
Getting It Right
COMS W4115

Prof. Stephen A. Edwards
Fall 2004

Columbia University
Department of Computer Science

Getting It Right

Your compiler is a large software system developed by
four people.

How do you get it right?

Subjects

• Team-oriented development

• Interface-oriented design

• Version control systems

• assert()

• Regression test suites

• Writing tests

• Code coverage

• Makefiles

Team-oriented Development

Basic challenge: Remove as many inter-person
dependencies as possible.

One group asked if the lexer/parser person should finish
before the tree walker person started.

Divide and conquer: try to make it so that each person
can work at his/her own rate and not depend on others.

Tricky: each pass depends on the previous one.

Solution: careful design and modularity

Interface-oriented Development

Divide your compiler into a series of modules, e.g.,

1. Lexer/Parser

2. Static semantics

3. Code generation

4. Assembler

Clearly define the interface between each module.

You’ll want to write this in your project report, anyway.

Make the interfaces the “contracts” between the team
members.

Interface-oriented design

Write the interfaces first.

Document them well.

Write the public class definition, the method declarations,
and the comments first.

Later, fill in code for each method, private fields, etc.

Use javadoc to extract documentation from your Java
code and share with other group members

Version Control Systems

Four people working on a single program is not as easy
as just one.

Need some way to make sure everybody’s working on the
same program.

Version control systems a good solution.

The CVS Version Control System

Basic model:

Repository:
Grammar.g,v
Main.java,v
Makefile,v

Alice’s
working
directory:

Grammar.g
Parser.java
Lexer.java
Main.java
Main.class
Makefile

Bob’s
working
directory:

Grammar.g
Main.java
Main.class
Makefile

Using the CVS Version Control
System

1. Prepare a repository

2. Add an empty sudirectory to the repository

3. Create a working directory

4. Add files, update directory, commit changes

One group member does 1,2 once.

Each group member does 3 once.

Each group member does 4 repeatedly.

Using CVS

Creating a working directory:

% mkdir mydir

% cd mydir

% cvs checkout ourproj

Editing, adding, and updating

% cd ourproj

edit files, compile, etc.
% cvs add Grammar.g

% cvs commit Grammar.g

% cvs update

Assert

class Foo {

public static void main(String[] args) {

assert false;

}

}

% javac -source 1.4 foo.java

% java -ea Foo

Exception in thread "main"

java.lang.AssertionError

at Foo.main(foo.java:3)

Assert Philosophy

• Catch errors early and often

• Check function arguments are acceptable

E.g., assert n != null;

• Check function return value is consistent

• Check constructor has filled in every field

• Check object state is consistent

• Check loop invariants

• For the really ambitious, write methods that check
consistency of a whole data structure.

Regression test suites

How to avoid introducing new bugs when adding features?

Partial answer: build something that tells you whether
you’ve broken the program.

Regression suite:

• collection of tests

• exercises as much of your program as possible

• results are compared with “golden” references

Regression tests

Easiest is when program takes a text file as input and
produces text as output.

Fortunately, compilers behave like this.

Regression test inputs: short programs

Regression test golden references: assembly language

Example tests

module test_emit1:

type a;

type b;

input a;

input b : integer;

output c : integer;

emit a;

emit b;

emit c

end module

module test_emit2:

output a;

output b : integer;

output c : float;

emit a;

emit b(10);

emit c(5.0f)

end module

Writing Tests

Try to cover as much of your language as possible.

Try to write one test for each feature mentioned in the
language reference manual.

Build sequences of tests that start with simple versions of
a feature and build into the most complex.

Keep tests focused: easier to track down fault if one fails.

Running Tests

Easiest is to use a scripting language that

• invokes the test,

• compares the outputs, and

• logs results and any errors

For CEC, I wrote a shell script to do this.

Shell Script

Carefully runs two programs.

Compares output to reference file.

Stores results when it differs.

#!/bin/sh

STRLXML=./strlxml

XMLSTRL=./xmlstrl

globallog=teststrlxml.log

rm -f $globallog

error=0

Shell Script

Check() {
basename=‘echo $1 | sed ’s/.*\\///

s/.strl//’‘
reffile=‘echo $1 | sed ’s/.strl$/.out/’‘
xmlfile=${basename}.xml
outfile=${basename}.out
difffile=${basename}.diff
echo -n "Parsing $basename..."
echo "Parsing $basename" 1>&2
$STRLXML < $1 > $xmlfile 2>&1 || {
echo "FAILED: strlxml terminated"
error=1 ; return 1

}
$XMLSTRL < $xmlfile > $outfile 2>&1 || {
echo "FAILED: xmlstrl terminated"
error=1 ; return 1

}

Shell Script

diff -b $reffile $outfile > $difffile 2>&1 || {

echo "FAILED: output mismatch"

error=1 ; return 1

}

rm $xmlfile $outfile $difffile

echo OK

}

for file in tests/test*.strl

do

Check $file 2>> $globallog

done

exit $error

Code coverage

Basic idea: your test suite should at least
send the program counter over every part of your code.

To measure coverage, need some sort of tool that can tell
when each line of code is executed.

I found a couple of them:

• gcov: works with gcc to report for C (C++?)

• clover: Commercial tool for Java, but free for students
and open-source developers

There are many more.

Example of gcov

$ gcc -fprofile-arcs -ftest-coverage tmp.c
$ a.out
$ gcov tmp.c

87.50% of 8 source lines executed in file tmp.c
Creating tmp.c.gcov.

main() {
1 int i, total;

1 total = 0;
11 for (i = 0; i < 10; i++)
10 total += i;

1 if (total != 45)
printf ("Failure\n");

else

1 printf ("Success\n");
1 }

Makefiles

How do you make it easy to compile your compiler?

Need to run ANTLR to generate files, then run javac on
the results.

How do you make sure everything gets compiled when
needed?

A Basic Makefile

% cat Makefile

Simp.class : Simp.java

javac Simp.java

% make Simp.class

javac Simp.java

% make Simp.class

make: ‘Simp.class’ is up to date.

%

A More Complicated Makefile

JAVASRC = SimpParser.java SimpWalker.java \

SimpLexer.java SimpParserTokenTypes.java

SimpParser.class : $(JAVASRC)

javac $(JAVASRC)

SimpParser.java SimpLexer.java : Simp.g

java antlr.Tool Simp.g

clean :

rm -f *.class SimpParserTokenTypes.txt \

SimpParser.java SimpWalker.java \

SimpLexer.java \

SimpParserTokenTypes.java

A More Complicated Makefile

% make

java antlr.Tool Simp.g

ANTLR Parser Generator Version 2.7.1 1989-2000 jGuru.com

javac SimpParser.java SimpWalker.java SimpLexer.java SimpParserTokenTypes.java

% rm SimpParser.class

% make

javac SimpParser.java SimpWalker.java

SimpLexer.java SimpParserTokenTypes.java

% make clean

rm -f *.class SimpParserTokenTypes.txt \

SimpParser.java SimpWalker.java \

SimpLexer.java \

SimpParserTokenTypes.java

Writing Makefiles

Rules take the form:

target : source source ...

︸ ︷︷ ︸

tab

commands

Variable definition and use:

variable = value

$(variable)

