
The GAL Reference Manual

Athar Abdul-Quader
ama2115@columbia.edu

Shepard Saltzman
sms2195@columbia.edu

Albert Winters
ajw2124@columbia.edu

Oren B. Yeshua
oby1@columbia.edu

1 Lexical Conventions

A GAL program consists of one or more translation units that are stored in files.
Each file is written using the ASCII character set and must terminate with ’.gal’.

1.1 Comments

GAL recognizes single-line comments that begin with ’#’ and terminate at the end of
the line. Multi-line comments can be achieved by commenting each line individually.

1.2 Whitespace

Comments and the ASCII space are ignored by the GAL compiler. However, char-
acters normally ignored as whitespace play a significant role in the GAL language.
The horizontal tab is not considered whitespace because it is used to indicate scope,
and the line terminator is used to indicate the end of a statement.

In GAL, scope is indicated by the tab (’\ t’) character. Every line in a GAL
program must begin with zero or more tabs. Before a GAL program is compiled,
it undergoes a scope preprocessing step. As the lines of the program are read by
the preprocessor from first to last, a running count is kept of the indentation level.
The indentation level begins at 0. If the number of tabs at the start of the next
line is greater than the current indentation level, a new block is created and the
indentation level is incremented by one. If the number of tabs at the start of the
next line is less than the current indentation level, the current block is closed and
the indentation level is decrimented by one. For a program to successfully compile,
the indentation level must be zero when EOF is reached.

1.3 Tokens

There are five classes of tokens: identifiers, keywords, constants (immediates), op-
erators, and separators.

1

1.3.1 Identifiers

Identifiers begin with a letter followed by any sequence of letters, digits and the
underscore character. Two letters are considered the same if their ASCII charac-
ters are equal. Two identifiers are considered the same if every character in both
identifiers match.

1.3.2 Keywords

The following identifiers are reserved as keywords and cannot be used as anything
else:

set vertex edge graph

queue string bool num

in foreach while and

if else path or

1.3.3 Constants

Constants (immediates) provide the GAL programmer with a convenient way to
initialize each of the built in types.

Numeric constants A numeric constant consists of an integer part followed by
an optional fractional part and optional exponent. The integer part is a string of
one or more digits (0 . . . 9). The integer part may be followed by the fractional part,
or the exponent part or both. The fractional part is a period (’.’) which is followed
by one or more digits. The exponent part is an ’e’ followed by an optional sign (’±’)
followed by one or more digits.

String constants A string constant is a sequence of characters surrounded by
double quotes. The double-quote marks are not considered part of the string and
are omitted when processing the string. Double-quote marks may be added to a
string with \” and similarly, the backslash can be escaped with itself like so \\.

1.3.4 Operators

Arithmetic/Set Operators There are five arithmetic operators: +, -, *, /, and
%. The ’+’ operator denotes addition while the ’-’ operator denotes subraction. The
’*’ operator denotes multiplication, and the ’/’ operator denotes division. The ’%’
operator denotes the remainder of the division of the first operand by the second
operand. The operands must have arithmetic type. The result of using an arithemtic
operator on two num types is the usual arithmetic operation.

The arithmetic operators perform double duty as set operators as well. The
’+’ operator indicates the set union operation while the ’*’ indicates intersection.
The ’-’ operator indicates set difference while the ’/’ operator denotes symmetric
difference. Similarly, ’+=’, ’*=’, ’-=’,’/=’ are defined in the usual way for sets as
well. Furthermore, the in operator can be used to determine set membership.

2

Boolean Operators There boolean operators are as follows: and, or, >, <, <=,
>= =, ! . The ’and’ operator returns true when both the left and right operands
evaluate to true, false otherwise. The ’or’ operator returns true when either or
both the left or right operand evaluate to true, false otherwise. The ’=’ operator
returns true if left operand equals the right operand; otherwise, it returns false.
The ’ !’ operator is unary and returns true if its operand evaluates to false, false
otherwise.

As in most programming languages, the and and or operators use a shortcut
evaluation model. If the first operand of an or is true, the second is not evaluated.
Similarly, if the first operand of an and is false, the second is not evaluated.

Assignment Operators The six assignment operators are as follows: ← , +=,
-=, *=, /=, and %=. The ’← ’ operator assigns the value of the right operand to
the left operand. ’+=’ and ’-=’ adds or subtracts the value of the right operand to
the value of the left operand. ’*=’ and ’/=’ multiplies or divides the value of the
right operand by the value of the left operand. ’%=’ places in the left operand the
remainder of the left operand divided by the right operand.

Access Operator The ’.’ operator is used to access fields in the left operand. If
a field that does not currently exist is accesed, it is created on the fly and inherits
its type from whatever is assigned to it. The default type is num. The ’[]’ operator
is used to access an element by index within a set, path, or queue.

Range Operator The ’..’ operator specifies a range of values and provides a
convenient shorthand for specifying sets. Given [num1]..[num2], where [num1] and
[num2] are integers, GAL will interpret it as a comma separated list of all the integers
between [num1] and [num2] inclusive.

Precedence The operator precedence rules follow those of the C language. Since
this may result in unexpected order of operations when operating on sets, it is
reccomended that parentheses be used to explicitly specify precedence in expressions
involving sets (although it is by no means required).

1.4 Separators

The following characters are used as separators: ’,’ ’.’ ’[’ ’]’.

1.5 Scope

The scope of an identifier begins after the declaration of the identifier and terminates
at the end of the block in which the identifier is found. Blocks are determined by
indentation, as opposed to C-style ’{’ and ’}’ characters.

3

2 Types

2.1 Nums, Bools, & Strings

There is only one numeric type in GAL. The num is internally represented as a
double value. The bool type can take on either of the two boolean values true and
false. A string is sequence of ASCII characters.

2.2 Sets

A set is an undordered collection of objects of any type. Sets support all basic
group manipulation functions, such as indexing, concatenation and traversal. Sets
support the range operator.

2.3 Vertices

A vertex is a very simple type most often used as an element of a graph. By default,
a vertex contains just one field - index of type num (additional fields can be added
using the ’.’ operator).

2.4 Edges

An edge is also used to represent an element of a graph. By default, an edge is
an ordered pair of two indices, representing a directed edge from the vertex of one
index to the vertex of the other. An edge contains three fields by default, each of
type num. They are: src, dest, weight.

2.5 Graphs

Graphs are intended to concisely represent mathematical graphs. A graph sim-
ply consists of two sets V and E representing the vertices and edges of the graph
respectively. These sets can be accessed with the ’.’ operator.

2.6 Paths

A path is an ordered list of nums, (presumably, but not necessarily, representing a
traversal of the graph following the vertices of corresponding index).

2.7 Queues

A queue is implemented as a priority queue. It maintains a list of (element, priority)
pairs. Queues support the push, pop, enqueue, and change priority operations.
Push is given an element and a priority (of type num) to be added to the queue.
Pop returns the element in the queue with the greatest priority. Change priority
changes the priority of an element already in the queue. If push is used without
specifying a priority, the queue automatically assigns the element a priority higher
than anything currently in the queue. This allows the queue to be used as a (LIFO)

4

stack. Similarly, enqueue adds an element to the queue with a priority lower than
any elment in the queue, allowing the queue to be used in FIFO fashion.

3 Control Structures

3.0.1 foreach

Foreach is a keyword used to generate loops. With ”in”, it can be used to run a
block of code repeatedly, once on each element in a set, path, or queue. The order
of iteration for a set is undefined, while that of path is in order from left to right,
and that of queue is in order of priority from greatest to least. For example, a basic
block of code to find the sum of weights on edges in a graph could be written as:

total = 0

foreach (edge in G.E)

edge.weight += total

3.0.2 while

While is a keyword used to generate loops. While is a header with a condition that
encloses a block of code. When that block is first reached and after each execution
of that block, while’s condition is checked. If the condition is true, the block is
(re)executed, otherwise it is skipped.

3.0.3 if

If is a keyword used to create conditionals. If statements always include a condition
and a block of code, and are optionally followed by an else block. When the if-block
is reached, its condition is checked. If that condition is true, the block of code is
executed, otherwise it is skipped.

3.0.4 else

Else is a keyword used to create conditionals. An else is a header to a block of code
that immediately follows an if-block. If the if-block is executed, the else-block is
skipped. Otherwise, the else-block is executed. An else may also be followed directly
by an if.

5

4 Syntax

4.1 Grammar

Program→ V ar decl | Func decl

V ar decl→ Type (< id > | Assignment)

Func decl→ Func def ′{′ Block ′}′

Func def →< id > ′(′ Parm list ′)′ < stmt term >

Parm list→< id > Id list | ε
Id list→′,′ < id > Id list | ε
Block → Statement Block | ε

Statement→ (Expression | Func call stmt | Return stmt

| If stmt | For stmt | Foreach stmt

| While stmt | V ar decl | ′{′ Block ′}′) < stmt term >

If stmt→′ if′ ′(′ Expression ′)′ ′{′ Block ′}′ (Else stmt | ε)

Else stmt→′ else′ (Block | If stmt)

Foreach stmt→′ foreach′ ′(′ < id > ′in′ LV alue ′)′ ′{′ Block ′}′

Func call stmt→< id > ′(′ (Expression Exprn list | ε) ′)′

Return stmt→ return Expression

While stmt→′ while′ ′(′ Expression ′)′ ′{′ Block ′}′

Expression→ LV alue | Assignment | ′!′ Expression | Expression Operator Expression

| Immediate | ′(′ Expression ′)′

Exprn list→′,′ Expression Exprn list | ε
LV alue→ LV alue ′.′ LV alue | < id > ′[′Expression′]′ | < id >

Assignment→ LV alue AssignOp Expression

Operator →′ +′ | ′ −′ | ′ ∗′ | ′/′ |′%′

|′ >′ | ′ <′ | ′ >=′ | ′ <=′

|′ =′ | ′! =′

AssignOp→′< −′ | ′+ =′ | ′− =′ | ′∗ =′ | ′/ =′ | ′% =′

Immediate→ Set const | Path const | Edge const

| < numeric constant > | < string constant > | < boolean constant >

Type→ graph | set | vertex | edge | queue

|path | num | string | bool

Edge const→ ′(′ < numeric constant >′,′ < numeric constant > ′)′

Set const→′ {′ (< numeric constant > Num list | Range const ‖ ε)′}′

Path const→′ (′ (< numeric constant > Num list | ε)′)′

Num list→′,′ < numeric constant > Num list | ε
Range const→< numeric constant > ′..′ < numeric constant >

6

