variety of addressing formats, data storage sizes, and
instruction types.

Doing this project also helped get me much more familiar with the Intel's x86 architecture. For
the last few months the Intel Manuals 1,2a,2b,and 4 have served as my bible and nightly reading
of choice. I think the biggest surprise in doing this project and taking PLT was in gaining a new
understanding of the impact that compilers and ISAs can have on a particular program's
performance. I previously felt it was simply a matter of gaining a factor of 4 utilizing 4-element
vector optimizations. Now I feel that entire orders of magnitude can be gained or lost, depending
on precisely how intimate one is with the targeted machine architecture and the code that is
generated on it. I never considered the importance of memory alignment of variables or the stack
before, or even the possible importance of the placement of code within memory to improve the
reliability of cache hits.

In doing this project, I saw first hand the importance of creating exact specifications in between
the components that different people would be responsible for working on. I am so glad that I
created the Intermediate instructions and data types before hand, rather than trying to do so in
parallel with the other work being done. It was done early enough in the semester (about half way
through) that corners didn't have to be cut, and there was sufficient time to completely think
through and develop the entire package. Creating it made integration problems between the front
and back ends non-existent, as both sides knew exactly what they had to adhere to and what was
expected to be implemented. The IR was the result of long planning and discussion of exactly
what features and data types our language would support. Doing the IR in an extensible format
using base abstract classes and interfaces also has made it possible to include and remove certain
features with vastly less overhead than if everything was hard-coded into the respective front and
backends. It was designed with the intention that down the road, additional architectures could be
supported, like X64 or the Cell.

Working on DSPL's IR has made me seriously think about the importance and impact of the
choice of IR in modern day compilers. Historically, it seems that many compilers generated IR
that was simply too close to a specific machine instruction set, and also removed too much of the
high level functionality that was actually being represented. The variety and differences between
modern CPUs, even in the same basic ISA, let alone across different types, makes
instruction/register level IRs seem quite out of date. Especially as the multicore explosion begins
to occur over the next few years, the importance of having IRs which are capable of capturing

high level desired functionality, rather than just low level manipulation of a machine state, will
grow. Examples of this include loops and array operations. In taking a low-level IR approach,
certain optimizations become vastly more difficult than if a higher level IR is utilized, which
provides the backend with a greater understanding of the context in which certain instructions
need to operate, and thus allows for a much greater variety of optimizations and hand-tuning for
the high-level feature (like array arithmetic operations) than is otherwise possible if a backend
compiler is forced to interrupt a low-end result and recognize patterns in the lowlevel IR which
might indicate the high level feature. Another example of this is with synchronization and
multithreading. A low-level IR completely obscures the fact that a particular cmp/branch
instruction is indeed a synchronization lock waiting for another CPU or core to change the value
of an integer. Depending on the ISA, certain instructions with vastly different performance
impacts are available for implementing the same low-level IR, depending on the precise context.

Another area related to IR design is language design and methods of informing the compiler of
the desired results. I had never really been exposed to compiler extrinsics before doing this
project and researching implementations of modern compilers to try to optimize some of the
situations we handle.

In working on DSPL, I also had the chance to become more familiar with the way other compilers
were implemented. Using GCC and Intel (ICL) to compile example code snippets and view their
resulting assembly code made the project much easier to implement. It also provided ideas for
areas of improvement where modern compiler optimizations might fall short for particular
instructions.

The project was extremely big, and while we didn't quite reach where I had hoped, I feel that the
current state of the code is close. We had originally dropped many things that we later decided to
go ahead and implement, the biggest of which being floating point and arrays for all data types.
The project was intentionally designed to be quite more extensible than required for meeting the
particular target for the end of the semester. In the coming months and years, I hope I will find
more time to continue to play, work on, and improve DSPL. My goal is to eventually have it as a
tool not for general purpose programming, but specifically just for generating absurdly optimized
highly-platform specific code snippets to be linked in with programs written in general purpose
languages. While it isn't there yet, one day DSPL shall p0wnz GCC/ICL, in its specific area of
purpose >:}

Other quick lessons learned: the alignment issue mentioned in our final presentation turned out to
be a bug in binutils (gas) for cygwin... :*(.

Also, we learned the "joy" of Floating point fun and all its consistencies....

Michael Lynch

The most important lesson I took from this project is that organization is paramount in program
testing. In order to do effective, rigorous testing, one must carefully plan a procedure for creating

test cases and maintaining their correspondence with a correct output. A clear and organized
system for maintaining our test files, their correct output, and files generated at compile-time and
run-time made greatly facilitated the testing process and our ability to recognize quickly where
bugs were occurring in our compiler.

I believe an incorrect strategy decision I made in testing was writing testcases by hand rather than
writing a program to generate them automatically. I made the decision to manually write test
cases based on the fact that so many of the boundary cases are very specific and would
complicate the case writing if it was done through a script. Later in the testing, I found that this
consideration was still valid, though a code generator would have the added benefit of being able
to easily write C code equivalent to the DSPL code and automatically generate the output as well.
A code generator would also have been beneficial in testing combinations of features, as the
custom boundary cases are repeated over and over again and could easily be combined with one
another by a code generator to ensure that features don't produce unwanted results when used in
conjunction.

Varun Maithel

As far as documentation goes, don't take it lightly. Make sure that you keep up-to-speed with the
latest changes that each group member is working on, add/change the appropriate documentation,
and let everyone else know. The most difficult aspect of working in a large, complex project with
interdependent parts is maintaining continuity between the different modules that each group
member is working on. Fortunately, we quickly created the architecture for the entire compiler
from the beginning, so our progress wasn't slowed by these difficulties. Other than that,
documenting the project was a smooth process without any problems or unforeseen difficulties.

Varun Mehta

Overall my experiences in this group were very positive. Though we divided up tasks into blocks,
we were quite flexible about moving to different modules as needed. The end result is a quality
product that I am proud to have contributed to. Through my experiences I have gained additional
valuable skills in teamwork and coordinating my own activities to meet some strict deadlines. We
created an effective timetable and committed to “development contracts” which solidified the
interfaces between different sections of our project. In this way each section could be
independently developed. Communication was still extremely important, and to that end the
creation of both a mailing list and a wiki allowed us to discuss and document our work so that
everyone could be kept up-to-date. Without all of these support mechanisms in place, there would
have been no hope of accomplishing everything that we were able to in merely a few months.

Advice for Future Teams

 Don’t make your grammar contrary to a CS major’s muscle memory (if you have to,
make it very different)

 Test cases should be automatically generated, as well as correct output, based on several
different compilers, and with different flags set

 Having weekly meetings is a good way to make sure everyone is staying on track and
knows the status of the project and where they should be in their part for it.

 Start learning and writing assembly programs early. Implement from scratch example
versions of programs directly in assembly in order to gain an understanding beforehand
of all of the tasks required to generate the ASM.

Code Appendix
See code attached.

	
	Digital Signal Processing Language
	Final Report
	Jeff Cropsey
	Dave Lariviere
	Mike Lynch
	Varun Maithel
	Varun Mehta
	Contents
	 Introduction
	Brief Overview of Intel SIMD
	Vector Operations
	Portability
	Data Types
	Operators
	Control Keywords
	Calling functions
	Syntax Example
	C Base Program
	Equivalent DSPL

	 Language Tutorial
	Language Manual
	Lexical Conventions
	Tokens
	Comments
	Identifiers
	Keywords
	String Literals

	Syntax Notation
	Meaning of Identifiers
	Basic Types
	Derived Types

	Objects and Lvalues
	Programs
	Conversions
	Expressions
	Additive Operators
	Multiplicative Operators
	Unary Operators
	Atomic Values

	Declarations
	 Statements
	Assignment Statement
	Selection Statement
	Iteration Statement
	C Call Statement

	Project Plan
	Processes
	Planning
	 Specification
	Development
	Testing

	Programming style guide
	Project Timeline
	Roles and Responsibilities
	Software Development Environment
	Project Log

	 Architectural Design
	Test Plan
	Test Suites
	Testing Scenarios
	Scenario 1: Program output matches correct output
	Scenario 2: Program output does not match correct output
	Scenario 3: Invalid program caught by semantic analysis
	Scenario 4: Invalid program incorrectly passes semantic analysis

	Credits

	 Lessons Learned
	Individual Insights
	Jeffrey Cropsey
	David Lariviere
	Michael Lynch
	Varun Maithel
	Varun Mehta

	 Advice for Future Teams

	Code Appendix

