

XQ: An XML Query Language

Language Reference Manual

Kin Ng

kn2006@columbia.edu

1. Introduction
XQ is a query language for XML documents. This language enables programmers to
express queries in a few simple statements. This manual defines the XQ language
proposed by the white paper. For the most part, this document follows the board outline
in the white paper.

2. Lexical Conventions
2.1 Comments
A comment starts with the characters /* and terminates with the characters */. Comments
do not nest, and they do not occur within string or character literals.

2.2 Identifiers
An identifiers is a series of letters and digits with the first character being a letter or the
underscore. Upper and lower case letters are distinct.

2.3 Keywords
The following identifiers are keywords:

ASC DISTINCT integer SQLCODE
AVERAGE else INTO String
break FETCH MAX SUM
BY document MIN Tag
CLOSE float NULL WHERE
continue for OPEN While
COUNT FROM ORDER WITH
cursor function return
DESC if SELECT

2.4 Constants
2.4.1 Integer Constants
An integer is a series of digits is taken to be decimal.

2.4.2 Floating Constants
A floating constants consists of an integer part, a decimal point, a fraction part, and e or E
and an optionally signed integer exponent. Either the integer part or the fraction part (not
both) may be missing; either the decimal part of the e and the exponent (not both) may be
missing.

2.4.3 String Literals
A string literals is a series of characters enclosed by double quotes, as in “. . .”. A double
quote inside a string literal is represented by \”.

2.5 Other Tokens
The following are the remaining tokens:

{ } () [] , ; + -
* / % = += -= *= /= >= <=
> < == != ! && || : &

3. Meaning of Identifies
3.1 Types
In this language, all variables are statically typed and must be declared before they are
used. Types that can be interpreted as numbers will be referred to as arithmetic type.
There are several basic types including:

cursor: pointer to navigate within the query result set
document: pointer to the data structures to hold the XML document
float: 64-bit IEEE floating point numbers
integer: 32-bit integers
tag: represent the name of the tags in the data file
string: sequence of characters

3.2 Scope
There are two kinds of scope: block and file. The scope of an identifier begins when its
declaration is seen. Although it is impossible to have two declarations of the same
identifier active in the same scope, no conflict occurs if the instances are in different
scopes.

4. Conversions
4.1 Integer and Floating
When a floating value is converted to an integral value, the rounded value is preserved as
long as it does not overflow. When an integral value is converted to a floating value, the
value is preserved.

5. Expressions and Operators
5.1 Primary Expressions
5.1.1 Identifiers
An identifier is an lvalue expression.

5.1.2 Constants
A constant’s type is determined by its form and value.

5.1.3 String Literals
A string literal’s type is string.

5.1.4 Parenthesized Expressions
A parenthesized expressions’s type and value are identical to those of the un-
parenthesized expressions.

5.1.5 Function Calls
A function call contains a function identifier and a (possibly empty) comma-separated list
of expressions that are the arguments to the function.

5.2 Arithmetic Expressions
5.2.1 Unary Operators
Expressions with unary operators associate from right to left. The result of the unary –
operator is the negative of its operand. The result of the unary operator + is the value of
the operand. The operand must be arithmetic type.

5.2.2 Multiplicative Operators
The multiplicative operators *, /, and % group from left to right. Operands of * and /
must have arithmetic type. Operands of % must have integral type. The binary operators
*, / and % represents multiplication, division and modulo.

5.2.3 Additive Operators
The additive operators + and – associate from left to right. The result of the + operator is
the sum of the operands. The result of the - operator is the difference of the operands.
The operands must be both arithmetic type.

5.3 Relational Expressions
The relational operators associate from left to right. The operators <, >, <=, >=, == and
!= represents greater than, less than or equal to, greater than or equal to, equal to and not
equal to respectively. They all yield a result of type integer with value 0 if the specific
relation is false and 1 if it is true.

5.4 Logical Expressions
The unary operator ! is the logical negation. Its result is 1 if the value of its operand is 0
and vice versa. The && and || operators represent logical AND and OR. The result from
both operators has type integer. For && operator, if neither of the operands evaluates to
0, the result has a value of 1. Otherwise it has a value of 0. For || operator, if neither of
the operands evaluates to 0, the result has a value of 1. Otherwise it has a value of 0.

5.5 Assignment Expressions
Assignment operators consists =, *=, /= , %=, +=, -= . They are all of associate from
right to left. Assignment operators require a modifiable lvalue as their left operand. The
type of an assignment expression is that of its unqualified left operand. The result is not
an lvalue. Its value is the value stored in the left operand after the assignment.

6. Statements
A statement is a complete instruction to the computer. Statements are executed in
sequence.

6.1 Expression Statements
Most statements are expression statements. They are evaluated for their side effects, such
as assignments or function calls.

6.2 Conditional Statements
The conditional statements have the following form:

if (expression)
 statement

or

if (expression)
 statement
else
 statement

Conditional statements choose one of a set of statements to execute, based on the
evaluation of the expression. The expression is the controlling expression. For both
forms of the if statement, the first statement is executed if the controlling expression
evaluates to nonzero. For the second form, the second statement is executed if the
controlling expression evaluates to zero. An else clause that follows multiple sequential
else-less if statements is associated with the most recent if statement in the same block.

6.3 Iterative Statements
Iteration statements execute the attached statement repeatedly until the controlling
expression evaluates to zero.

6.3.1 For Statement
The for statement has the following form:

for (expression; expression; expression)
 statement

The first expression specifies initialization for the loop. The second expression is the
controlling expression which is evaluated before each iteration. The third expression
often specifies incrementation which is evaluated after each iteration.

6.3.2 While Statement

The while statement has the following form:

while (expression)
 statement

The controlling expression of a while statement is evaluated before each execution of the
body.

6.3.3 Break Statement
The break statement can appear only in the body of an iteration statement. It transfers
control to the statement immediately following the smallest enclosing iteration.

6.3.4 Continue Statement
The continue statement can appear only in the body of an iteration statement. It causes
the while or for statement to the end of the loop.

6.4.2 Function Return Statement
A function returns to its caller by the return statement. When return is followed by an
expression, the value is returned to the caller fo the function.

6.4 Query Statements
6.4.2 SET and SELECT Statement
The SET, SELECT statement has the following form:

SET cursor-identifier WITH query-clause

The SET and WITH keyword first associates a cursor-identifier with the query clause.
The query clause has the following form:

SELECT sel-clause
FROM doc-identifier
WHERE expression order-by-clause

The sel-clause consists of a list of tag-identifiers and performs a projection on the target
document. Operational key words such as AVERAGE, COUNT, SUM, MIN and MAX can
be applied to the sel-clause to perform aggregate operations. Another keyword
DISTINCT can be used so there will not be duplicates in the result set.
The where-clause consists of expression and follows by an optional order-by-clause.
The where-clause expression is used to perform a selection on the target document. The
optional order-by-clause has the following form:

ORDER BY list of tag-identifiers ASC/DESC

The order-by-clause is used to sort the result set in order to retrieve in a particular order.
ASC and DESC are used to represent ascending and descending order respectively.

6.4.3 CLOSE Statement
The close statement has the following form:

CLOSE cursor-identifier

The CLOSE statement associates with an identifier of cursor type. Any resource that link
to the cursor will be released after the CLOSE statement is executed.

6.4.4 FETCH Statement
The fetch statement has the following form:

FETCH cursor-identifier INTO identifier-list
The fetch statement retrieve information from result set through the a cursor type
identifier. The result is loaded into a list of identifiers.

7. Declarations
A declaration specifies the interpretation given to a set of identifiers. Declarations have
the following form:

declaration-specifiers init-declarator-list

The init-declarator-list is a comma-separated sequence of declarators, each of which can
have an initializer. The declarators in the init-declarator-list consist of a sequence of
type.

8. Function Definition
A function definition has the following form:

function func-identifier (identifier-list) {
 statement
}

func-identifier represents the name of the function. Expression-list is a list of identifier or
arguments, separated by commas. The list of argument can be empty. The return
statement should be used in function block in order to return a value.

9. Library Functions
9.1 Console Output Functions
9.1.1 Print Function
Print function takes an argument list and print them to the standard output. The return
value is number of characters written or negative if an error occurred.

9.2 File I/O Functions

9.2.1 Load Function
The load function has the following form:

load(char-identifier, char- identifier)

The load function takes the name of the XML document and the DTD file as the first and
second argument respectively, and returns a document type which is pointing to the data
structures. If the function fails, the function returns NULL.

9.2.2 Release Function
The release function has the following form:

release(document-identifier)

The release function takes an document identifier as the argument, and free resources that
are linked to the document identifier.

9.3 Mathematical Functions
The following mathematical functions are supported by this language:

ceil(x) smallest integer not less than x, as a float
exp(x) exponential function ex

fabs(x) absolute value |x|
floor(x) largest integer not greater than x, as a float
log(x, y) logarithm of x with base y logyx, x > 0
pow(x, y) xy. A domain error occurs if x=0 and y ����RU�LI�x<0 and y is not an integer

