Serial Communications

CSEE W4840

Prof. Stephen A. Edwards

Columbia University
Early Serial Communication

Morse code key

<table>
<thead>
<tr>
<th>Letters</th>
<th>Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>•—•—•—</td>
</tr>
<tr>
<td>B</td>
<td>——•—•</td>
</tr>
<tr>
<td>C</td>
<td>——•—</td>
</tr>
<tr>
<td>D</td>
<td>•—•— •</td>
</tr>
<tr>
<td>E</td>
<td>•—•—</td>
</tr>
<tr>
<td>F</td>
<td>——•—</td>
</tr>
<tr>
<td>G</td>
<td>——•—•</td>
</tr>
<tr>
<td>H</td>
<td>•—•—•</td>
</tr>
<tr>
<td>I</td>
<td>•—•—•</td>
</tr>
<tr>
<td>J</td>
<td>•••••</td>
</tr>
<tr>
<td>K</td>
<td>•—•—</td>
</tr>
<tr>
<td>L</td>
<td>——••</td>
</tr>
<tr>
<td>M</td>
<td>——••</td>
</tr>
<tr>
<td>N</td>
<td>——•</td>
</tr>
<tr>
<td>O</td>
<td>•••••</td>
</tr>
<tr>
<td>P</td>
<td>——•—•</td>
</tr>
<tr>
<td>Q</td>
<td>——•— —</td>
</tr>
<tr>
<td>R</td>
<td>——•— —</td>
</tr>
<tr>
<td>S</td>
<td>——•— —</td>
</tr>
<tr>
<td>T</td>
<td>—•••</td>
</tr>
<tr>
<td>U</td>
<td>••••—</td>
</tr>
<tr>
<td>V</td>
<td>••••—</td>
</tr>
<tr>
<td>W</td>
<td>••••—</td>
</tr>
<tr>
<td>X</td>
<td>••••—</td>
</tr>
<tr>
<td>Y</td>
<td>••••—</td>
</tr>
<tr>
<td>Z</td>
<td>——•••</td>
</tr>
</tbody>
</table>
Later Serial Communication

Data Terminal Equipment

Data Communications Equipment
RS-232

Defined in early 1960s
Serial, Asynchronous, Full-duplex,
Voltage-based, point-to-point, 100 ft+ cables

+12V

\[\text{SPACE} = 0 \]

+3V

−3V

\[\text{MARK} = 1 \]

−12V

Tx

Idle Start LSB B1 B2 B3 B4 B5 B6 MSB Stop
RS-232 Signals

Signal DB-9 DTE ... Meaning

<table>
<thead>
<tr>
<th>Pin</th>
<th>DCE</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>RxD</td>
<td>2</td>
<td>Data received by DTE</td>
</tr>
<tr>
<td>TxD</td>
<td>3</td>
<td>Data sent by DTE</td>
</tr>
<tr>
<td>SG</td>
<td>5</td>
<td>Ground</td>
</tr>
<tr>
<td>DSR</td>
<td>6</td>
<td>Data Set Ready (I’m alive)</td>
</tr>
<tr>
<td>DTR</td>
<td>4</td>
<td>Data Terminal Ready (me, too)</td>
</tr>
<tr>
<td>DCD</td>
<td>1</td>
<td>Carrier Detect (hear a carrier)</td>
</tr>
<tr>
<td>RTS</td>
<td>7</td>
<td>Request To Send (Yo?)</td>
</tr>
<tr>
<td>CTS</td>
<td>8</td>
<td>Clear To Send (Yo!)</td>
</tr>
<tr>
<td>RI</td>
<td>9</td>
<td>Ring Indicator</td>
</tr>
</tbody>
</table>
Receiving RS-232

Most UARTs actually use 16× clocks
Variants

Parity bit: (Even = true when even number of 1s)

Two stop bits:
Baud Rate

Baud: bits per second

<table>
<thead>
<tr>
<th>Baud</th>
<th>Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>110</td>
<td>ASR-33 Teletype</td>
</tr>
<tr>
<td>300</td>
<td>Early acoustic modems</td>
</tr>
<tr>
<td>1200</td>
<td>Direct-coupled modems c. 1980</td>
</tr>
<tr>
<td>2400</td>
<td>Modems c. 1990</td>
</tr>
<tr>
<td>9600</td>
<td>Serial terminals</td>
</tr>
<tr>
<td>19200</td>
<td></td>
</tr>
<tr>
<td>38400</td>
<td>Typical maximum</td>
</tr>
</tbody>
</table>
Physical Variants

Connectors: DB-25, DB-9, Mini DIN-8
RS-422: Differential signaling
RS-485: Bus-like
OPB UART Lite

Serial port peripheral for the Microblaze

Full duplex operation

16-character transmit and receive FIFOs

Parameters that can be set at build time:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base Address</td>
<td>0xFEFF0100</td>
</tr>
<tr>
<td>High Address</td>
<td>0xFEFF01FF</td>
</tr>
<tr>
<td>Baud Rate</td>
<td>9600</td>
</tr>
<tr>
<td>Bits per frame</td>
<td>8</td>
</tr>
<tr>
<td>Parity</td>
<td>None</td>
</tr>
<tr>
<td>Address</td>
<td>Role</td>
</tr>
<tr>
<td>--------------</td>
<td>---</td>
</tr>
<tr>
<td>0xFEFF0100</td>
<td>Read characters from Receive FIFO</td>
</tr>
<tr>
<td>0xFEFF0104</td>
<td>Write characters to Receive FIFO</td>
</tr>
<tr>
<td>0xFEFF0108</td>
<td>Status register (read only)</td>
</tr>
<tr>
<td>0xFEFF010C</td>
<td>Control register (write only)</td>
</tr>
</tbody>
</table>
Status and Control Registers

<table>
<thead>
<tr>
<th>Bit</th>
<th>Status</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>Parity Error</td>
<td>-</td>
</tr>
<tr>
<td>25</td>
<td>Framing Error</td>
<td>-</td>
</tr>
<tr>
<td>26</td>
<td>Overrun Error</td>
<td>-</td>
</tr>
<tr>
<td>27</td>
<td>Interrupts Enabled</td>
<td>Enable Interrupts</td>
</tr>
<tr>
<td>28</td>
<td>Tx buffer full</td>
<td>-</td>
</tr>
<tr>
<td>29</td>
<td>Tx buffer empty</td>
<td>-</td>
</tr>
<tr>
<td>30</td>
<td>Rx buffer full</td>
<td>Clear Rx buffer</td>
</tr>
<tr>
<td>31</td>
<td>Rx buffer non-empty</td>
<td>Clear Tx buffer</td>
</tr>
</tbody>
</table>

Non-empty Rx buffer or emptying of Tx buffer generates an interrupt.
Philips invented the Inter-IC bus c. 1980 as a very cheap way to communicate slowly among chips. E.g., good for setting control registers. 100, 400, and 3400 kHz bitrates.

SCL: Clock, generated by a single master
SDA: Data, controlled by either master or slaves.
I²C Bus Transaction

Idle Start “0” “1” Ack Stop

SCL

SDA

Write data

<table>
<thead>
<tr>
<th>S</th>
<th>slave address</th>
<th>W</th>
<th>A</th>
<th>data</th>
<th>A</th>
<th>data</th>
<th>A</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>< n data bytes ></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Read data

<table>
<thead>
<tr>
<th>S</th>
<th>slave address</th>
<th>R</th>
<th>A</th>
<th>data</th>
<th>A</th>
<th>data</th>
<th>A</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>< n data bytes ></td>
<td></td>
<td>last data byte</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Master transmitter Slave receiver

Slave transmitter Master receiver

S = Start condition
A = Acknowledge
P = Stop condition
R/W = read / write not
A = Not Acknowledge
USB: Universal Serial Bus

1.5 Mbps, 12 Mbps, and 480 Mbps (USB 2.0)
Point-to-point, differential, twisted pair
3–5m maximum cable length
USB Connectors

<table>
<thead>
<tr>
<th>Series "A" Connectors</th>
<th>Series "B" Connectors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Series "A" plugs are always oriented upstream towards the Host System</td>
<td>Series "B" plugs are always oriented downstream towards the USB Device</td>
</tr>
<tr>
<td> (From the USB Device)</td>
<td> (From the Host System)</td>
</tr>
<tr>
<td> (Downstream Output from the USB Host or Hub)</td>
<td> (Upstream Input to the USB Device or Hub)</td>
</tr>
</tbody>
</table>
USB signaling

NRZI: 0 = toggle, 1 = no change

Bit stuffing: 0 automatically inserted after six consecutive 1s

Each packet prefixed by a SYNC field: 3 0s followed by two 1s

Low- vs. full-speed devices identified by different pull-ups on D+/D- lines
USB Packets

Always start with SYNC
Then 4-bit type, 4-bit type complemented
2 bits distinguish Token, Data, Handshake, and Special, other two bits select sub-types
Then data, depending on packet type
Data checked using a CRC
Addresses (1-128) assigned by bus master, each with 16 possible endpoints
USB Bus Protocol

Polled bus: host initiates all transfers.
Most transactions involve three packets:
 - “Token” packet from host requesting data
 - Data packet from target
 - Acknowledge from host

Supports both streams of bytes and structured messages (e.g., control changes).
USB Data Flow Types

- Control
 For configuration, etc.

- Bulk Data
 Arbitrary data stream: bursty

- Interrupt Data
 Timely, reliable delivery of data. Usually events.

- Isochronous Data
 For streaming real-time transfer: prenegotiated bandwidth and latency
Layered Architecture

Host Interconnect Physical Device

Client SW Function

USB System SW USB Logical Device

USB Host Controller USB Bus Interface

Actual communications flow

Logical communications flow

Implementation Focus Area
Bus 001 Device 002: ID 05e3:0760 Genesys Logic, Inc.
 bcdUSB 2.00
 bMaxPacketSize0 64
 idVendor 0x05e3 Genesys Logic, Inc.
 idProduct 0x0760
 bcdDevice 1.14
 iManufacturer 2 Genesys
 iProduct 3 Flash Reader
 iSerial 4 002364

Configuration Descriptor:
 bNumInterfaces 1
 MaxPower 300mA

Interface Descriptor:
 bNumEndpoints 2
 bInterfaceClass 8 Mass Storage
 bInterfaceSubClass 6 SCSI
 bInterfaceProtocol 80 Bulk (Zip)

Endpoint Descriptor:
 bEndpointAddress 0x81 EP 1 IN
 bmAttributes 2
 Transfer Type Bulk
 Synch Type none
 wMaxPacketSize 64

Endpoint Descriptor:
 bLength 7
 bDescriptorType 5
 bEndpointAddress 0x02 EP 2 OUT
 bmAttributes 2
 Transfer Type Bulk
 Synch Type none
 wMaxPacketSize 64

Language IDs: (length=4)
 0409 English(US)
USB: Mouse Device

Bus 002 Device 002: ID 04b4:0001 Cypress Semiconductor Mouse

Device Descriptor:
- bcdUSB: 1.00
- idVendor: 0x04b4 Cypress Semiconductor
- idProduct: 0x0001 Mouse
- bcdDevice: 4.90
- iManufacturer: 1 Adomax Sem.
- iProduct: 2 USB Mouse
- iSerial: 0

Configuration Descriptor:
- bNumInterfaces: 1
- bmAttributes: 0xa0
 - Remote Wakeup
- MaxPower: 100mA

Interface Descriptor:
- bNumEndpoints: 1
- bInterfaceClass: 3 Human Interface Devices
- bInterfaceSubClass: 1 Boot Interface Subclass
- bInterfaceProtocol: 2 Mouse
- iInterface: 5 EndPoint1 Interrupt Pipe

HID Device Descriptor:
- bDescriptorType: 34 Report
- wDescriptorLength: 52

Endpoint Descriptor:
- bEndpointAddress: 0x81 EP 1 IN
- bmAttributes: 3
 - Transfer Type: Interrupt
 - Synch Type: none
- wMaxPacketSize: 4
- bInterval: 10

Language IDs: (length=4)
- 0409 English(US)
1.0 EZ-USB SX2™ Features

1.1 Introduction

The EZ-USB SX2™ USB interface device is designed to work with any external master, such as standard microprocessors, DSPs, ASICs, and FPGAs to enable USB 2.0 support for any peripheral design.

1.2 Features

• USB 2.0-certified compliant
• Operates at high (480 Mbps) or full (12 Mbps) speed
• Supports Control Endpoint 0:
 — Used for handling USB device requests
• Supports four configurable endpoints that share a 4-KB FIFO space
 — Endpoints 2, 4, 6, 8 for application-specific control and data
• Standard 8- or 16-bit external master interface
 — Glueless interface to most standard microprocessors, DSPs, ASICs, and FPGAs
 — Synchronous or Asynchronous interface
• Integrated phase-locked loop (PLL)
• 3.3V operation, 5V tolerant I/Os
• 56-pin SSOP and QFN package
• Complies with most device class specifications

1.3 Block Diagram

![Block Diagram](image-url)
The CY7C68001 USB interface

Operates as a peripheral (i.e., not a host)
Operates at 12 or 480 Mbps speeds
Control endpoint 0
Four other user-configurable endpoints
4 kB FIFO buffer
500 bytes of descriptor RAM (Vendor, Product)
\(^2\text{I}\)C bus interface for configuration from EEPROM
(Unused on the XSB board—processor must configure)
Five memory locations: one for each FIFO, one for control registers

Internal registers written by first applying address to control register, then reading or writing data to control register.

33 different configuration registers, including 500-byte descriptor “register”