

Embedded Systems Design 4840

MANIC

Music All Night In Columbia

Design Document

Team:
 Prakash G.S

pg2132@columbia.edu

Devyani Gupta
dg2168@columbia.edu

Vijayarka Nandikonda
vn2107@columbia.edu

Contents

1. Introduction
2. ADPCM Decoding

2.1 Algorithm
2.2 Implementation
2.3 Calculation of Step-Size

3. Design Alternatives
4. Final Design

1. Introduction

The original goal of our project was to design an MP3 player. However, we have revised
this goal towards implement an ADPCM player owing to time constraints and numerous
problems faced with respect to implementation. In addition, we also endeavor to
implement a PCM player for 8 and 16 bit audio formats.

What is Adaptive Differential Pulse Code Modulation?

ADPCM is an audio coding technique that is widely used throughout the
telecommunications industry. It works by calculating the difference between two
consecutive samples in standard pulse code modulation (PCM) and codes the error of the
‘predicted’ next sample increment (from the previous sample increment) to the true
sample increment.
It is a lossy compression technique that achieves a compression ratio of 4:1. However, it
is popular since is returns a high quality signal with very little processing power required
for fast decoding.
There are primarily 2 different industry formats for ADPCM:

1. IMA/DVI ADPCM
2. Microsoft ADPCM

Our implementation is centered on the IMA format.

2. ADPCM Decoding
2.1 Algorithm
The diagram shows the steps involved in ADPCM decoding.

Step Size
calculation

 Decoder

 Z-1

 Z-1

 +

 d (n)

Adjusted
step size

L (n) X (n-1)
X (n) ADPCM

input sample Linear output
sample

Step Size

16 bits
4 bits

 difference

ADPCM decoding is comprised of the following steps:

Step-Size calculation:
The step-size is basically a coding scale for the ADPCM. It varies dynamically to
accommodate the differences between small and large samples. The step size initially
starts off at a preconfigured value. This value is then readjusted/predicted for the next
sample, depending on the sample received. This process is called step-size adjustment.

Decoding:
The decoding for each 4 bits then happens by using the current sample and the step-size.
The difference of the decoded output and the previous sample is then taken. This
difference yields a 16-bit linear PCM sample.

2.2 Implementation
The following flow chart defines our implementation. We maintain 3 arrays to store
stepsize values, nibbletobit values and sign value. We also have an array to store the
value of the last 128 samples.

Nibble

Select Stepsize, s

Get nibbletobit value, n

Compute diff value;
Diff = s*n[1] + s/2*n[2] + s/4*n[3] + s/8

Append Sign Value using n[0]

Truncate if it exceed bounds

16 bit output

ADPCM decoding sequence

2.3 Calculation of Step Size

For both the encoding and decoding process, the ADPCM algorithm adjusts the quantizer
stepsize based on the most recent ADPCM value. The step size for the next sample, n+l,
is calculated with the following equation:
ss(n+1) = ss(n) * 1.1M(L(n))

This equation can be implemented efficiently as a two-stage lookup table. First the
magnitude of the ADPCM code is used as an index to look up an adjustment factor as
shown in Table 1. Then that adjustment factor is used to move an index pointer in Table
2. The index pointer then points to the new step size. Values greater than 3 will increase
the step size. Values less than 4 decrease the step size.

Table 1. `M(L(n)) Values

L(n) Value M(L(n))
1111 0111 +8
1110 0110 +6
1101 0101 +4
1100 0100 +2
1011 0011 -1
1010 0010 -1
1001 0001 -1
1000 0000 -1

Table 2. Calculated Step Sizes

No. StepSize No. StepSize No. StepSize No. StepSize
1 16 13 50 25 157 37 494
2 17 14 55 26 173 38 544
3 19 15 60 27 190 39 598
4 21 16 66 28 209 40 658
5 23 17 73 29 230 41 724
6 25 18 80 30 253 42 796
7 28 19 88 31 279 43 876
8 31 20 97 32 307 44 963
9 34 21 107 33 337 45 1060
10 37 22 118 34 371 46 1166
11 41 23 130 35 408 47 1282
12 45 24 143 36 449 48 1411
49 1552

This method of adapting the scale factor with changes in the waveform is optimized for
voice signals, not square waves or other non-sinusoidal waveforms.

3. Design Alternatives

ADPCM implementation can be done in

• Software (in a programming language) like C or
• In hardware (in a hardware-description language) like VHDL.

We explored both alternatives, finally settling on the software approach in C. This was
due to the following reasons:

1. The computations involved in the decoding were not of a time-consuming nature.
So implementing in hardware would have given no substantial benefit.

MicroBlaze runs at a clock frequency of 50 MHz, and our input ADPCM file is of
12 kHz. So we have 50M/12k = 4000 cycles for processing each sample. This
gives us ample time to implement the algorithm in software.

2. There are no floating-point computations in the procedure.

MicroBlaze cannot do floating point computations. If there were floating point
computations in the process, we would have had no choice but to do it in VHDL.

3. The procedure involves few simple multiplication operations (step-size x 1-bit)
and these can be optimized in software into simple conditional statements with
additions.

Timing is the most crucial thing in high speed I/O. Code optimization reduced the
time taken to process the samples, thus obeying the time constraints.

4. Final Design

Our design essentially composes of 3 modules, namely the UART module, the Audio
Codec module and the Decoding module.

The diagram below shows interaction among the various modules.

Decoding
Module

Audio
Codec

Module

UART
Module

U
A
R
T

I
N
T
E
R
F
A
C
E

Audio
Data

ADPCM data

Audio output

Legend:

Data flow when playing ADPCM
Data flow when playing PCM

UART Module:

The UART module receives data from the UART and buffers for the audio processing
module. It also plays a role in flow-control, sending start and stop patterns to the UART
program on the PC for alternately starting and stopping data.

Audio Processing Module:

The audio processing module processes data from the UART buffer and calls the
ADPCM conversion routine to convert ADPCM data. In case of PCM data, this module
converts mono to stereo and buffers it in the audio codec buffer.

Audio Codec Module:

The audio codec module streams data from the audio codec buffer into the audio codec.

