
 1

SFPL Reference Manual

By: Huang-Hsu Chen (hc2237)
Xiao Song Lu(xl2144)

 Natasha Nezhdanova(nin2001)
Ling Zhu(lz2153)

 2

1. Lexical Conventions

1.1 Tokens

There are six classes of tokes: identifiers, keywords, constants, string literals,

operators, and other separators. Blanks, horizontal and vertical tabs, newlines,

and comments as described below (collectively, “white space”) are ignored

except as they separate tokens. Some white space is required to separate

otherwise adjacent identifiers, keywords, and constants.

If the input stream has been separated into tokens up to a given character, the

next token is the longest string of characters that could constitute a token.

1.2 Comments

The characters /* introduce a comment, which terminates with the characters */.

The characters // introduce a single-line comment.

1.3 Identifiers

An identifier is a sequence of letters and digits. The first character must be a

letter; the underscore _ counts as a letter. Upper and lower case letters are

treated differently. There is no limit on the length of identifiers.

1.4 Keywords

The following identifiers are reserved for use as keywords, and may not be used

otherwise:

boolean

color

ellipse

else

false

function

if

int

label

line

point

rectangle

return

string

true

void

while

1.5 Integer Constants

An integer constant is a sequence of digits. It is always taken to be decimal.

1.6 String Literals

A string literal is a sequence of characters surrounded by double quotes, as in

“this is a string”. String literals do not contain newline or double-quote

characters.

 3

1.7 Point Literals

A point literal is a sequence of digits separated by the @ symbol. It represents

the coordinates of a point. I.e., 2@3 represents the coordinates of p(2,3), where

the first integer is the x-coordinate, and the second integer is the y-coordinate.

1.8 Color Literals

A color literal is the # symbol followed by 6 characters to specify the color on the

RGB scale or by one of the following words: red, orange, yellow, green, blue,

purple, brown, black, grey, or white. For example, #c6e2ff is the slate-gray

color, and #blue is the blue color.

2. Operators

 2.1 Multiplicative Operators

The multiplicative operators * and / group left-to-right. The operands of * and /

must be of type int.

The binary * operator denotes multiplication.

The binary / operator yields the quotient of the division of the first operand by

the second; if the second operand is 0, the result is undefined.

2.2 Additive Operators

The additive operators + and – group left-to-right. The operands of + and – must

be of type int.

The result of the + operator is the sum of the operands.

The results of the – operator is the difference of the operands.

2.3 Relational Operators

The relational operators group left-to-right. The operand of the <, >, <=, and >=

operators must be of type int.

The operators < (less than), > (greater than), <= (less than or equal to), >=

(greater than or equal to) all yield 0 if the specified relation is false and 1 if it is

true. The type of the result is int.

2.4 Equality Operators

The == (equal to) and the != (not equal to) operators are analogous to the

relational operators except for their lower precedence. (Thus a<b == c<d is 1

whenever a<b and c<d have the same truth-value.)

2.5 Logical Operators

 4

The && operator groups left-to-right. It returns true if both its operands are not

equal to zero or false, false otherwise.

The || operator groups left-to-right. It returns true if either of its operands is

not equal to zero or false, and false otherwise.

The operands of the && and || operators must be of type int or boolean.

2.6 Assignment Operator

Assignment operator = groups right-to-left.

The left operand must be of type int, boolean, string, color, or point.

The right operand must be of type int, boolean, or an integer constant if the

left operand is of type int or boolean. It must be of type string or a string
literal, if the left operand is of type string. It must be of type color or a

color literal, if the left operand is of type color. Finally, it must be of type

point or a point literal, if the left operand is of type point.

2.7 Comma Operator

A pair of expression separated by a comma is evaluated left-to-right.

2.8 Coordinate operator

Coordinate operator @ groups left-to-right.

Left and right operands must be arithmetic expressions or they must be of type

int. Combinations are possible, e.g., int@(a*b + c), where a,b, and c are all of

type int.

2.9 Operator Precedence and Associativity

Below, the operators are listed from the highest to the lowest precedence:

Operators Associativity

() left to right

* / left to right

+ - left to right

@ left to right

< <= > >= left to right

== != left to right

&& left to right

 5

|| left to right

= right to left

, left to right

3. Declarations
 Declarations specify the interpretation given to each identifier; they do not

reserve storage associated with the identifier. Declarations that reserve storage are

called definitions.

3.1 Variable declarations:

 variable-declaration:
 type-specifier : declarator-list ;

 type-specifier:
 void
 int
 boolean
 color
 point

string

 declarator-list:
 declarator

declarator-list, declarator
 declarator = initializer
 declarator-list, declarator = initializer

 initializer:
 integer constant |string literal |point literal |color literal

 3.2 Function definitions:

Functions must be defined when they are declared. A function definition

must be an external declaration, i.e., it cannot be inside any other function.

Function definitions must be made at the beginning of a translation unit.

 function-definition:
 function type-specifier identifier(parameter-list)

{
 variable-declaration-list
 statement-list
}

 parameter-list:

 6

 type-specifier : identifier
 parameter-list, type-specifier : identifier

 variable-declaration-list:

 variable-declaration
 variable-declaration-list variable-declaration

statement-list:
 statement
 statement-list statement

4. Statements
Except as described, statements are executed in sequence. They fall into the

following groups:

 statement:
assignment-statement
compound-statement

 if-statement
 while-statement
 function-call-statement
 return statement

break-statement
 continue-statement

4.1 Assignment statements

 assignment-statement:
identifier = initializer;

4.2 Compound Statements (Blocks)

 compound-statement:
 { statement-list }

 statement-list:

 statement
 statement-list statement

4.3 If statements

 if-statement:
 if (expression) statement else statement

4.4 While Statements

while-statement:

 7

 while (expression) statement

4.5 Function Call Statement

 function-call-statement:
 identifier(expression-list) ;

 expression-list:
 expression
 expression-list, expression

4.6 return Statements

return-statement:
 return ;
 return expression ;

4.7 Break Statement

 break ;

4.8 Continue Statement

 continue ;

5. Expressions

Expressions include arithmetic, relational, and logical expressions.

 expression:
 logical-expression
 logical-expression || logical-expression

 logical-expression:
 relational-factor
 relational-factor && relational-factor

 relational-factor:
 point-expression
 point-expression relational-operator point-expression

 relational-operator: one of
 >= <= > < == !=

point-expression:
 arithmetic-expression
 arithmetic-expression @ arithmetic-expression

 8

 arithmetic-expression:
 arithmetic-term
 arithmetic-term +arithmetic-term
 arithmetic-term – arithmetic-term

arithmetic-term:
 atom
 atom * atom
 atom / atom

atom:
 identifier
 function-call-statement
 int
 string
 point
 boolean
 (expression)

6. Scope

The scope of an identifier is the region of the program text within which the

identifier’s characteristics are understood.

The scope of a variable or function identifier in an external declaration begins at

the end of its declarator and persists to the end of the translation unit in which it

appears.

The scope of a parameter of a function definition begins at the start of the block

defining the function, and persists through the function: the scope of a parameter

in a function declaration ends at the end of the declarator.

The scope of an identifier declared at the head of a block begins at the end of its

declarator, and persists to the end of the block.

7. Built-in Functions

SFPL’s built-in functions provide basic functionality for drawing simple shapes.

They cannot be overridden by the user.

line(point p1, point p2, color c)
 Draws a line of color c from p1 to p2.

rectangle(point p, int w, in l, color c1, color c2)

Draws a rectanle of width w and length l with upper-left corner at p. c1

is the contour color, c2 is the filling color.

 9

ellipse(point p, int r1, in r2, color c1, color c2)

Draws an ellipse centered at p, with radii r1 and r2. c1 is the contour

color, c2 is the filling color.

label(point p, string l, color c)

Puts label “l” of color c on the diagram, e.g. BATHROOM, KITCHEN, etc.

p is the upper-left corner of the label.

8. Standard Library

SFPL’s standard library is a part of the language. All standard library functions

are compiled with every SFPL program by default. There is no need to include or

import those functions in your program.

Standard Library Functions

wall(point p1, point p2, color c)
 Draws a wall of color c from p1 to p2.

window(point p1, point p2, color c)
 Draws a window of color c from p1 to p2.

door(point p1, point p2, color c, int lr, int bt)

Draws a door of color c from p1 to p2. The last two parameters of type int

specify the direction the door opens and the position of the door’s handle.

lr=0 for left, lr=1 for right; bt=0 for bottom, bt=1 for top. The possible

configurations are shown below:

 10

stair(point p, int w, int l, color c1, color c2, int direction)
Draws a staircase of width w and length l with upper-left corner at p. c1
is the contour color, c2 is the filling color; direction=0 for steps to be

drawn horizontally, direction=1 for steps to be drawn vertically, as

shown below.

dimension(point p1, point p2, string s, int position, color c)
Draws a labeled arrow of color c from p1 to p2 to show a dimension of an

object. s is the label. If position=0, the label will be drawn to the left of

the arrow if the arrow is vertical, or below the arrow if it is horizontal; if

position=1, the label will be drawn to the right of a vertical arrow or

above a horizontal arrow.

 11

9. Sample SFPL program

 //function definitions

 function int f1(int:a, point:b) {…}
 function void f2(color:c, point:d) {…}

 //beginning of program

 int: A = 5;

point: B = 2@3, D = 5@1;
color: C = #554466;

f1(A, B);
f2(C, D);

 //end

