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Introduction  

Digital Signal Processing Language was created and designed for the purpose of providing an 
efficient language that can easily be compiled to make use of vector instructions that have been 
introduced in Intel’s recent instruction sets. The language receives its name from the strong 
applicability these improvements have to many operations common in digital signal processing.  

Since the introduction of Intel’s MMX technology processor families, Intel has introduced four 
extensions into their architectures that support single-instruction multiple-data (SIMD). These 
extensions provide a group of instructions that perform SIMD operations on packed integer 
and/or packed floating-point data elements. Using these instructions enhances the performance of 
compatible processors for a variety of uses, including advanced 2-D and 3-D graphics, motion 
video, image processing, speech recognition, audio synthesis, telephony, and video 
conferencing.1

Brief Overview of Intel SIMD  

Intel first introduced SIMD with MMX, which was available on some Pentiums as well as 
Pentium II’s. MMX offered instructions for parallel operations on packed byte, word, or double 
word integers.  

SSE (Streaming SIMD Execution) was first introduced in Pentium III, offering instructions for 
packed single-precision floating-point values.  

SSE2 was introduced in the Pentium 4 and Intel Xeon processors, offering instructions for packed 
double-precision floating-point values, as well as new instructions for 128-bit integer operations.  

SSE3 was most recently introduced in the Pentium 4 supporting Hyperthreading (P4+HT), which 
further added additional instructions, some of whose utility are demonstrated in Section XI.  

DSPL will specifically target P4+HT and later architectures, in order to take full advantage of all 
SIMD instructions (MMX, SSE, SSE2, and SSE3).  

Vector Operations  

The main feature that DSPL offers is its ability to take advantage of SIMD (Singleinstruction 
Multiple-Data) instructions when compiled. These instructions allow for the parallel execution of 
multiple operations that would otherwise require separate instructions. The DSPL compiler uses 
these instructions when the language performs operations on arrays. For example, if a, b, and c 
are arrays of type int with an arbitrary number of elements, in DSPL it is possible to perform the 
following operation:  

                                 
1 ftp://download.intel.com/design/Pentium4/manuals/25366520.pdf 



a = b + c; //where a[0] = b[0] + c[0], a[1] = b[1] + c[1], etc 

The compiler uses SIMD instructions when creating assembly code for this statement, such that 
several additions can be performed simultaneously. In prior languages a for loop would be 
required, which would add each of the elements individually, resulting in many more instructions. 
Further, if the array sizes are known at compile time, it is possible to unroll the loop, further 
improving speed. Although this may seem like a rather simple improvement, in the applications 
noted above these operations are performed frequently and consequently optimization of this 
process has a dramatic overall effect.  

Portability  

A driving motivation behind DSPL is its use of all available SIMD instructions available on 
current-generation Intel processors. Therefore, DSPL has been designed to offer superior 
efficiency on modern systems (supporting SSE3), rather than worry about backwards 
compatibility with previous architectures. It is, however, conceivable to port the DSPL compiler 
to other architectures.  

Data Types  

As the focus of DSPL language is to increase ease and efficiency of vector calculations, DSPL 
uses a small set of data types. The data types implemented are int, uint, byte, ubyte, float, 
as well as the corresponding single-dimension array types int_array[], uint_array[], 
byte_array[], ubyte_array, and float_array[].  

Operators  

DSPL uses operators in very powerful ways. It implements the basic mathematical operators +, -, 
*, / (addition, subtraction, multiplication, and division), which are capable of operating on every 
data type (including single-dimension arrays. The use of array operators leads to cleaner, more 
elegant code that is less prone to mistakes by the programmer and more easily optimized by the 
compiler.  

Control Keywords  

The language supports a basic set of control characters needed for manipulating sets of data in 
calculations, consisting of for, while and a conditional structure if – else.  

Calling functions  

In order to provide a simple and clean way for a DSPL programmer to work with sets of data, the 
language includes the ccall funciton which allows the calling of C functions such as printf.  



Syntax Example  

C Base Program  

/* 
   Direct fourier transform 
 * taken from http://local.wasp.uwa.edu.au/~pbourke/other/dft/ 
 * Removed sin/cos... so it doesn't actually compute DFT but something extremely close.  
 * allows comparison with something DSPL is capable of (since we don't have sin/cos yet).  
 */ 
#define FALSE 0 
#define TRUE 1 
int DFT(int dir,int m,float *x1,float *y1) 
{ 
   long i,k; 
   float arg; 
   float cosarg,sinarg; 
   float *x2=NULL,*y2=NULL; 
 
   x2 = malloc(m*sizeof(float)); 
   y2 = malloc(m*sizeof(float)); 
   if (x2 == NULL || y2 == NULL) 
      return(FALSE); 
 
   for (i=0;i<m;i++) { 
      x2[i] = 0; 
      y2[i] = 0; 
      arg = - dir * 2.0 * 3.141592654 * (float)i / (float)m; 
      for (k=0;k<m;k++) { 
         cosarg = k * arg; //cos(k * arg); 
         sinarg = k * arg; //sin(k * arg); 
         x2[i] += (x1[k] * cosarg - y1[k] * sinarg); 
         y2[i] += (x1[k] * sinarg + y1[k] * cosarg); 
      } 
   } 
 
   /* Copy the data back */ 
   if (dir == 1) { 
      for (i=0;i<m;i++) { 
         x1[i] = x2[i] / (float)m; 
         y1[i] = y2[i] / (float)m; 
      } 
   } else { 
      for (i=0;i<m;i++) { 
         x1[i] = x2[i]; 
         y1[i] = y2[i]; 
      } 
   } 
 
   free(x2); 
   free(y2); 
   return(TRUE); 
} 
int main() { 
 float x1[2048]; 
 float y1[2048];  
 int i; 
  
 for (i=0; i<2048; i++) {  
  x1[i] = (float) i;  
  y1[i] = (float) i * 1.0;   
 } 
  
 DFT(1, 2048, x1, y1);  
  
 for (i=0; i<8; i++) {  
  printf("%d = %f, %f\n", i, x1[i], y1[i]);  



 } 
 for (i=2040; i<2048; i++) {  
  printf("%d = %f, %f\n", i, x1[i], y1[i]);  
 } 
 return 0;  
} 

Equivalent DSPL  

And now the equivalent for DSPL:  

/** 
 * @author: Big D  
 * Fake DFT program. Add sin/cos --> =). Add complex/complex_array --> =) =) =) =) =) 
 */  
int i; 
int k; 
int m;   
int dir;  
float arg; 
float cosarg; 
float sinarg; 
float_array[2048] x1; 
float_array[2048] y1; 
float_array[2048] x2; 
float_array[2048] y2;  
 
dir = 1;  
m = 2048;  
 
for (i=0; i<2048; i=i+1) {  
 x1[i] = i;  
 y1[i] = i * 1.0;   
} 
 
for (i=0;i<m;i=i+1) { 
      x2[i] = 0; 
      y2[i] = 0; 
      arg = -1 * dir * 2.0 * 3.141592654 * i / m; 
      for (k=0;k<m;k=k+1) { 
         cosarg = k * arg; //cos(k * arg); 
         sinarg = k * arg; //sin(k * arg); 
         x2[i] = x2[i] + (x1[k] * cosarg - y1[k] * sinarg); 
         y2[i] = y2[i] + (x1[k] * sinarg + y1[k] * cosarg); 
      } 
   } 
    
 
 
 
   /* Copy the data back */ 
   if (dir == dir) { 
      for (i=0;i<m;i=i+1) { 
         x1[i] = x2[i] / m; 
         y1[i] = y2[i] / m; 
      } 
   }  
    
   else { 
      for (i=0;i<m;i=i+1) { 
         x1[i] = x2[i]; 
         y1[i] = y2[i]; 
      } 
   } 



   
    
for (i=0; i<8; i=i+1) {  
 ccall printf("%d = %f, %f\n", i, x1[i], y1[i]);  
} 
for (i=2040; i<2048; i=i+1) {  
 ccall printf("%d  = %f, %f\n", i,x1[i], y1[i]);   
} 

The above compiled sample programs output almost exactly the same results of.... For C:  

0 = 0.000000, 0.000000 
1 = 0.000000, -8572.362305 
2 = 0.000000, -17144.724609 
3 = 0.000000, -25717.082031 
4 = 0.000000, -34289.449219 
5 = 0.000000, -42861.796875 
6 = 0.000000, -51434.164062 
7 = 0.000000, -60006.472656 
2040 = 0.000000, -17487624.000000 
2041 = 0.000000, -17496186.000000 
2042 = 0.000000, -17504760.000000 
2043 = 0.000000, -17513336.000000 
2044 = 0.000000, -17521916.000000 
2045 = 0.000000, -17530470.000000 
2046 = 0.000000, -17539056.000000 
2047 = 0.000000, -17547618.000000 

and for DSPL:  

0 = 0.000000, 0.000000 
1 = 0.000000, -8572.362305 
2 = 0.000000, -17144.724609 
3 = 0.000000, -25717.080078 
4 = 0.000000, -34289.449219 
5 = 0.000000, -42861.796875 
6 = 0.000000, -51434.160156 
7 = 0.000000, -60006.476562 
2040  = 0.000000, -17487626.000000 
2041  = 0.000000, -17496184.000000 
2042  = 0.000000, -17504760.000000 
2043  = 0.000000, -17513336.000000 
2044  = 0.000000, -17521916.000000 
2045  = 0.000000, -17530470.000000 
2046  = 0.000000, -17539056.000000 
2047  = 0.000000, -17547618.000000 

The difference is most likely in GCC sometimes representing fp constants as integer expressions 
to simplify the assignment using movl, whereas DSPL follows ICL's habit of always creating 
double-precision FP constants.  



Language Tutorial  
The DSPL compiler is invoked by running the dsplc java compiled file. Put your dspl code into 
a file with .dspl extension, and run it through the compiler, as per the usage:  

java dspl.dsplc [-c] [-t] inputFile outputFile 

The options are as follows:  

 -c: Invoke gcc and generate an executable program (named outputFile)  
 -t: Display the parsed AST frame  

If -c is not specified, assembly code will be output into the outputFile.  

Language Manual  

Lexical Conventions  

A program consists of a series of tokens which are grouped together to create declarations and 
statements.  

Tokens  

Like C, there are six classes of tokens: identifiers, keywords, constants, string literals, operators, 
and other separators. White-space, which includes blanks, horizontal and vertical tabs, newlines, 
formfeeds, and comments, are used to separate tokens and are otherwise ignored.  

Comments  

The characters "/*" introduce a comment, and "*/" terminate a comment. In addition, the 
characters "//" introduce a single-line comment, thus the next newline terminates the comment. 
Comments do not nest, and do not occur within string or character literals.  

Identifiers  

Identifiers are sequences of letters, digits, and/or underscores. The first character must be a letter 
or underscore. Upper and lower case letters are different.  

 

 

 



Keywords  

The following identifiers are reserved as keywords and may not be used as identifiers:  

 byte  
 byte_array  
 ccall  
 else  
 float  
 float_array  
 for  
 if  
 int  
 int_array  
 ubyte  
 ubyte_array  
 uint  
 uint_array  
 while  

Constants There are six kinds of constants, including signed and unsigned bytes and integers, 
strings, and floating point numbers.  

Byte Constants Integer constants consist of a sequence of digits. The associated keywords are 
byte and ubyte. byte can be -128 to 127. ubyte can be 0 to 255.  

Integer Constants Integer constants consist of a sequence of digits. The associated keywords are 
int and uint. int can be -(2^31) to (2^31)-1. uint can be from 0 to (2^32)-1.  

Floating Constants Floating constants consist of a sequence of digits, a decimal point, and a 
sequence of digits. The associated keyword is float  

String Literals  

String literals, also known as string constants, are a sequences of characters surrounded by 
double-quotes. Strings may consist of any character except for the double-quote. String literals 
are associated with no keyword, and are meant only to be used as arguments to ccall functions. A 
null byte \0 is appended to the end so that programs can find the string's end.  

Syntax Notation  

In the syntax notation used for this LRM, ANTLR-like code is used.  

Meaning of Identifiers  

Identifiers refer to objects. An object is a location in storage, and its interpretation depends on its 
storage type. The type determines the meaning of the values found in the identified object. The 
lifetime of all objects in DSPL is permanent and global; there is no scoping of variables.  



Basic Types  

There are several fundamental types. Strings are any combination of characters except for the 
double-quote. There are signed (int) and unsigned (uint) integers, which are 4 bytes long. 
There are signed (byte) and unsigned (ubyte) bytes, which are 1 byte long. Floating-point 
numbers (float) are 4 bytes long.  

Derived Types  

Besides the basic types, there may also be arrays of any numeric basic type (int_array, 
uint_array, byte_array, ubyte_array, float_array). byte_array and 
ubyte_array must be declared with a length that is a multiple of 16. int_array, 
uint_array, and float_array must be declared with a length that is a multiple of 4.  

Objects and Lvalues  

An object is a named region of memory, whereas an lvalue is a name referring to an object.  

Programs  

A program is a list of declarations followed by statements:  

program: 
 (declaration)* (statement)* 

Sub-programs are block of code nested in braces, used in loops and branching statements:  

sub-program: 
 '{' (statement)* '}' 

Conversions  

All operators will automatically convert their operands to be compatible with each other; explicit 
typecasting is not possible. For any assignment statement, all operands will be converted so that 
they are of the same type as the destination before any operations are performed. This excludes 
array operations as arrays cannot be converted.  

Expressions  

There are two types of expressions in DSPL, boolean expressions and numerical expressions. 
Numerical expressions are typically used in assignment statements and boolean expressions 
pertain to control flow and looping.  



Boolean expressions in DSPL are comparisons between atomic values:  

boolean-expression: 
 unary-operator ("==" | "!=" | '<' | "<=" | '>' | ">=") unary-operator)?; 

Both sides of the operand must be of the same numerical type.  

Numerical expressions in DSPL are combinations of numerical operations:  

numerical-expression: 
 additive-operator 

Because these expressions are only used in assignment statements, automatic type-casting is 
possible (all values are converted to the type of the value being assigned to before any 
operations). This excludes array operations as arrays cannot be converted. The handling of 
overflow, divide check, and other exceptions in expression evaluation will result in unpredictable 
results.  

Additive Operators  

The additive operators + and - group left-to-right.  

additive-operator: 
 multiplicative-operator ( ('+' | '-') multiplicative-expression)* 

The result of the + operator is the sum of the operands. The result of the - operator is the 
difference of the operands. If performed on arrays, the two arrays must be of same length and 
type (no automatic type-casting), and the result is an array for which each element is the result of 
the operation on the corresponding elements of the original arrays' elements.  

Multiplicative Operators  

The multiplicative operators * and / group left-to-right.  

multiplicative-operator: 
 parentheses ( ('*' | '/') parentheses)* 

The operands of * and / must have arithmetic type or array of arithmetic type. The binary * 
operator denotes multiplication. The binary / operator yields the quotient; if the second operand 
is 0, the result is undefined. If performed on arrays, the two arrays must be of same length and 
type, and the result is an array for which each element is the result of the operation on the 
corresponding elements of the original arrays' elements.  



Unary Operators  

Expressions with unary operators group right-to-left.  

unary-operator: 
 '-' (int-constant | float-constant) 
 | '+' unary-operator cast-expression 
 | '<code>byte_array</code> and <code> 
 | value 
parentheses: 
     '(' numerical-expression ')' 
     | unary-operator 

The unary negation - operator only works on constants.  

Atomic Values  

The types of lvalues and values are:  

value: 
 lvalue 
 | int-constant 
 | float-constant 
 | string-literal 
 
lvalue: 
 identifier ( '(' numerical-expression ')' )? 

lvalues can thus either be single numbers, strings, whole-arrays, or elements of an array.  

Declarations  

Declarations specify the interpretation given to each identifier; they do not necessarily reserve 
storage associated with the identifier. Declarations that reserve storage are called definitions. 
Declarations have the form  

declaration: 
 ("int" | "uint" | "byte" | "ubyte" | "float") identifier ';' 
 | ("int_array" | "uint_array" | "byte_array" | "ubyte_array" | "float_array") 
'[' int-constant ']' identifier ';' 

Note that values can not be initialized in the declaration and that all arrays must have their sizes 
declared.  



Statements  

Except as described, statements are executed in sequence. Statements are executed for their 
effect, and do not have values. They fall into several groups.  

statement: 
 assignment-statement 
 selection-statement 
 iteration-statement 
 ccall-statement 
 | ';' 

Assignment Statement  

The assignment assigns values to the object an lvalue refers to.  

assignment-statement: 
 lvalue '=' numerical-expression ';' 

The = operator requires an lvalue as left operand, and the lvalue must be modifiable. In DSPL, 
this means it may be an array, as well as a primitive type. The value of the expression replaces 
that of the object referred to by the lvalue. Both operands do not necessarily have to have the 
same numerical type unless an array is being assigned. Arrays must be of the same length.  

Selection Statement  

The selection statement choose one of several flows of control.  

selection-statement: 
 "if" '(' bool-expression ')' subprogram ('else' subprogram)? 

In both forms of the if statement, the boolean expression is evaluated and if it compares true, the 
first substatement is executed. Optionally, if there is an else, the second subprogram is executed if 
the expression is false.  

Iteration Statement  

The iteration statement specifies looping.  

iteration-statement: 
 "while" '(' bool-expression ')' subprogram  
 | "for" '(' (assignment-statement (',' assignment-statement)*)? ';' bool-
expression ';' (assignment-statement (',' assignment-statement)*)? ')' subprogram 



In the while statement, the substatement is executed repeatedly so long as the value of the 
expresion remains true. The test, including all side effects from the expression, occurs before 
each execution of the statement. The for executes its subprogram while the bool-expression 
evaluates true. The first set of assign-statements are executed prior to its first evaluation, and the 
second set are evaluated afer every execution of its subprogram.  

C Call Statement  

The C call statement calls libraries from C:  

ccall-statement: 
 "ccall" identifier '(' (unary-operator (',' unary-operator)*)? ')' ';' 

It should be noted that only atomic values can be passed to a ccall function.  

Project Plan  

In this section we will explain the development of DSPL as a team project.  

Processes  

The process of creating DSPL was a long and detailed process. The core of the language revolved 
around automating and optimizing arithmetic operations on sequential elements of an array. First, 
a detailed analysis and research of Intel's current instruction set architecture was performed. 
Then, it was necessary to learn x86 assembly syntax, and generate simple programs utilizing the 
optimized x86 instructions for array operations. With the types of array operations and the 
necessary assembly output required in mind, the actual features of the language were then 
created.  

Planning  

We decided early on that we wanted to create a compiler that made use of Intel's advanced SSE 
instructions. We decided to start off with a limited version of C that would provide some 
additional functionality, such as a new type, complex, as well as the ability to have mathematical 
operations work with entire arrays as operands. We would also add the convolution operator ~, 
which would take arrays as operands. However, as we learned more about compiler design during 
the course, we soon realized that our initial plans were a bit too ambitious. In order to maintain 
SSE functionality, we decided to further scale back some features of C that were not absolutely 
necessary, such as AND/OR operators.  



Specification  

We captured the initially-planned specifications in the first round of our Language Reference 
Manual. However, it evolved as work on the project continued. The general rule in choosing 
language features was that if it was possible to maintain functionality, it was acceptable to 
eliminate certain features. Examples of this are using &&/|| in if statements, instead of just listing 
multiple if statements and repeating code. Another example was i++. The major factor deciding 
language features was intended/hoped use for the language. Images are typically unsigned byte 
arrays, thus we absolutely needed unsigned and byte sized support. FFTs typically operate either 
on signed integer or float arrays, thus the need for both integers and floats. At one point, it was 
decided to drop FP-element (non-array) operations, but after a refresher on DFT/FFT code 
snippets, it was quickly realized that array FP support alone was not enough. Also, originally 
conversions were specified, but later removed due to complexity. Eventually it was deemed 
absolutely necessary, however, again due to implementing a DFT. The final specification actually 
added a lot more functionality than was removed.  

Development  

Development of DSPL was separated into three architectural components: the front-end, 
intermediate stage, and back-end. The front-end was created using ANTLR, which generated an 
abstract syntax tree. The intermediate stage, consisting of a TreeWalker also created with 
ANTLR, converted the output of the front-end into DSPL's intermediate format. The back-end 
finally took this representation and converted it to assembly code. The compiler would generate a 
GCC-friendly AT&T-style assembly (*.s) file, which could finally be compiled with GCC into an 
executable program.  

The intermediate representation, consisting of Instruction types and DSPL Variable types was 
created first. The intention was to create a solid and complete IR, before commencing on the 
backend or front-end. The IR represented a contract by which the front and back-ends had to 
adhere to. This drastically reduced integration efforts between the front and back ends, as the 
output and input, respectively, of each was already set. The most vigorous argument and type 
checking was done in the IR.  

Once work started on the backend, it became clear that certain operations, mainly the formatting 
of variables for use in asm instructions, would be required extremely often, and sometimes 
required very complex formatting, depending on the situation. In order to solve this, a paradigm 
similar to the one used in the IR was applied, but only done for the Variables. Four main X86 
Operand types were created: registers, immediates, memory, and indexed memory elements.  

Registers corresponded to actual X86 registers, including both the 8 general purpose registers, as 
well as the newer 128-bit SSE registers. Immediates were constants that could be supplied 
directly within the instruction, for example movl $5, %eax, which would set the value of the 
%eax register to 5. Memory operands were where the memory location could be represented with 
a single variable, as in movl intA, %eax, where intA is the memory location of an integer 
value.  



The most complicated operand format, indexed-memory locations, was the primary reason for the 
creation of the backend operand format. When accessing elements in an array, one the 
recommended x86 format is some variant of movl 0(%eax,%ebx,4), %ecx, where the 
contents of the memory location stored at (0 + %eax + (%ebx * 4)) is moved into register 
ecx. This may seem unnecessary, but given the focus of our project on optimizing array 
operations, having a method of efficiently accessing their elements was absolutely necessary.  

Testing  

Testing, like the specification process, required consistent adaptations to the dynamic 
implementation of features. Test cases were created that tested both the functionality, or things 
that should work, and syntax errors, or things that shouldn't work. The testing script was written 
in Python and allowed the creation of suites of tests. Every time a new feature was added, test 
cases were created, and if a feature was changed, the corresponding test cases were as well.  

Programming style guide  

The two main restrictions everyone had to adhere to when programming were to use javadoc-
style comments so a comprehensive javadoc could easily be generated, and to adhere to the class 
structure we had agreed on for each of the various parts.  

Project Timeline  

 2006-10-15: Complete initial specifications  
 2006-10-31: Complete initial front-end  
 2006-11-15: Complete full compilation of basic Hello World Program  
 2006-11-31: Complete full compilation of 2nd Hello World Program  
 2006-12-05: Begin active testing phase  
 2006-12-15: Complete final specifications and almost all implementation aspects  
 2006-12-18: Complete project  

Roles and Responsibilities  

 Jeffrey Cropsey: Intermediate Stage (AST to IR and Semantic Analysis)  
 David Lariviere: Back-end, Team Leader 
 Michael Lynch: Testing  
 Varun Maithel: Documentation  
 Varun Mehta: Front-end  

Software Development Environment  

The team wrote most of the compiler for DSPL in Java, utilized ANTLR in the front-end to 
generate the parser and lexer Java code, and used Python in the testing scripts. The IDE used was 
Eclipse, and CVS was used to manage versioning.  

 



Project Log  

 2006-09-13: Wrote first ASM program, queries CPUID string of the compiler, compiled 
on Fedora Core 2 Linux box  

 2006-09-20: Determined necessary changes to compile ASM programs in Windows using 
Cygwin  

 2006-10-05: Completed Regression tester script  
 2006-10-09: Finished writing complete ASM program to multiply two pairs of complex 

numbers utilizing SSE3 and print the result.  
 2006-10-19: Intial LRM Completed.  
 2006-10-23: Front-end creates ASTs  
 2006-11-01: 20 test cases created for regression suite  
 2006-11-12: Intermediate Format (Instructions/Variables) completed  
 2006-11-13: Backend Infrastructure completed. IR of HelloWorldv1 compiles sucessfully  
 2006-11-18: Initial tree-walker created.  
 2006-11-29: Completed work on compiling ASM modules and calling from c programs  
 2006-12-04: HelloWorldv2.dspl fully compiles and properly runs  
 2006-12-06: Regression Tester up and running utilizing functional compiler  
 2006-12-08: Indexing into arrays completed  
 2006-12-09: Regression Tester modified to recognize error codes, allows single source 

file tests  
 2006-12-16: Final specifications updated in LRM  
 2006-12-17: Over 100 test cases  
 2006-12-18: Project completed  
 2006-12-19: Final report submitted  



Architectural Design  

The process of compilation in DSPL can be broken down into three main stages: front-end, 
intermediate, and back-end.  

 

Input File 
Sequence of ASCII Text 

Abstract Syntax Tree 
Tree of Grammatical Elements 

DSPL Intermediate Format 
Series of 3-address Code Instructions 

Assembly Code 
Sequence of Assembly Instructions 

Front-end 

Intermediate Stage 

Back-end 

Machine Code 
Sequence of Machine Instructions 

gcc 

The front-end parses the input file and identifies tokens, creating an abstract syntax tree. During 
the intermediate stage, a tree-walker converts the abstract syntax tree into DSPL's intermediate 
format, which is described in further detail below. Finally, during the back-end stage, assembly 
code is created from the intermediate representation.  

As there are three principal components, there are two corresponding interfaces which are the 
output of one and the input of the next: the abstract syntax tree and the intermediate format. The 
abstract syntax tree represents the program as a hierarchy of grammatical elements. DSPL's 
intermediate format is a simplified version of the abstract syntax tree, in that the hierarchy 
represented is of 3-address code statements that are analogous to assembly instructions. Lastly, 
the back end consists of a series of interfaces and x86 implementations responsible for processing 
each IR instruction type and generating the appropriate assembly code. 



 

dspl package 

Frontend package 

Intermediate package 

Backend package 

x86 package 

Operands package 

AST 

AST to Intermediate Walker 

Lexer 

Parser 

Token Types 

Token Types 

Instructions package 

Instruction 

Arithmatic Instruction 

Branch Instruction 

Partial Branch Instruction 

CCall Instruction 

Loop Instruction 

Relation Instruction 

Instruction Set 

Variable package 

Variable 

Byte 

Unsigned Byte 

Integer

Unsigned Integer 

Float

String 

Operand 

Immediate Operand 

Index Memory Operand 

Memory Operand 

Register 

Arithmatic Instruction Processor

Branch Instruction Processor 

CCall Instruction Processor 

Loop Instruction Processor 

Variable Manager 

Software Architecture of the DSPL Compiler 

Asm Formatter 

Assembly File Generator 

Instruction Processor 

dsplc 

Symbol Table 



Implementation credits:  

 front-end (Grammar/Treewalker): Varun Mehta  
 intermediate (Treewalker): Jeff Cropsey  
 back-end (IR/IR->x86): Dave Lariviere  

Test Plan  

We used Python to write several utilities that maintained a suite of test cases monitoring the 
stability of our language. The most important was a regression tester, which compiled and 
executed code from our suite of test source files and compared the results to expected output. In 
cases where the source code was expected to be rejected by the compiler following semantic 
analysis, the expected output was an error code corresponding to the error that the compiler 
should have returned upon exiting. In cases where the source was expected to compile and 
execute successfully, the expected output would be the output that program should generate 
(determined either by human inspection of the code or output of an equivalent C program).  

For each source file, filename.dspl, processed by the regression tester, 2-4 output files would be 
created:  

 filename.log - Compilation log containing the command used to execute the compiler as 
well as its output  

 filename.s - Assembly code generated for the source file  
 filename.exe - Compiled executable for the source file (if semantic analysis was 

successful)  
 filename.out - Output of the compiled program upon successful compilation and 

execution of the source file  

The regression tester had three different modes of operation:  

 single file - Perform a test on a single specified source file  
 file suite - Perform a test on each file from a list of source programs from a plaintext file  
 global - Perform a test on each file in the test folder  

Test Suites  

As test cases were written, they were added either to the "syntax" suite, for files that are geared 
toward testing elements of the compiler's semantic analysis, or the "functionality" suite, for files 
that test the actual execution of the program once compiled. Once a file was working correctly in 
the current build, it was added to the "working" suite, which contained all files that compiled and 
executed successfully. The working suite was very important, as no changes could be committed 
to the repository unless it passed every test in the current working suite.  

The test cases written were each designed to test an isolated feature of the language so that it 
could be clear to the programmer which compiler features were failing without having to pore 
through lines of a test case to find specifically where an error occurred. The entire collection of 



test cases contains over 100 different source files, which can be found in the appendix. The 
collection of tests is intended to cover every significant feature of DSPL, though our most 
aggressive and exhaustive testing was on numerical operations including arithmetic on both 
atomic and array variables.  

Testing Scenarios  

In testing our source files, the results would fall into four different scenarios, each of which the 
regression tester would inform the user of.  

Scenario 1: Program output matches correct output  

When a source file was compiled and executed successfully, its output would match the correct 
expected output and the regression tester would report this. In the case of our test case 
comment2.dspl:  

/** Tests different types of comments **/ 
ccall printf("this line should be printed.\n"); 
//ccall printf("this one shouldn't be\n"); 
ccall /* some people think comments are unnecessary */ printf("but this one should 
be\n"); 
/* ccall printf("this is a comment and should be ignored by the compiler\n"); */ 
ccall printf("the beginning of this line should be printed..."); // ccall printf(" but 
not the end"); 
ccall printf("\n"); 

This program is syntactically correct and should compile with the expected output:  

this line should be printed. 
but this one should be 
the beginning of this line should be printed... 
 

Since the actual output matches the correct output, the regression tester would output  

Running test for `testcases\comment2.dspl': OK! 

Scenario 2: Program output does not match correct output  

If the compiler had an error that caused the previous program's output to be the following:  

this line should be printed. 
an erroneous line! 
the beginning of this line should be printed... 
 



The regression tester would reflect this in the test and display the part of the output that differed 
(with the verbose flag):  

Running test for `testcases\comment2.dspl': MISMATCH - WRONG OUTPUT 
  `testcases\correct\comment2.out' != `test_output\_12-19-2006_14-33-15\comment2.out' 
 2c2 
 < but this one should be 
 --- 
 > an erroneous line! 

Scenario 3: Invalid program caught by semantic analysis  

In cases where we expected the source to fail semantic analysis, the expected output file would 
contain only an integer representing the expected error code on which the compiler is expected to 
exit. The following program should be rejected by the compiler since it incorrectly assigns a 
variable in its declaration.  

/* tests immediate assignment of a variable */ 
int i = 5; 
ccall printf("This line should not print\n"); 

If the compiler rejects this program and exits with the proper code, the regression tester would 
output:  

Running test for `testcases\assignment2.dspl': OK! 

Scenario 4: Invalid program incorrectly passes semantic analysis  

If the compiler contained an error that allowed the previous program to be compiled successfully, 
the regression tester would notify the user with the following output:  

Running test for `testcases\assignment2.dspl': MISMATCH - UNEXPECTED COMPILE 

Credits  

The regression tester and the majority of test cases were created by Mike Lynch. The rest of the 
group contributed some test cases as well.  



Lessons Learned  

Individual Insights  

Jeffrey Cropsey  

I can confidently say that “starting earlier” would not have helped us in this endeavor, as we 
began right after our group was formed. However, there were some things that would have made 
our compiler design move much faster in the end if they were present in the beginning. The 
language was in flux for a while after the initial specification as we learned that certain features 
would be more complicated than others and that some features, while they might add finesse (like 
the ++ operator) didn’t add new functionality. The flux of the language caused a several changes 
in the grammar and tree walker, the components on which I worked. 

The introduction of a strong IR helped to reduce the complications that grammar changes made to 
the walker. Nevertheless, when my focus changed from walking to semantic analysis, the 
problems caused by the changes returned. One specific example was in the implicit conversion of 
types in an expression. We chose to convert all values to the assign type before evaluation of the 
expression. I added functions to the walker to create the proper assignment and conversion 
instructions. However, after a few days, the analysis would break with the addition of a new type 
that started working, such as the addition of floating point support. On the other side of things we 
dropped support for complex numbers, but many other files relied on the definition of a complex 
data type to be present. Not having the time to go back and remove it at all stages, we had to 
catch the declaration of such variables in the walker. 

There are three things that would have made the job of walking and semantic analysis easier for 
our group and me. First, taking more time in the beginning to more deeply evaluate exactly what 
types and operations and their combinations could be in the language would have fewer changes 
to the grammar necessary in the long run. In addition to this longer and more through definition 
phase, creating a well defined way to add and remove functionality that might fall “on the 
bubble” of being in or out of the language so its addition or removal would not create as much of 
a ripple in the code. Second would have been the addition of helper classes in semantic analysis. 
Because of the way functionality came online, each time there was a new check it was only “a 
few more lines of code.” Instead, having an assistant to the walker that encapsulated all of these 
little things would have made the walker cleaner to operate on in later stages. Finally, if time had 
allowed, it would have been helpful to build a java backend to the language early on while the 
assembly back end added functional support. In this way, we could have included support to 
visualize the IR in addition to test the walker’s ability to produce the IR for all types and features 
before assembly support was added. Such a backend would further separate dependency on the 
assembly backend for testing. 

In all, it was quite exciting to build a compiler for the class. I am sure that some of my wishes 
(like the java backend) could take too much time to implement and cause problems of their own. 
Even when starting early, one is limited by other classes and the length of the semester. I know 



however that even though this project was a toy compared to the “real world” it still represented 
the most complex system many of us have designed so far and the experience will be applicable 
as the scale of systems we develop increases. I would be excited to see, given another semester 
and an overhaul to the front end as described, how far our little language of DSPL could go. 

David Lariviere  

I learned so much while doing this project. My main hope was that I would finally learn 
assembly. I have made many brief attempts over the years, but could never quite get myself to 
spend the time to learn it sufficiently. After doing this project, however, I feel quite capable 
programming in x86 assembly, using a variety of addressing formats, data storage sizes, and 
instruction types.  

Doing this project also helped get me much more familiar with the Intel's x86 architecture. For 
the last few months the Intel Manuals 1,2a,2b,and 4 have served as my bible and nightly reading 
of choice. I think the biggest surprise in doing this project and taking PLT was in gaining a new 
understanding of the impact that compilers and ISAs can have on a particular program's 
performance. I previously felt it was simply a matter of gaining a factor of 4 utilizing 4-element 
vector optimizations. Now I feel that entire orders of magnitude can be gained or lost, depending 
on precisely how intimate one is with the targeted machine architecture and the code that is 
generated on it. I never considered the importance of memory alignment of variables or the stack 
before, or even the possible importance of the placement of code within memory to improve the 
reliability of cache hits.  

In doing this project, I saw first hand the importance of creating exact specifications in between 
the components that different people would be responsible for working on. I am so glad that I 
created the Intermediate instructions and data types before hand, rather than trying to do so in 
parallel with the other work being done. It was done early enough in the semester (about half way 
through) that corners didn't have to be cut, and there was sufficient time to completely think 
through and develop the entire package. Creating it made integration problems between the front 
and back ends non-existent, as both sides knew exactly what they had to adhere to and what was 
expected to be implemented. The IR was the result of long planning and discussion of exactly 
what features and data types our language would support. Doing the IR in an extensible format 
using base abstract classes and interfaces also has made it possible to include and remove certain 
features with vastly less overhead than if everything was hard-coded into the respective front and 
backends. It was designed with the intention that down the road, additional architectures could be 
supported, like X64 or the Cell.  

Working on DSPL's IR has made me seriously think about the importance and impact of the 
choice of IR in modern day compilers. Historically, it seems that many compilers generated IR 
that was simply too close to a specific machine instruction set, and also removed too much of the 
high level functionality that was actually being represented. The variety and differences between 
modern CPUs, even in the same basic ISA, let alone across different types, makes 
instruction/register level IRs seem quite out of date. Especially as the multicore explosion begins 
to occur over the next few years, the importance of having IRs which are capable of capturing 



high level desired functionality, rather than just low level manipulation of a machine state, will 
grow. Examples of this include loops and array operations. In taking a low-level IR approach, 
certain optimizations become vastly more difficult than if a higher level IR is utilized, which 
provides the backend with a greater understanding of the context in which certain instructions 
need to operate, and thus allows for a much greater variety of optimizations and hand-tuning for 
the high-level feature (like array arithmetic operations) than is otherwise possible if a backend 
compiler is forced to interrupt a low-end result and recognize patterns in the lowlevel IR which 
might indicate the high level feature. Another example of this is with synchronization and 
multithreading. A low-level IR completely obscures the fact that a particular cmp/branch 
instruction is indeed a synchronization lock waiting for another CPU or core to change the value 
of an integer. Depending on the ISA, certain instructions with vastly different performance 
impacts are available for implementing the same low-level IR, depending on the precise context.  

Another area related to IR design is language design and methods of informing the compiler of 
the desired results. I had never really been exposed to compiler extrinsics before doing this 
project and researching implementations of modern compilers to try to optimize some of the 
situations we handle.  

In working on DSPL, I also had the chance to become more familiar with the way other compilers 
were implemented. Using GCC and Intel (ICL) to compile example code snippets and view their 
resulting assembly code made the project much easier to implement. It also provided ideas for 
areas of improvement where modern compiler optimizations might fall short for particular 
instructions.  

The project was extremely big, and while we didn't quite reach where I had hoped, I feel that the 
current state of the code is close. We had originally dropped many things that we later decided to 
go ahead and implement, the biggest of which being floating point and arrays for all data types. 
The project was intentionally designed to be quite more extensible than required for meeting the 
particular target for the end of the semester. In the coming months and years, I hope I will find 
more time to continue to play, work on, and improve DSPL. My goal is to eventually have it as a 
tool not for general purpose programming, but specifically just for generating absurdly optimized 
highly-platform specific code snippets to be linked in with programs written in general purpose 
languages. While it isn't there yet, one day DSPL shall p0wnz GCC/ICL, in its specific area of 
purpose >:}  

 
Other quick lessons learned: the alignment issue mentioned in our final presentation turned out to 
be a bug in binutils (gas) for cygwin... :*(.  

Also, we learned the "joy" of Floating point fun and all its consistencies....  

Michael Lynch  

The most important lesson I took from this project is that organization is paramount in program 
testing. In order to do effective, rigorous testing, one must carefully plan a procedure for creating 



test cases and maintaining their correspondence with a correct output. A clear and organized 
system for maintaining our test files, their correct output, and files generated at compile-time and 
run-time made greatly facilitated the testing process and our ability to recognize quickly where 
bugs were occurring in our compiler.  

I believe an incorrect strategy decision I made in testing was writing testcases by hand rather than 
writing a program to generate them automatically. I made the decision to manually write test 
cases based on the fact that so many of the boundary cases are very specific and would 
complicate the case writing if it was done through a script. Later in the testing, I found that this 
consideration was still valid, though a code generator would have the added benefit of being able 
to easily write C code equivalent to the DSPL code and automatically generate the output as well. 
A code generator would also have been beneficial in testing combinations of features, as the 
custom boundary cases are repeated over and over again and could easily be combined with one 
another by a code generator to ensure that features don't produce unwanted results when used in 
conjunction.  

Varun Maithel  

As far as documentation goes, don't take it lightly. Make sure that you keep up-to-speed with the 
latest changes that each group member is working on, add/change the appropriate documentation, 
and let everyone else know. The most difficult aspect of working in a large, complex project with 
interdependent parts is maintaining continuity between the different modules that each group 
member is working on. Fortunately, we quickly created the architecture for the entire compiler 
from the beginning, so our progress wasn't slowed by these difficulties.  Other than that, 
documenting the project was a smooth process without any problems or unforeseen difficulties. 

Varun Mehta  

Overall my experiences in this group were very positive. Though we divided up tasks into blocks, 
we were quite flexible about moving to different modules as needed. The end result is a quality 
product that I am proud to have contributed to. Through my experiences I have gained additional 
valuable skills in teamwork and coordinating my own activities to meet some strict deadlines. We 
created an effective timetable and committed to “development contracts” which solidified the 
interfaces between different sections of our project. In this way each section could be 
independently developed. Communication was still extremely important, and to that end the 
creation of both a mailing list and a wiki allowed us to discuss and document our work so that 
everyone could be kept up-to-date. Without all of these support mechanisms in place, there would 
have been no hope of accomplishing everything that we were able to in merely a few months.  



Advice for Future Teams  

 Don’t make your grammar contrary to a CS major’s muscle memory (if you have to, 
make it very different)  

 Test cases should be automatically generated, as well as correct output, based on several 
different compilers, and with different flags set  

 Having weekly meetings is a good way to make sure everyone is staying on track and 
knows the status of the project and where they should be in their part for it.  

 Start learning and writing assembly programs early. Implement from scratch example 
versions of programs directly in assembly in order to gain an understanding beforehand 
of all of the tasks required to generate the ASM.  

Code Appendix  
See code attached. 
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