Processors, FPGAs, and ASICs

Prof. Stephen A. Edwards
sedwards@cs.columbia.edu

NCTU, Summer 2006
Spectrum of IC choices

You choose

- **Full Custom**: polygons (Intel)
- **ASIC**: circuit (Sony)
- **Gate Array**: wires
- **FPGA**: logic network
- **PLD**: logic function
- **GP Processor**: program (e.g., Pentium)
- **SP Processor**: program (e.g., DSP)
- **Multifunction**: settings (e.g., Ethernet)
- **Fixed-function**: part number (e.g., 74LS00)
NMOS Transistor Cross Section
NAND Gate Transistors and Layout

\[V_{dd} \]

\[V_{ss} \]

\[x \land y \]

\[x \land y \]
Full-custom ICs
Standard Cell ASICs
Standard Cell ASICs
Channeled Gate Arrays
Channeled Gate Arrays
Architectural Description

Spartan-IIE Array

The Spartan-IIE is an user-programmable gate array, shown in Figure 1, is composed of five major configurable elements:

- **IOBs** provide the interface between the package pins and the internal logic
- **CLBs** provide the functional elements for constructing most logic
- **Dedicated block RAM memories** of 4096 bits each
- **Clock DLLs** for clock-distribution delay compensation and clock domain control
- **Versatile multi-level interconnect structure**

As can be seen in Figure 1, the CLBs form the central logic structure with easy access to all support and routing structures. The IOBs are located around all the logic and memory elements for easy and quick routing of signals on and off the chip.

Values stored in static memory cells control all the configurable logic elements and interconnect resources. These values load into the memory cells on power-up, and can reload if necessary to change the function of the device.

Each of these elements will be discussed in detail in the following sections.

Input/Output Block

The Spartan-IIE IOB, as seen in Figure 2, features inputs and outputs that support a wide variety of I/O signaling standards. These high-speed inputs and outputs are capable of supporting various state of the art memory and bus interfaces.

Table 1 lists several of the standards which are supported along with the required reference, output and termination voltages needed to meet the standard.

The three IOB registers function either as edge-triggered D-type flip-flops or as level-sensitive latches. Each IOB has a clock signal (CLK) shared by the three registers and independent Clock Enable (CE) signals for each register.
FPGAs: Routing

- Single-length line Switch Matrix connections
 - Six pass transistors per switch matrix interconnect point

- Double-length lines in CLB array
The F5 multiplexer in each slice combines the function generator outputs (Figure 5). This combination provides either a function generator that can implement any 5-input function, a 4:1 multiplexer, or selected functions of up to nine inputs.

Similarly, the F6 multiplexer combines the outputs of all four function generators in the CLB by selecting one of the two F5-multiplexer outputs. This permits the implementation of any 6-input function, an 8:1 multiplexer, or selected functions of up to 19 inputs.
PLAs/CPLDs: The 22v10

Increments

First Fuse Numbers

0 4 8 12 16 20 24 28 32 36 40

0

396

440

880

924

1452

1496

2112

1

2

3

4

Macro-cell

P = 5808
R = 5809

Macro-cell

P = 5810
R = 5811

Macro-cell

P = 5812
R = 5813

Macro-cell

P = 5814
R = 5815

Asynchronous Reset

(to all)

I/O/Q

I/O/Q

I/O/Q

I/O/Q

I/O/Q

Processors, FPGAs, and ASICs – p. 15/7
Example: Euclid’s Algorithm

```c
int gcd(int m, int n)
{
    int r;
    while ((r = m % n) != 0) {
        m = n;
        n = r;
    }
    return n;
}
```
i386 Programmer’s Model

<table>
<thead>
<tr>
<th>31</th>
<th>0</th>
<th>15</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>eax</td>
<td>Mostly</td>
<td>cs</td>
<td>Code segment</td>
</tr>
<tr>
<td>ebx</td>
<td>General-</td>
<td>ds</td>
<td>Data segment</td>
</tr>
<tr>
<td>ecx</td>
<td>Purpose-</td>
<td>ss</td>
<td>Stack segment</td>
</tr>
<tr>
<td>edx</td>
<td>Registers</td>
<td>es</td>
<td>Extra segment</td>
</tr>
<tr>
<td>esi</td>
<td>Source index</td>
<td>fs</td>
<td>Data segment</td>
</tr>
<tr>
<td>edi</td>
<td>Destination index</td>
<td>gs</td>
<td>Data segment</td>
</tr>
<tr>
<td>ebp</td>
<td>Base pointer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>esp</td>
<td>Stack pointer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>eflags</td>
<td>Status word</td>
<td></td>
<td></td>
</tr>
<tr>
<td>eip</td>
<td>Instruction Pointer</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Euclid on the i386

gcd:
pushl %ebp
movl %esp,%ebp
pushl %ebx
movl 8(%ebp),%eax
movl 12(%ebp),%ecx
jmp .L6
.L4:
movl %ecx,%eax
movl %ebx,%ecx
.L6:
cld
idivl %ecx
movl %edx,%ebx
testl %edx,%edx
jne .L4
movl %ecx,%eax
movl -4(%ebp),%ebx
leave
ret
SPARC Programmer’s Model

<table>
<thead>
<tr>
<th>Register</th>
<th>Description</th>
<th>Address Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>r0</td>
<td>Always 0</td>
<td>31 0</td>
</tr>
<tr>
<td>r1</td>
<td>Global Registers</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>r7</td>
<td>Output Registers</td>
<td></td>
</tr>
<tr>
<td>r8/o0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stack Pointer</td>
<td></td>
</tr>
<tr>
<td>r14/o6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>r15/o7</td>
<td>Local Registers</td>
<td></td>
</tr>
<tr>
<td>r16/l0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>r23/l7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>r24/i0</td>
<td>Input Registers</td>
<td></td>
</tr>
<tr>
<td>r30/i6</td>
<td>Frame Pointer</td>
<td></td>
</tr>
<tr>
<td>r31/i7</td>
<td>Return Address</td>
<td></td>
</tr>
<tr>
<td>PSW</td>
<td>Status Word</td>
<td></td>
</tr>
<tr>
<td>PC</td>
<td>Program Counter</td>
<td></td>
</tr>
<tr>
<td>nPC</td>
<td>Next PC</td>
<td></td>
</tr>
</tbody>
</table>
The output registers of the calling procedure become the inputs to the called procedure.

The global registers remain unchanged.

The local registers are not visible across procedures.
Euclid on the SPARC

gcd:
 save %sp, -112, %sp
mov %i0, %o1
b .LL3
mov %i1, %i0
mov %i0, %o1
b .LL3
mov %i1, %i0
.LL5:
mov %o0, %i0
.LL3:
mov %o1, %o0
call .rem, 0
mov %i0, %o1
cmp %o0, 0
bne .LL5
mov %i0, %o1
ret
restore
The DMA block has the following features:

- Six DMA channels supporting internal and external accesses
- One-, two-, and three-dimensional transfers (including circular buffering)
- End-of-block-transfer interrupts
- Triggering from interrupt lines and all peripherals

Figure 1-1. DSP56301 Block Diagram
DSP 56000 Programmer’s Model

<table>
<thead>
<tr>
<th>Source Registers</th>
<th>15 0</th>
<th>Program Counter</th>
</tr>
</thead>
<tbody>
<tr>
<td>x1</td>
<td>y0</td>
<td>Status Register</td>
</tr>
<tr>
<td>a2</td>
<td>a1</td>
<td>Loop Address</td>
</tr>
<tr>
<td>b2</td>
<td>b1</td>
<td>Loop Count</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Accumulator</th>
<th>15 0</th>
<th>PC Stack</th>
</tr>
</thead>
<tbody>
<tr>
<td>r7</td>
<td>n7</td>
<td></td>
</tr>
<tr>
<td>r4</td>
<td>n4</td>
<td></td>
</tr>
<tr>
<td>r3</td>
<td>n3</td>
<td></td>
</tr>
<tr>
<td>r0</td>
<td>n0</td>
<td>SR Stack</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Address Registers</th>
<th>15 0</th>
<th>Stack pointer</th>
</tr>
</thead>
<tbody>
<tr>
<td>m7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>m4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>m3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>m0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Registers:
- x1, x0
- y1, y0
- a2, a1, a0
- b2, b1, b0

Address Registers:
- r7, n7, m7
- r4, n4, m4
- r3, n3, m3
- r0, n0, m0
The Data ALU registers can be read or written over the X Data Bus (XDB) and the Y Data Bus (YDB) as 24- or 48-bit operands. The source operands for the Data ALU, which can be 24, 48, or 56 bits, always originate from Data ALU registers. The results of all Data ALU operations are stored in an accumulator. The Data ALU runs in 16-bit Arithmetic mode when the SA bit in the Status Register (SR) is set. For details on the SR, see Figure 3-1, Program Control Unit.
The offset N (stored in the respective offset register) minus N to the selected address register.

The offset adder and the reverse-carry adder operate in parallel and share common inputs. The only difference between them is that the carry propagates in opposite directions. Test logic determines which of the three summed results of the full adders is output.

Figure 4-1 shows a block diagram of the AGU.

Each Address ALU can update one address register from its respective address register file during one instruction cycle. The contents of the associated modifier register specify the type of arithmetic to be used in the address register update calculation. The modifier value is decoded in the Address ALU.

The two Address ALUs can generate up to two addresses every instruction cycle:

- One for the PAB,
- One for the XAB,
- One for the YAB,
- One for the XAB and one for the YAB

The AGU can directly address 16,777,216 locations on each of the XAB, YAB, and PAB. Using a register triplet to address each operand, the two independent ALUs can work with the two data memories to feed two operands to the Data ALU in a single cycle.
move #samples, r0
move #coeffs, r4
move #n-1, m0
move m0, m4
movep y:input, x:(r0)
clr a x:(r0)+, x0 y:(r4)+, y0
rep #n-1
mac x0,y0,a x:(r0)+, x0 y:(r4)+, y0
macr x0,y0,a (r0)-
movep a, y:output
TI TMS320C6000 VLIW DSP

Figure 2: TMS320C62x CPU Data Paths

Data path A

Data path B

Control register file

Register file A (A0–A15)

Register file B (B0–B15)
FIR in One 'C6 Assembly Instruction

Load a halfword (16 bits)
Do this on unit D1

FIRLOOP:

LDH .D1 *A1++, A2 ; Fetch next sample

LDH .D2 *B1++, B2 ; Fetch next coeff.

[B0] SUB .L2 B0, 1, B0 ; Decrement count

[B0] B .S2 FIRLOOP ; Branch if non-zero

MPY .M1X A2, B2, A3 ; Sample × Coeff.

ADD .L1 A4, A3, A4 ; Accumulate result

Use the cross path
Predicated instruction (only if B0 non-zero)
Run these instruction in parallel
1.0 Introduction

1.1 General Description:

The AX88796 provides industrial standard NE2000 registers level compatible instruction set. Various drivers are easy to port to various embedded systems with no pain and tears. The AX88796 Fast Ethernet Controller is a high performance and highly integrated local CPU bus Ethernet Controller with embedded 10/100Mbps PHY/Transceiver and 8K*16 bit SRAM. The AX88796 supports both 8 bit and 16 bit local CPU interfaces include MCS-51 series, 80186 series, MC68K series CPU and ISA bus. The AX88796 implements both 10Mbps and 100Mbps Ethernet function based on IEEE802.3 / IEEE802.3u LAN standard. The AX88796 also provides an extra IEEE802.3u compliant media-independent interface (MII) to support other media applications. Using MII interface, Home LAN PHY type media can be supported.

As well as, the chip also provides optional Standard Print Port (parallel port interface), can be used for printer server device or treat as simple general I/O port. The chip also support upto 3/1 additional General Purpose In/Out pins.

The main difference between AX88796 and AX88195 are:
1) Embedded packet buffer memory
2) Built-in 10/100Mbps PHY/Transceiver
3) Replace memory I/F with PHY/Transceiver I/F.
4) Canceling SAX address decoding.
5) Fix interrupt status can't always clean up problem of AX88195.
6) Add upto 3/1 general Purpose In/Out pins.

AX88796 use 128-pin LQFP low profile package, 25MHz operation, and single 3.3V operation with 5V I/O tolerance. The ultra low power consumption is an outstanding feature and enlarges the application field. It is suitable for some power consumption sensitive product like small size embedded products, PDA (Personal Digital Assistant) and Palm size computer … etc.

1.2 AX88796 Block Diagram:

The diagram shows the AX88796 block diagram with the following components:
- 8K*16 SRAM and Memory Arbiter
- SEEPROM I/F
- SPP / GPIO
- NE2000 Registers
- Remote DMA FIFOs
- MAC Core & PHY+ Transceiver
- STA
- Host Interface
- Ctl BUS
- SA[9:0]
- SD[15:0]
- EECS
- EECK
- EEDI
- EEDO
- Print Port or General I/O
- SMDC SMDIO
- TPI, TPO
- MII I/F
- SMDC SMDIO
Ethernet Controller Registers

PAGE 0 (PS1=0,PS0=0)

<table>
<thead>
<tr>
<th>OFFSET</th>
<th>READ</th>
<th>WRITE</th>
</tr>
</thead>
<tbody>
<tr>
<td>00H</td>
<td>Command Register (CR)</td>
<td>Command Register (CR)</td>
</tr>
<tr>
<td>01H</td>
<td>Page Start Register (PSTART)</td>
<td>Page Start Register (PSTART)</td>
</tr>
<tr>
<td>02H</td>
<td>Page Stop Register (PSTOP)</td>
<td>Page Stop Register (PSTOP)</td>
</tr>
<tr>
<td>03H</td>
<td>Boundary Pointer (BNRY)</td>
<td>Boundary Pointer (BNRY)</td>
</tr>
<tr>
<td>04H</td>
<td>Transmit Status Register (TSR)</td>
<td>Transmit Page Start Address (TPSR)</td>
</tr>
<tr>
<td>05H</td>
<td>Number of Collisions Register (NCR)</td>
<td>Transmit Byte Count Register 0 (TBCR0)</td>
</tr>
<tr>
<td>06H</td>
<td>Current Page Register (CPR)</td>
<td>Transmit Byte Count Register 1 (TBCR1)</td>
</tr>
<tr>
<td>07H</td>
<td>Interrupt Status Register (ISR)</td>
<td>Interrupt Status Register (ISR)</td>
</tr>
<tr>
<td>08H</td>
<td>Current Remote DMA Address 0 (CRDA0)</td>
<td>Remote Start Address Register 0 (RSAR0)</td>
</tr>
<tr>
<td>09H</td>
<td>Current Remote DMA Address 1 (CRDA1)</td>
<td>Remote Start Address Register 1 (RSAR1)</td>
</tr>
<tr>
<td>0AH</td>
<td>Reserved</td>
<td>Remote Byte Count 0 (RBCR0)</td>
</tr>
<tr>
<td>0BH</td>
<td>Reserved</td>
<td>Remote Byte Count 1 (RBCR1)</td>
</tr>
<tr>
<td>0CH</td>
<td>Receive Status Register (RSR)</td>
<td>Receive Configuration Register (RCR)</td>
</tr>
<tr>
<td>REGISTER FUNCTION</td>
<td>SUB ADDR. (HEX)</td>
<td>D7</td>
</tr>
<tr>
<td>--</td>
<td>----------------</td>
<td>----</td>
</tr>
<tr>
<td>Chip version: register 00H</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chip version (read only)</td>
<td>00</td>
<td>ID07</td>
</tr>
<tr>
<td>Video decoder: registers 01H to 2FH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FRONT-END PART: REGISTERS 01H to 05H</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Horizontal increment delay</td>
<td>01</td>
<td></td>
</tr>
<tr>
<td>Analog input control 1</td>
<td>02</td>
<td>FUSE1</td>
</tr>
<tr>
<td>Analog input control 2</td>
<td>03</td>
<td></td>
</tr>
<tr>
<td>Analog input control 3</td>
<td>04</td>
<td>GAIH17</td>
</tr>
<tr>
<td>Analog input control 4</td>
<td>05</td>
<td>GAI27</td>
</tr>
<tr>
<td>VIDEO CONTROL: REGISTERS 06H to 2FH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Horizontal sync start</td>
<td>06</td>
<td>HSB7</td>
</tr>
<tr>
<td>Horizontal sync stop</td>
<td>07</td>
<td>HSS7</td>
</tr>
<tr>
<td>Sync control</td>
<td>08</td>
<td>AUTO</td>
</tr>
<tr>
<td>Luminance control</td>
<td>09</td>
<td>BYPS</td>
</tr>
<tr>
<td>Luminance brightness control</td>
<td>0A</td>
<td>DBR17</td>
</tr>
<tr>
<td>Luminance contrast control</td>
<td>0B</td>
<td>DCON7</td>
</tr>
<tr>
<td>Chrominance-saturation control</td>
<td>0C</td>
<td>DSAT7</td>
</tr>
<tr>
<td>Chrominance hue control</td>
<td>0D</td>
<td>HUEC7</td>
</tr>
<tr>
<td>Chrominance control 1</td>
<td>0E</td>
<td>CIDT0</td>
</tr>
<tr>
<td>Chrominance gain control</td>
<td>0F</td>
<td>AGC1</td>
</tr>
<tr>
<td>Chrominance control 2</td>
<td>10</td>
<td>OFFU1</td>
</tr>
<tr>
<td>Mode/delay control</td>
<td>11</td>
<td>COL0</td>
</tr>
<tr>
<td>RT signal control</td>
<td>12</td>
<td>RTSE13</td>
</tr>
<tr>
<td>RT/X-port/output control</td>
<td>13</td>
<td>RTCE</td>
</tr>
<tr>
<td>Analog/ADC compatibility control</td>
<td>14</td>
<td>CM99</td>
</tr>
<tr>
<td>VGATE start, HML change</td>
<td>15</td>
<td>VSTA7</td>
</tr>
<tr>
<td>VGATE stop</td>
<td>16</td>
<td>VSTO7</td>
</tr>
<tr>
<td>Miscellaneous/VGATE MSBs</td>
<td>17</td>
<td>LLCE</td>
</tr>
</tbody>
</table>
Fixed-function: The 7400 series

7400 Quad NAND Gate

74374 Octal D Flip-Flop