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INTRODUCTION 
 
PML as the name suggests is a polynomial manipulation language for symbolic 
mathematics. Each program written in PML is case-sensitive and can be written in 
standard ASCII file format. The grammar has been generated using the tool ANTLR.  
 
2. LEXICAL CONVENTIONS 
 

The tokens of PML are identifiers, keywords, and expression operators. All forms of   
whitespace (blanks, tabs, and newlines) and comments are ignored. Whitespace is 
used to separate identifiers.  

 
For token parsing, the language uses a “greedy” approach, meaning that a token is 
compared to the longest possible matching character stream.  

 
2.1 Comments 

  
Both single and multi-line comments will be accepted, single using ‘#’ and mulit-line 
comments using “#{” as the opening declaration. Example of multi-line and single 
line comments are below. 
 

# This is an example of a single line comment 
#{ This is an example of a multiple line comment  
   because it covers more than one line }# 
#{ This is also an example of a multiple line comment }# 

 
2.2 Identifiers (Names) 

 
An identifier is considered as a sequence of at least one letter followed by any 
number of letter, digits, or underscores.  Identifiers must consist of lower case letters 
only. 

 
Acceptable identifiers: abc, a1234, a_ldsa, b__  
Unacceptable identifiers: 3213, 3_a, _232_, 1, A, aBC 

 
2.3 Keywords 



 
The following identifiers are reserved words and should not be used otherwise: 

 
begin  end  poly  return 
break  float  polyeq  vars 
char  func  print  void 
do  if  term   
else  int  termarray 
   
 

2.4 Type Specifiers 
 

Data types must be specified as one of the following types: int, float, term, poly, 
polyeq, termarray, char, and string literals. The language does not support the user 
created data types.  

 
2.4.1 int – An optionally signed sequence of digit is an integer constant. These 
constants can hold the range of -2,147,483,647 to +2,147,483,648  
  
   int: 2, 233, -543, 01, +10, 99 
 
2.4.2 float -  A floating point consists of an integer part, a decimal point, and a 
fraction part. The integer and fraction parts both consist of a sequence of digits. 
Either the integer part or the decimal point with a fraction part (not both) may be 
missing. All exponentials must be declared in decimal format. 
 
   float: 2, .34, .33, -4.02, 
 
2.4.3 term – A term is an int or float followed by an optional number of variable 
and a power parts. These variables must be in upper case. A power part can only 
exist if a variable is present. Each capital letter in a term represents a variable. In a 
term there is an implicit ‘*’ sign to indication multiplication between a variable 
and an int, float, or another variable.  
 
   Term: 2, 3X, 3XY^2, 2.3YZ, 42X^1Y^1 
  term: XY (has variables X and Y which are multiplied together) 
 
2.4.4 poly – A poly is considered as two or more terms separated with an addition 
operator. An int and a float can also be considered polys. A complete listing of the 
addition operators can be found in section 2.5.1 

 
    poly: 2+3X, 2, 34.034XY^2 + X^2, .3XY – 3Y, 4 
 

2.4.5 polyeq – A polyeq consists of  two or more polys followed by a comparison 
operator. Complete listing of relational and equality operators can be found in 
sections 2.5.3 and 2.5.4, respectively.  

 
    Polyeq: 4 = 3X2, 4X<2X+3Y^6, X+Y = X +1 



  
2.4.6 termarray – An array of terms can be represented by the data type 
termarray. Individual items of the array can be accessed by the notation 
termarray_variable [index number]. The index number, which starts from 1, 
refers to the order in which items are stored in the array.  The length of this array 
is dynamically allocated and it can be increased or decreased by the ‘+’ and ‘-‘ 
operations.  The length of the array is equal to the number of items in it and can 
be obtained by using the in-built function length(..), which is explained in a later 
section. 

Termarray: t[1]  � returns the first element in the array. 
 

2.4.7 char An object of type char can be used to store any member of length one, 
belonging to the ASCII character set. 
  
                Char c = ‘x’ ; the variable c will now have the value of ‘x’. 

 
2.4.8 string literals  A string literal also called a string constant, is a sequence of 
characters surrounded by double quotes, as in “…”. String literals, can only be 
used with the print statement.  
 

3. CONVERSIONS 
 
 Implicit type conversions will be supported for the following:  
    
    int    � float 
    float � int (fraction portion rounded and discarded) 
    float � term 
    term � poly  
                                                char � term 

 
The following explicit conversions are available: 
 

1. (poly -> termarray) which is done explicitly using the polyterm() function 
2.  term -> float is converted using the coeff(… ) method. 

 
 
4. EXPRESSIONS 
 
 4.1 Identifiers 
 

An identifier is a primary expression provided it has been declared as explained 
below. Its type is specified in the declaration.  

 
 4.2 (expression) 
 
 A parenthesized expression is identical to an expression without parenthesis.  
  
 4.3 Operators 



Operators are used to do polynomial and term manipulation.  The types of 
operators supported are additive, multiplicative, relational, equality, and power. 
 
 
4.3.1 Multiplicative – ‘*’, ‘/’ are multiplicative operators and used to perform 
multiplication and division between polynomials and terms. These operators have 
a higher precedence than additive operators. 

 
4.3.1.1 expr * expr  is an expression implying multiplication. If both operands are 
int then the resulting expression is an int. If both operands are float then the 
resulting expression is a float. If one operand is a float and the other operand is an 
int then the resulting expression is of type float.  
 
    Float *  int   � 3.4 * 5, 

int * int       �    10 * 20,  
float * float � 2.5 * 7.6  

 
Multiplicative operators applied to any other data type except int and float will 
result in an error  

 
  

4.3.1.2 expr / expr is an expression implying division. Multiplication conversion 
rules from section 4.3.1.2 apply. 
 
     

Float /  int   � 3.4 / 5, 
int / int       �    10 / 20,  
float / float � 2.5 / 7.6  

 
 
4.3.2 Additive – ‘+’ and ‘-‘are additive operators which group from left to right. 
These operators will be used in between terms as well as to add and subtract two 
polynomials. These terms are also used to denote positive and negative values. If 
the ‘+’ is not explicitly implied values are assumed positive. 
 
4.3.2.1 expr + expr is an additive expressions and the result is also an expression. 
The ‘+’ operator is used for addition of all variables. For integers and floats ‘+’ 
performs numerical addition. With variables such as term, char, termarray and 
poly, the ‘+’ is used as a binary addition operator.  

 
When the operands are like terms with same degree the operator returns a single 
value whose coefficient is the sum of the coefficients of the operands and the 
degree is the same as that of the operands. In binary addition, the operands with 
unlike terms return a polynomial which is the concatenation of the two terms. The 
magnitudes of the coefficients of the operands are maintained in the returned 
polynomial. 

 
2X+3X � 5X 



 
When the operands are a term and a polynomial or a polynomial and a polynomial 
of different variables and degrees, the return value is a polynomial, a 
concatenation of the two operands. The magnitudes of the coefficients of the 
operands are maintained in the returned polynomial. 

  
3X^2 + (4X +Y+Z) � 3X^2 + 4X +Y +Z 

(2XY+Z) + (Y+Z) � 2XY +Z +Y+Z 
 

If an integer or float is being added to a term or polynomial the result is a single 
polynomial, which is the concatenation of the operands. The integer/float is 
treated as a term with zero variables and degree and the resulting polynomial 
maintains the magnitude of the operands.  

 
3 + (3XY^2) � 3+3XY^2 

 
When the operands are characters of same value, the result is a single value 
returned as a polynomial. The characters are considered as terms with a 
coefficient and degree of one. The result is the sum of the two terms. 

 
X + X � 2X 

 
When the operands are non-similar characters, the result is a polynomial which is 
the concatenation of the two characters. 

 
X + Y � X + Y 

                                            
Termarray operands added to any non-termarray (int, floats, or term) operands 
result in a termarray whose length increases by one and the new element in the 
array is the non-termarray parameter. If the operands are a termarray and a 
polynomial, ‘+’ will break poly into its constituent terms and append these terms 
to termarray.  For example:   
 

termarray ta;  
poly p = 2X^2 + 3X + 4;  

   ta = ta + p;   
result is a termarray that has 2X^2, 3X and 4 as its three elements. 

 
4.3.2.2 expr – expr is a subtraction expression and the result is an expression. The 
type of the expression is determined by the type definition in section 4.3.2.1, 
except the ‘-‘is used to return the difference of coefficients. 
 

Poly op term  �  (2X+4Y) – 2YZ 
 
Another distinction between addition and subtraction is the distribution of a 
negative sign through a term. If the object on the right-hand side of the 
subtraction sign is a polynomial, the minus is then distributed through to all the 
terms of the polynomial, changing the magnitude of the terms (i.e. ‘+’ to ‘-‘and ‘-



‘to ‘+’). The left hand side is then concatenated with the right hand side to form a 
polynomial. 

 
2X – (4Y +YZ –Z^2) � 2X – 4Y – YZ + Z^2 

 
The change in magnitude is partially due to the internal representation of terms in 
the system. Internally the parenthesis is not maintained and as a result for a  ‘-‘  
operation to store the proper value of every term, change in magnitude is 
necessary. 
 

            When the operands are termarray and an int, float, character, or term, the minuend 
has to be of type termarray. In such a case the non-termarray operand is removed 
from the termarray, if it exists in the termarray. Otherwise, the termarray is left 
intact.  
 
For example, consider a termarray ta  with elements 2X^2, 3X, 4 and Y^3.  
 

term  t = 3X ; 
ta = ta  - t ; 

 
After this statement, ta  will have 2X^2, 4, and Y^3 as its element. The element 
3X has been removed from the termarray. 

 
int i = 6; 

ta = ta – i; 
 

The execution of the above statements will result in ta  being left unchanged, 
since ta  does not have ‘6’ as one of its elements. Please note that the statement 
ta = ta – I tries to remove the term 6 from the termarray. It does not 
subtract 6 from the existing ‘4’ in ta. In short, when a termarray is involved in 
an ‘-‘ operation,  the temarray has to be the minuend, and the subtrahend, if 
present, is removed or deleted from the termarray thus reducing the length of the 
array. 
 
When the operands are termarray and polynomial, the minuend has to be of type 
termarray. In such a case ‘-‘ will break poly into its constituent terms and remove 
these terms from termarray if it exists. Otherwise, the termarray is left intact. 
 
For example, consider a termarray ta  with the elements 2X^2, 3X, 4, Y^3 and 
3Y^2. 

Poly p = 2X^2 + 4; 
ta = ta  - p; 

 
After execution of the above statements, ta  will have 3X, Y^3 and 3Y^2 as its 
elements. The elements 2X^2 and 4 were terms of the subtrahend poly, these 
terms were removed from ta .  
 



Another example, consider termarray ta with elements 2X^2, 3X, 4, Y^3 and 
3Y^2. 

Poly p = 3Y^2 + 4Z ; 
ta = ta – p; 

 
After execution of the above statements, ta  will have 2X^2, 3X and Y^3, 3Y^2 
has been removed from ta  since it was part of the subtrahend ( poly p  ). 4Z 
which was part of p was not present in ta and so it does not affect the elements in 
ta .  

 
4.3.3 Relational -   ‘<’, ‘>’, ‘<=’, and ‘>=’represent the less than, greater than, 
less than or equal to, and greater than and equal to relational operators, 
respectively. These operators are used to compare polynomials and terms and are 
all relational expressions whose return type is either a 0 or 1. Operators can be 
used in between expressions, polynomial, and terms. 

 
Expression relational_op expression 

poly relational_op term �  (4X – 2Y – 2Z^3) < 3 (returns 0) 
poly op poly � (2X) >= (4X -2X)   (returns 1) 

     
4.3.3.1 Equality – ‘==’, ‘!=’ are the equal to and not equal to operators, 
respectively. They have lower precedence than relational operators. Like 
relational operators, a 0 or 1 is returned.  
  

Expression equality_op expression 
term equality_op poly � 3X == (4X+2X-3X) (returns 1) 

poly equality_op poly � (4Y+2Y+1Y) !=  (8Y +0Y +10) (returns 1) 
  
4.34 Power – The power operator, ‘^’, is used to raise a variable to a particular 
degree. ‘^’ must followed by an optional ‘+’ or ‘-‘and a mandatory float. 

 
Variable power additive operator  int � X^-3 

float variable power operator int � 5X^11 
 

 
5. DECLARATIONS 
 
Declarations are used within the function definition to specify the interpretation of a 
particular identifier.  Declarations have the form 
 
 declaration: 
   type-specifier declarator-list; 
  

type-specifier: 
 poly 

polyeq 
 int 
 float 



 term 
 termarray 

 
The declarator-list appears in a declaration and is a sequence of comma separated 
declarators.  
 

Declarator-list: 
  Declarator 
  Declarator , declarator-list 
 

Declarator: 
  Identifier 
  Declarator ( ) 
 
  ( declarator ) 
 
Each declarator contains exactly one identifier, which is the identifier that is being 
declared. An identifier without a declarator has the type indicated by the type-specifer 
which heads the declaration where the identifier appears.   
 
Examples of declaration:  

int i , int k, j, poly p1, polyeq getequation(), termarray polyterms 
 
 
6. STATEMENTS 
 
Most statements are expression statements of the form: 
 Expression; 
 

6.1 Compound Statement 
Several statements can be used in place of one statement. 

 
  Compound-statement:  
   “begin” statement-list ”end” 
 
  statement-list: 
   statement 
   statement statement-list 
 

6.2 Conditional Statement 
 

Two forms of conditional statement are: 
 
  If ( expression ) statement 
  If ( expression) statement else statement 
 
 

6.3 Loop statements 



 
Two forms of loop statements are while and do while. 

  
While (expression) statement end 

 
 do statement while (expression) end 
 

6.4 Break statement 
 

The break statement causes termination of the smallest enclosing while or do 
while statement. Control passes to the statement immediately after the end of the 
while or the do while statement.   

  
Break; 

 
6.5 Return statement 

  
return;  
return (expression); 

 
A function returns to its caller by means of a return statement. In the first case no 
value is returned. This is the case when the function is declared as type void. In 
the second statement the value of the expression is returned to the caller of the 
function.  
 
6.6 Print statement 
 
 print arg-list; 
 
 arg-list: 
  expr 
  expr arg-list 
 
The print statement will accept a variable number of arguments until the semi-
colon. It will then print each argument to the standard output on a single line. The 
print statement will automatically append a newline character to the standard 
output. 

 
 
7. EXTERNAL DEFINITION 
 
An external definition is given for a function. An external definition declares an identifier 
and it is type. Function definitions have the form as shown below.   
 
 Function – definition: 
  Type-specifier function-declarator function body 
 
 Fuction-declarator: 



  Declarator ( parameter-list) 
  Parameter-list: 
   Identifier 
   Identifier , parameter-list 
 
 Function-body 
  Type-decl-list function-statement 
 
 Function-statement 
  { declaration –list statement-list } 
 

A simple example of a complete function definition: 
  func poly sumpoly(term t1, term t2) 
  begin 
   vars 
    poly p1; 
   end 
   p1 = t1 + t2; 
   return p1; 
  end; 
 
  
8. SCOPE RULES 
 
There are two different kinds of scope – global scope and local scope.  
 

8.1 – Global Scope 
 

Global variables can be declared using the vars block outside a function 
definition. For example, this is sample PML code to declare variables in the 
global scope. 

 
Vars 

  poly p1; 
  poly p2; 

end 
 

func void function1() 
begin 

  ... statements ... 
end 

 
vars 

  poly p3; 
  int i1; 

end 
 

func void function2() 



begin 
 ... statements ... 

end 
 

In this example, the variables p1, p2, p3 and i3 are declared in the global scope. 
Multiple vars blocks can be declared at the global scope. However, two global 
variables cannot share the same name/symbol, even in separate vars blocks. 
Functions can only be declared in the global scope. It is an error to declare a 
function inside another function. 

 
All global variables are resident in memory from the moment the program runs 
until the program terminates. A global variable is considered in static scope from 
the line at which it was declared until the end of the file. In the previous code 
sample, function2() can make references to p1, p2, p3 and i1 – while function1() 
can only make references to p1 and p2. 

 
8.2 – Local Scope 

 
Variables can also be declared in PML using the vars block inside a function. 
These variables are visible only inside the function, so it uses local scope. For 
example, the following two functions in PML contain local scope variables. 

 
Func void function1() 
begin 

  vars 
   poly p1; 
   poly p2; 
   int i1; 
  end 
  ... statements ... 

end 
 

func void function2() 
begin 

  ... statements ... 
 
  vars 
   poly p3; 
   poly p1;  � OK 
   float n1; 
   int n1;  � Error 
  end 
 
  ... statements ... 
 
  vars 
   term p3;  � Error 



  end 
 
  ... statements ... 

end 
 

In this example, it is not an error to declare p1 in both function1() and function2(). 
This is because they are not within the same scope. I t is an error to declare the 
integer n1 inside function2(), because n1 has already been declared in function2() 
as a float. It is also an error to declare the Term p3, even though the previous 
declaration of p3 is in a separate vars block. 

 
Local scope variables can be declared at any part of the function. In the example 
above, the variables in function1() are declared at the top (before any statements). 
It is also possible, however, to declare a vars block in between statements, as seen 
in function2(). A function can also have multiple vars blocks, as seen in 
function2(). 

 
Every statement block introduces a new layer in the scope. A vars block can be 
used within a statement block. For example, consider the following PML code. 

 
Func void function1() 
begin 

  #{ only global variables are valid }# 
 
  vars 
  poly p1; 
  end 
  ... statements ... 
 
  #{ p1 and global variables are valid }# 
 
  if (expr) 
  begin 
   ... statements ... 
 
   #{ p1 and global variables are valid }# 
  
   vars 
    poly p2; 
    int i3; 
    term p1;  � Error 
   end 
   ... statements ... 
  
   #{ p2, i3, p1 (Poly from previous }# 
   #{ declaration) and global }# 
   #{ variables are valid }# 



  end 
 
  #{ only p1 and global variables are}# 
  #{ valid now}# 
 
  ... statements ... 
 
  vars 
   term p2;  � OK 
  end 
 
  ... statements ... 
 
  #{ p1, p2 and global variables are valid }# 

end 
 

In this example, a new statement block is created using the if construct. This 
introduces a new scoping layer, which sits on top of the parent scope. The same 
scoping semantics apply for statement blocks created using the while and do ... 
while constructs. 

 
Local scope variables are resident in memory from the moment the vars block is 
declared until the “end” token for the corresponding statement block. The 
comments in the code above describe these semantics for local scope. 

 
Note that, unlike C/C++/Java, it is an error to declare Term p1 inside the if 
statement block, because p1 has already been declared as a Poly in the parent 
block. This is to prevent ambiguity when a reference is made to the p1 variable. 

 
It is not an error to declare Term p2, even though p2 has been declared as a Poly 
inside the if statement block. This is because Poly p2 was no longer “visible” 
when Term p2 was declared. 

 
Arguments to functions are also considered to be at the local scope. Consider the 
following example: 

 
func void function1(poly p1, poly p2) 
begin 

  .. statements ... 
end 

 
The scoping rules for p1 and p2 are semantically similar to the scoping rules for 
p1 and p2 in this example: 

 
func void function1() 
begin 

  vars 
   poly p1; 



   poly p2; 
  end 
  ... statements ... 

end 
 

If a function is called recursively, separate copies of the variables at the local 
scope will be pushed onto the stack and any references to these variables will use 
the copies on the top of the stack. When the function terminates, these variables 
will be popped off the stack and the previous variables will be used. 

 
8.3 – Relationship Between Global and Local Scope 

 
The general rule of thumb when declaring global or local variables is: 

 
  “If a symbol name is already statically visible at a certain scope, then 
  it is an error to declare a variable using the same symbol name.” 
 

This means it is an error to declare a variable at the local scope if the variable has 
already been declared at the global scope. It is not an error to declare a variable at 
the local scope even if it is declared later at the global scope. Consider the 
following code sample: 

 
vars 

  poly p1;  � OK 
end 

 
func void function1() 
begin 

  vars 
   poly p2;  � OK 
   term p1;  � Error 
   poly p3;  � OK 
  end 

end 
 

vars 
  poly p2;  � OK 
  int p1;  � Error 

end 
 

func void function2() 
  vars 
   poly p2;  � Error 
   poly p3;  � OK 
  end 

end 
 



Declaring p2 in function1() is not an error; however, declaring p2 in function2() is 
an error, because p2 has been declared at the global scope between function1() 
and function2(). 

 
 
9. NAMESPACE RULES 
 
PML maintains two namespaces – the function namespace and the variable namespace. It 
is an error to declare two functions with the same name and the same list of arguments. 
However, it is not an error to declare two functions with the same name if they have a 
different list of arguments, implying that functions can be overloaded. It is also an error 
to declare two variables with the same name, if they are in the same scope (see section on 
“Scope Rules”). Variables and functions can share the same name. The parenthesis is 
used to resolve ambiguity between variables and functions. 
 
10. ENTRY POINT 
 
There is only one entry point to the program which is defined by a function called main(), 
that does not take an any arguments. The main function must exist in all programs. If 
main() is not found, an error message will be printed. The main() is guaranteed to be the 
first function executed in a PML program. The user is free to overload the main function; 
however, there should always be exactly one main function with no arguments. This main 
function with no arguments will be invoked by the interpreter after parsing and static 
semantic checks are completed. 
 
 
11. SEMANTICS FOR VARIABLE INITATION 
 
Whenever a variable (local or global) is declared there is an optional initialization value. 
The semantics for performing this initialization is slightly different for local and global 
variables. 
 

11.1 – Local Variables 
 

This initialization procedure will be internally converted to an assignment 
statement that will be executed directly after the end of the vars block. Consider 
the following PML code: 

 
func int init_i3() 
begin 

  return 1 + 1; 
end 

 
func void function1() 
begin 

  vars 
   int i = 3; 



   int i2 = i; 
   int i3 = init_i3(); 
  end 

end 
 

Local variables can be initialized with the return value of a function (as seen with 
i3). This code will be converted internally to the following PML code: 

 
func int init_i3() 
begin 

  return 1 + 1; 
end 

 
func void function1() 
begin 

  vars 
   int i; 
   int i2; 
   int i3; 
  end 
  i = 3; 
  i2 = i; 
  i3 = init_i3(); 

end 
 

11.2 Global Variables 
 

The code conversion for local variables is relatively straight forward. However, 
the code conversion for global variables is a little more interesting. Consider the 
following code: 

 
vars 

  int i = 3; 
  int i2 = i; 

end 
 

func void function1() 
begin 

  ... statements ... 
end 

 
vars 

  int i3 = i2 + 5; 
end 

 
In this example, PML will create temporary “initializer functions” directly after 
the vars block. These initializer functions will be run during startup – before 
executing main(). So, the code above will be converted to something which will 



look like this: 
 

vars 
  int i; 
  int i2; 

end 
 

func void @init1() 
begin 

  i = 3; 
  i2 = i; 

end 
 

func void function1() 
begin 

  ... statements ... 
end 

 
vars 

  int i3; 
end 

 
func void @init2() 
begin 

  i3 = i2 + 5; 
end 

 
Here, the ‘@’ symbol is added as a prefix to the function name to ensure that 
there are no user-defined functions with the same name and also to ensure that the 
user will not call these functions. When running a PML program, the interpreter 
will first execute all functions beginning with ‘@’ in the order in which they were 
added to the symbol table. After this, the interpreter will execute the main() 
function, as stated in the Section 10, “Entry Point”. 

 
The result is that the variables will be declared and initialized in the way that was 
expected by the programmer. Programmers should be aware that it is an error to 
initialize a global variable using a function. Consider the following PML code: 

 
func int my_init() 
begin 

  return 1 + 1; 
end 

 
vars 

  int i = my_init();  � Error 
end 

 



func void main() 
begin 

  ... statements ... 
end 

 
This example code will be converted to the following code by PML: 

 
func int my_init() 
begin 

  return 1 + 1; 
end 

 
vars 

  int i; 
end 

 
func void @init1() 
begin 

  i = my_init();  � Error 
end 

 
func void main() 
begin 

  ... statements ... 
end 

 
Based on the semantics described earlier, this code will execute my_init() before 
main(), which is illegal. The PML interpreter guarantees that main() is always the 
first function that gets called (see Section 10 on “Entry Points”). Therefore, this 
PML code will just print an error message. 

 
 



APPENDIX A 
 
 
A1. SAMPLE CODE TO ADD TWO POLYNOMIALS 
 
func void main 
begin 
      vars 
              poly p1 = 2X^2 + 4X; 
              poly p2 = 4X^2 – 2X ; 
              poly temp;  
              poly sum; 
              int i; 
              termarray t1; 
              termarray t2; 
     end 
     
     t1 = polyterm(p1); 
     t2 = polyterm(p1); 
    
     i = length(t1); 
     while( i >= 1 ) 
     begin 
 

      # add the two terms 
             temp = t1[i] + t2[i]; 
 

     # concatenate the polynomials to form the complete result 
             sum = sum + temp; 
             i = i – 1; 
     end 
     print sum ; 
end 
 
 
The polyterm(..) operator returns an array of individual terms from the polynomial .   So 
after t1 = polyterm(p1);  t1 will have two elements which are 2X^2 and 4X.  t2  
will have 4X^2 and -2X.  The elements in these arrays can be accessed by the array 
notation  array[index] . The index count starts from 1. 
 
Length...() is an operator that takes an array and returns the count of the number of 
elements in an array.  
 
 



 
                                              APPENDIX B 
 
 
B1. Standard Library Functions 
 
This section is work in progress. More functions will be added if necessary during the 
course of the development of this language. 
 
The following functions deal with polynomials and terms. 
 
Term coeff ( ... ) :  This function takes a term as a parameter and returns the coefficient 
of that term. Parameters of type int and float are considered as terms with no variables, 
and so the coefficient of such a term is the term itself.  Acceptable invocations of this 
function are as follows: 
 

coeff( term t ) 
coeff( int i ) 

coeff( float f ) 
 

 examples:   term t = 2X^2;  coeff(  t );    ReturnValue  2 
                    term t = aX^2 ; coeff( t );      Return Value  a 
                   
 
term lcoeff(…) : This  function takes a polynomial and returns the leading coefficient of 
the polynomial. The leading coefficient is the coefficient of the term within the 
polynomial with the highest degree. Valid invocation of the function is as follows: 
                        

lcoeff( poly ) 
 

example: poly p = 2x^3 + 3x + 4; lcoeff( p );   Return Value 2 
              poly p =  ax^2 + bx + c; lcoeff( p );  Return Value a 
 
 
term degree(…) : This is an overloaded function and so it can accepts different number 
and types of parameters. Essentially, this function returns the total degree of a term or 
polynomial. The overloading feature can be used to specify the variable whose degree is 
expected. Valid invocations of the function are: 

degree( term ) 
degree( poly ) 

degree( term , char ) 
 

 examples:  term t = 3X^3; degree( t );        Return Value 3 
                  term t = 2Y^3Y^2; degree( t );  Return Value  5 
                   term t = 2X^3Y^2; degree ( t , ‘Y’ );  Return Value 2  
            poly p = 3X^2 + 4X^5Y^3 + Y ;  degree( p );    Return Value 8 

term t = 3X^3; degree (t, ‘Y’); Return Value 0 



 
termarray polyterm(...) :  This function takes a parameter and returns a termarray with 
the parameter as a member of the array. The input parameter will be broken into 
constituent terms, if it happens to be a polynomial. Parameters of type int and float are 
considered as terms with no variables. Valid invocations of this function are as follows: 
 

polyterm ( term t ); 
polyterm ( int i ); 

polyterm ( float f ); 
polyterm ( char c ); 
polyterm ( poly p); 

 
examples:    int i = 20;  polyterm( i ) ; 
Return Value : a termarray of length 1, with 20 as its element 

 
term t = 4X^3; polyterm ( t ); 
Return Value: a termarray of length 1, with 4x^3 as its element. 
poly p = 2X^2 + 3X + 4; polyterm( p );  

Return Value: a termarray  of length 3, with 2X^2, 3X and 4 as its elements. 
 
 
int length (...) : This function takes a termarray and returns an integer that represents the 
number of items in the array. Valid invocations of the function:    

length( terarray ta ) 
examples:   termarray ta; 
poly p = 2x^3 + 3x^2 + 4x; 
ta = polyterm( p ); 
length ( ta );   
Return Value 3 

 
 
  
 


