Language Reference Manual for:
Polynomial Manipulation Language (PML)

Authors: Melinda Agyekum (mya2001@columbia.edu)
Shezan Baig (sb2284@columbia.edu)
Hari Kurup (hgk2101@columbia.edu) — Group Leade
Subadhra Sridharan (ss2355@columbia.edu)

INTRODUCTION

PML as the name suggests is a polynomial manipulatiogu&ge for symbolic
mathematics. Each program written in PML is case-seesdand can be written in
standard ASCII file format. The grammar has been gernkrsieg the tool ANTLR.

2. LEXICAL CONVENTIONS

The tokens of PML are identifiers, keywords, and expoassperators. All forms of
whitespace (blanks, tabs, and newlines) and commentgraseed. Whitespace is
used to separate identifiers.

For token parsing, the language uses a “greedy” approachjngdaaat a token is
compared to the longest possible matching charactenstrea

2.1 Comments

Both single and multi-line comments will be acceptatle using ‘#’ and mulit-line
comments using “#{” as the opening declaration. Example dfitme and single
line comments are below.

This is an example of a single line comment

#{ This is an example of a multiple line comment
because it covers more than one lite }

#{ This is also an example of a multiple line comment }#

2.2 Identifiers (Names)

An identifier is considered as a sequence of at least letter followed by any
number of letter, digits, or underscores. ldentifieussintonsist of lower case letters
only.

Acceptable identifiers: abc, a1234, a_ldsa, b___
Unacceptable identifiers: 3213, 3 _a, 232 ,1, A, aBC

2.3Keywords

The following identifiers are reserved words and shoutdeaused otherwise:

begin end poly return
break float polyeq vars
char func print void
do if term

else int termarray

2.4 Type Specifiers

Data types must be specified as one of the followinggypt, float, term, poly,
polyeq, termarray, char, and string literals. The langdags not support the user
created data types.

2.4.1 int— An optionally signed sequence of digit is an integerstamt. These
constants can hold the range-»f147,483,647 to +2,147,483,648

int: 2, 233, -543, 01, +10, 99

2.4.2 float- A floating point consists of an integer part, aiohat point, and a
fraction part. The integer and fraction parts both comdis sequence of digits.
Either the integer part or the decimal point with atfoacpart (not both) may be
missing. All exponentials must be declared in decimal &rm

float: 2, .34, .33, -4.02,

2.4.3 term— A term is an int or float followed by an optional ruen of variable
and a power parts. These variables must be in upper cgsevek part can only
exist if a variable is present. Each capital lettex term represents a variable. In a
term there is an implicit *’ sign to indication riiplication between a variable
and an int, float, or another variable.

Term 2, 3X, 3XY"2, 2.3YZ, 42X"1YM
term XY (has variables X and Y which are multiplied together)

2.4.4 poly— A poly is considered as two or more terms separatedawidddition

operator. An int and a float can also be consideredspalgomplete listing of the
addition operators can be found in section 2.5.1

poly: 2+3X, 2, 34.034XY"2 + X2, .3XY - 3VY, 4
2.4.5 polyeq- A polyeq consists of two or more polys followedabgomparison
operator. Complete listing of relational and equalipem@tors can be found in
sections 2.5.3 and 2.5.4, respectively.

Polyeq: 4 = 3X2, 4X<2X+3Y"6, X+Y = X +1

2.4.6 termarray — An array of terms can be represented by the data type
termarray. Individual items of the array can be aaxksby the notation
termarray_variable[index numbdr The index number, which starts from 1,
refers to the order in which items are stored in thayariT he length of this array
is dynamically allocated and it can be increased or deedeby the ‘+' and ‘-
operations. The length of the array is equal to thebau of items in it and can
be obtained by using the in-built functitangth(..),which is explained in a later
section.

Termarray: t[1] - returns the first element in the array.

2.4.7 charAn object of type char can be used to store any membdength one,
belonging to the ASCII character set.

Char c = ‘X' ; the variable c wilbw have the value of ‘X'.

2.4.8 string literals A string literal also called a string constant, iequence of
characters surrounded by double quotes, as in “...”. Stringlktecan only be
used with the print statement.

3. CONVERSIONS

Implicit type conversions will be supported for thddwling:
int - float
float-> int (fraction portion rounded and discarded)
float-> term
term—> poly
cha term
The following explicit conversions are available:

1. (poly -> termarray) which is done explicitly using thdyperm() function
2. term -> float is converted using the coeff(...) method.
4. EXPRESSIONS
4.1 |dentifiers

An identifier is a primary expression provided it hasrbdeclared as explained
below. Its type is specified in the declaration.

4.2 (expression)
A parenthesized expression is identical to an expressibout parenthesis.

4.3 Operators

Operators are used to do polynomial and term manipulatidhe types of
operators supported are additive, multiplicative, reteti, equality, and power.

4.3.1 Multiplicative — *', /" are multiplicative operators and used to perfo
multiplication and division between polynomials andrtgr These operators have
a higher precedence than additive operators.

4.3.1.1expr * expr is an expression implying multiplication. If both opetarare
int then the resulting expression is iwh. If both operands ar#oat then the
resulting expression isfat. If one operand is #oat and the other operand is an
int then the resulting expression is of tyjoat.

Float * int 2 3.4*5,
int * int - 10* 20,
float * float 2 2.5*7.6

Multiplicative operators applied to any other data typeepiaént and float will
result in an error

4.3.1.2expr / expris an expression implying division. Multiplication consien
rules from section 4.3.1.2 apply.

Float/ int = 3.4/5,
int / int - 10/ 20,
float / float=> 2.5/7.6

4.3.2 Additive — *+’ and ‘-‘are additive operators which group from leftright.
These operators will be used in between terms asaweth add and subtract two
polynomials. These terms are also used to denote posittvenegative values. If
the ‘+’ is not explicitly implied values are assungsitive.

4.3.2.1expr + expris an additive expressions and the result is also ar&sipn.
The ‘+’ operator is used for addition of all variabl€sr integers and floats ‘+’
performs numerical addition. With variables such amteshar, termarray and
poly, the ‘+' is used as a binary addition operator.

When the operands are like terms with same degree thatopesturns a single
value whose coefficient is the sum of the coeffitseaf the operands and the
degree is the same as that of the operands. In binatyoaddihe operands with
unlike terms return a polynomial which is the concatenatidhe two terms. The
magnitudes of the coefficients of the operands are mned in the returned
polynomial.

2X+3X 25X

When the operands are a term and a polynomial or agrolghand a polynomial
of different variables and degrees, the return value ipo&nomial, a
concatenation of the two operands. The magnitudes otdkéficients of the
operands are maintained in the returned polynomial.

3XM2 + (4X +Y+Z) > 3X"2 +4X +Y +Z
(2XY+2Z) + (Y+Z) > 2XY +Z +Y+Z

If an integer or float is being added to a term or polylabthe result is a single
polynomial, which is the concatenation of the operafids integer/float is
treated as a term with zero variables and degree anceshéing polynomial
maintains the magnitude of the operands.

3 + (3XY"2) > 3+3XY~2

When the operands are characters of same valuegetid iIs a single value
returned as a polynomial. The characters are consdidase terms with a
coefficient and degree of one. The result is the sttieotwo terms.

X+ X =>2X

When the operands are non-similar characters, thé res: polynomial which is
the concatenation of the two characters.

X+Y=2>X+Y

Termarray operands added to any non-termarray (int, floatserm) operands

result in a termarray whose length increases by odel@nnew element in the

array is the non-termarray parameter. If the operadsa termarray and a
polynomial, ‘+" will break poly into its constituent tesnand append these terms
to termarray. For example:

termarray ta;
poly p = 2X"2 + 3X + 4;
ta =ta+ p;
result is a termarray that has 2X"2, 3X and 4 as its three elements

4.3.2.2expr — expiis a subtraction expression and the result is aresgmn. The
type of the expression is determined by the type definitiosection 4.3.2.1,
except the *-‘is used to return the difference of coedfits.

Poly op term =2 (2X+4Y) - 2YZ

Another distinction between addition and subtractisrthe distribution of a
negative sign through a term. If the object on the rigind side of the
subtraction sign is a polynomial, the minus is therridisted through to all the
terms of the polynomial, changing the magnitude of thegdi.e. ‘+' to -‘and ‘-

‘to ‘+’). The left hand side is then concatenated it right hand side to form a
polynomial.

2X — (4Y +YZ =Z"2)> 2X —4Y = YZ + 72

The change in magnitude is partially due to the interqaksentation of terms in
the system. Internally the parenthesis is not mamethand as a result for a ‘-
operation to store the proper value of every term, ghaim magnitude is
necessary.

When the operands are termarray andtafioat, character, or term, the minuend
has to be of type termarray. In such a case the eromatray operand is removed
from the termarray, if it exists in the termarrayth@wise, the termarray is left

intact.

For example, consider a termartay with elements 2X"2, 3X, 4 and Y"3.

term t=3X,;
ta=ta -t;

After this statementa will have 2X72, 4, and Y~3 as its element. The element
3X has been removed from the termarray.

inti=6;
ta=ta—-i;

The execution of the above statements will resultainbeing left unchanged,
sinceta does not have ‘6’ as one of its elements. Pleasethat the statement
ta =ta — | tries to remove the term 6 from the termarray. lesimot
subtract 6 from the existing ‘4’ ita. In short, when a termarray is involved in
an ‘- operation, the temarray has to be the minuend, tha subtrahend, if
present, is removed or deleted from the termarray tliigigg the length of the
array.

When the operands are termarray and polynomial, theemthbas to be of type
termarray. In such a case ‘- will break poly intodatsnstituent terms and remove
these terms from termarray if it exists. Otherwike,termarray is left intact.

For example, consider a termarray with the elements 2X"2, 3X, 4, Y3 and
3Y2.
Poly p = 2X"2 + 4;
ta=ta -p;

After execution of the above statemerts, will have 3X, YA3 and 3Y”2 as its
elements. The elements 2X"2 and 4 were terms of thigabeind poly, these
terms were removed frota .

Another example, consider termarray ta with eleméxs2, 3X, 4, Y3 and
3Y"2.
Poly p =3Y"2 + 4Z;
ta =ta—p;

After execution of the above statemertés, will have 2X72, 3X and Y3, 3Y"2
has been removed frota since it was part of the subtrahendoly p). 4Z

which was part op was not present in ta and so it does not affect #raegits in
ta .

4.3.3 Relational- ‘<, *>", '<=’, and ‘>="represent the less thagyreater than,
less than or equal to, and greater than and equal toonahtbperators,
respectively. These operators are used to compare polys@anterms and are
all relational expressions whose return type is eigh@ror 1. Operators can be
used in between expressions, polynomial, and terms.

Expression relational_op expression
poly relational_op term? (4X — 2Y — 2Z"3) < 3 (returns 0)
poly op poly= (2X) >= (4X -2X) (returns 1)

4.3.3.1 Equality — ‘==", ‘I=" are the equal to and not equal to operators,
respectively. They have lower precedence than relatioparators. Like
relational operators, a 0 or 1 is returned.

Expression equality_op expression
term equality_op poly? 3X == (4X+2X-3X) (returns 1)
poly equality_op poly? (4Y+2Y+1Y) != (8Y +0Y +10) (returns 1)

4.34 Power— The power operator, V', is used to raise a variabla particular
degree. "V must followed by an optional ‘+’ or ‘-‘andn@andatory float.

Variable power additive operator in# X"-3
float variable power operator int 5X"11

5. DECLARATIONS

Declarations are used within the function definitionspecify the interpretation of a
particular identifier. Declarations have the form

declaration:
type-specifier declarator-list;

type-specifier:
poly
polyeq
int
float

term
termarray

The declarator-list appears in a declaration and isgaesee of comma separated
declarators.

Declarator-list:
Declarator
Declarator , declarator-list
Declarator:
Identifier
Declarator ()
(declarator)
Each declarator contains exactly one identifier, whghhe identifier that is being
declared. An identifier without a declarator has the tyukcated by the type-specifer
which heads the declaration where the identifier appears.

Examples of declaration:
inti,intk, j, poly pl, polyeq getequation(), termarray polyterm

6. STATEMENTS

Most statements are expression statements of the for
Expression;

6.1 Compound Statement
Several statements can be used in place of one stattem

Compound-statement:
“begin” statement-list "end”

statement-list;
statement
statement statement-list
6.2 Conditional Statement
Two forms of conditional statement are:
If (expression) statement

If (expression) statement else statement

6.3 Loop statements

Two forms of loop statements are while and do while.
While (expression) statement end
do statement while (expression) end
6.4 Break statement
The break statement causes termination of the smatedbsing while or do
while statement. Control passes to the statement diatedy after the end of the
while or the do while statement.
Break;

6.5 Return statement

return;
return (expression);

A function returns to its caller by means of a retuatesnent. In the first case no
value is returned. This is the case when the functiadeclared as type void. In
the second statement the value of the expressionusheek to the caller of the
function.

6.6 Print statement
print arg-list;
arg-list:
expr
expr arg-list
The print statement will accept a variable number gtiarents until the semi-
colon. It will then print each argument to the staddautput on a single line. The

print statement will automatically append a newline charat the standard
output.

7. EXTERNAL DEFINITION

An external definition is given for a function. Anternal definition declares an identifier
and it is type. Function definitions have the form asaghbelow.

Function — definition:
Type-specifier function-declarator function body

Fuction-declarator:

Declarator (parameter-list)
Parameter-list:

Identifier

Identifier , parameter-list

Function-body
Type-decl-list function-statement

Function-statement
{ declaration —list statement-list }

A simple example of a complete function definition:
func poly sumpoly(term t1, term t2)

begin
vars
poly p1;
end
pl =11 +1t2;
return p1l,
end;

8. SCOPE RULES

There are two different kinds of scope — global scope arad $zope.
8.1 — Global Scope

Global variables can be declared using tras block outside a function
definition. For example, this is sample PML code to aeclvariables in the
global scope.

Vars
poly p1;
poly p2;
end

func void functionl()
begin

... Statements ...
end

vars
poly p3;
intil;
end

func void function2()

begin
... Statements ...
end

In this example, the variables pl, p2, p3 and i3 are dediar@ global scope.
Multiple vars blocks can be declared at the global scope. Howevergioal
variables cannot share the same name/symbol, even inatepars blocks.
Functions can only be declared in the global scopes &ni error to declare a
function inside another function.

All global variables are resident in memory from thement the program runs
until the program terminates. A global variable is coesed in static scope from
the line at which it was declared until the end of tile fn the previous code
sample, function2() can make references to p1, p2, p3 andvHiile functionl1()
can only make references to pl and p2.

8.2 — Local Scope

Variables can also be declared in PML using \thaes block inside a function.
These variables are visible only inside the functionit sses local scope. For
example, the following two functions in PML contaircdd scope variables.

Func void functionl()
begin
vars
poly p1;
poly p2;
intil;
end
... Statements ...
end

func void function2()
begin
... Statements ...

vars
poly p3;
poly p1; - OK
float n1;
int n1; - Error
end

... Statements ...

vars
term p3; - Error

end

... Statements ...
end

In this example, it is not an error to declare p1l in lhwtiction1() and function2().
This is because they are not within the same sdopés an error to declare the
integer nl inside function2(), because nl has alreadydesdared in function2()
as a float. It is also an error to declare the TeBngven though the previous
declaration of p3 is in a separats block.

Local scope variables can be declared at any part otitieeidn. In the example
above, the variables in functionl() are declared atapd€before any statements).
It is also possible, however, to declareass block in between statements, as seen
in function2(). A function can also have multiplears blocks, as seen in
function2().

Every statement block introduces a new layer in the sodprurs block can be
used within a statement block. For example, consideotlosving PML code.

Func void functionl()
begin
#{ only global variables are valid }#

vars

poly p1;

end

... Statements ...

#{ pl and gl obal variables are valid }#

if (expr)
begin
... Statements ...

#{ pl and gl obal variables are valid }#

vars

poly p2;

inti3;

term p1; - Error
end
.. Statements ...

#{ p2, 13, pl (Poly fromprevious }#
#{ declaration) and gl obal }#
#{ variables are valid }#

end

#{ only pl and gl obal variables are}#
#{ valid now#

... Statements ...

vars
term p2; - OK
end

... Statements ...

#{ pl, p2 and global variables are valid }#
end

In this example, a new statement block is created uskgf tbonstruct. This
introduces a new scoping layer, which sits on top ofptrent scope. The same
scoping semantics apply for statement blocks created tisewhile anddo ...
while constructs.

Local scope variables are resident in memory fronmtbenent thevars block is
declared until the “end” token for the corresponding estant block. The
comments in the code above describe these semanttiosdl scope.

Note that, unlike C/C++/Java, it is an error to declaeenT pl inside thef
statement block, because pl has already been declare®@y m the parent
block. This is to prevent ambiguity when a reference deana the p1l variable.

It is not an error to declare Term p2, even though p2 has been deataeePoly
inside theif statement block. This is because Poly p2 was no longsible/i
when Term p2 was declared.

Arguments to functions are also considered to beealoital scope. Consider the
following example:

func void functionl1(poly p1, poly p2)
begin

.. Statements ...
end

The scoping rules for pl1 and p2 are semantically sirtolahe scoping rules for
pl and p2 in this example:

func void functionl()
begin
vars
poly p1;

poly p2;
end
... Statements ...
end

If a function is called recursively, separate copieshef variables at the local
scope will be pushed onto the stack and any referendbsge variables will use
the copies on the top of the stack. When the fundBominates, these variables
will be popped off the stack and the previous variablesbeilised.

8.3 — Relationship Between Global and Local Scope
The general rule of thumb when declaring global orlleadables is:

“If a symbol name is already statically visible at a certaiops, then
it is an error to declare a variable using the same symbol name.”

This means it is an error to declare a variable alotted scope if the variable has
already been declared at the global scope.nibtisan error to declare a variable at
the local scope even if it is declared later at theball scope. Consider the
following code sample:

vars
poly p1; - OK
end

func void functionl()
begin
vars
poly p2; - OK
term p1; - Error
poly p3; - OK
end
end

vars
poly p2; - OK
int p1; -> Error
end

func void function2()
vars
poly p2; - Error
poly p3; - OK
end
end

Declaring p2 in functionl() is not an error; however la&og p2 in function2() is
an error, because p2 has been declared at the glolps between functionl()
and function2().

9. NAMESPACE RULES

PML maintains two namespaces — the function namespatéhe variable namespace. It

is an error to declare two functions with the sammenand the same list of arguments.

However, it is not an error to declare two functiovith the same name if they have a

different list of arguments, implying that functions daa overloaded. It is also an error

to declare two variables with the same name, if thheyrathe same scope (see section on
“Scope Rules”). Variables and functions can sharest#rae name. The parenthesis is
used to resolve ambiguity between variables and functions.

10. ENTRY POINT

There is only one entry point to the program which israefiby a function called main(),

that does not take an any arguments. The main functist exist in all programs. If

main() is not found, an error message will be printed. mam() is guaranteed to be the
first function executed in a PML program. The userag fio overload the main function;
however, there should always be exactly one maictiumwith no arguments. This main
function with no arguments will be invoked by the intetpr after parsing and static
semantic checks are completed.

11. SEMANTICS FOR VARIABLE INITATION

Whenever a variable (local or global) is declared theemisptional initialization value.
The semantics for performing this initialization igybtly different for local and global
variables.

11.1 — Local Variables

This initialization procedure will be internally convedtdo an assignment
statement that will be executed directly after the @the vars block. Consider
the following PML code:

func int init_i3()
begin

return 1+ 1;
end

func void functionl()
begin
vars
inti=3;

inti2 =1i;
inti3 =init_i3();
end
end

Local variables can be initialized with the return valfi@ éunction (as seen with
i3). This code will be converted internally to the faliag PML code:

func int init_i3()
begin

returnl +1;
end

func void functionl()
begin
vars
inti;
inti2;
inti3;
end
i=3;
i2=1;
i3 = init_i3();
end

11.2 Global Variables

The code conversion for local variables is relativehpight forward. However,
the code conversion for global variables is a littleranioteresting. Consider the
following code:

vars
inti=3;
inti2 =i;
end

func void functionl()

begin

... Statements ...
end
vars

inti3=i2 +5;
end

In this example, PML will create temporary “initiadiz functions” directly after
the vars block. These initializer functions will be run during start— before
executing main(). So, the code above will be convertesbtoething which will

look like this:

vars
inti;
inti2;
end

func void @initl()
begin

i=3;

i2=1;
end

func void functionl()
begin

... Statements ...
end
vars

inti3;
end

func void @init2()
begin

i3=1i2+5;
end

Here, the ‘@’ symbol is added as a prefix to the functiame to ensure that
there are no user-defined functions with the same naohalao to ensure that the
user will not call these functions. When running a PMLgpam, the interpreter

will first execute all functions beginning with ‘@’ in tleeder in which they were

added to the symbol table. After this, the interpretet @ilecute the main()

function, as stated in the Section 10, “Entry Point”.

The result is that the variables will be declared analizied in the way that was
expected by the programmer. Programmers should be awarie ithan error to
initialize a global variable using a function. Consittex following PML code:

func int my_init()

begin

returnl +1;
end
vars

inti = my_init();

end

func void main()
begin

... Statements ...
end

This example code will be converted to the following chg@®ML.:

func int my_init()
begin

returnl +1;
end

vars
inti;
end

func void @init1()
begin

i = my_init(); -> Error
end

func void main()
begin

... Statements ...
end

Based on the semantics described earlier, this codexatiute my_init() before
main(), which is illegal. The PML interpreter guarantdeg main() is always the
first function that gets called (see Section 10 on “ERynts”). Therefore, this
PML code will just print an error message.

APPENDIX A

Al. SAMPLE CODE TO ADD TWO POLYNOMIALS

func void main
begin
vars
poly pl = 2X"2 + 4X;
poly p2 = 4X"2 — 2X;
poly temp;
poly sum;
inti;
termarray t1;
termarray t2;
end

t1 = polyterm(pl);
t2 = polyterm(pl);

I = length(tl);
while(i>=1)
begin

add the two terms
temp = t1[i] + t2[i];

concatenate the polynomials to form the coraplesult
sum = sum + temp;
i=i—1;
end
print sum ;
end

The polyterm(..)operator returns an array of individual terms from thigrmomial . So
aftert 1 = pol yternm(pl); tl1wil have two elements which agxX*2 and4X. t2
will have 4X"2 and- 2X. The elements in these arrays can be accessec larrdy
notation array[index] . The index count starts from 1.

Length...()is an operator that takes an array and returns the obtire number of
elements in an array.

APPENX B

B1. Standard Library Functions

This section is work in progress. More functions will d#led if necessary during the
course of the development of this language.

The following functions deal with polynomials and terms.

Term coeff (...) : This function takes a term as a parameter and retuensogitficient
of that term. Parameters of type int and float amsiciered as terms with no variables,
and so the coefficient of such a term is the tereifitsAcceptable invocations of this
function are as follows:

coeff(termt)
coeff(int i)
coeff(float f)

examples: term t = 2X"2; coeff(t); ReturnValue 2
term t = axX”2 ; coeff(t); Return Value a

term Icoeff(...) : This function takes a polynomial and returns the leada®fficient of
the polynomial. The leading coefficient is the coédit of the term within the
polynomial with the highest degree. Valid invocationte function is as follows:

Icoeff(poly)
examplepoly p = 2x*3 + 3x + 4; Icoeff(p); Return Value 2
poly p = ax"2 + bx + c; Icoeff(p); Return Value a

term degree(...) : This is an overloaded function and so it can accepfsréift number
and types of parameters. Essentially, this functidarme the total degree of a term or
polynomial. The overloading feature can be used to spdwfyariable whose degree is
expected. Valid invocations of the function are:
degree(term)
degree(poly)
degree(term, char)

examples:term t = 3X"3; degree(t); Return Value 3
termt = 2Y~3Y”2; degree(t); Return Value 5
term t = 2X"3Y"2; degree (t, Y’); Return Value 2
poly p = 3X"2 + 4X"5Y~3 + Y ; degree(p); Return Value 8

term t = 3X"3; degree (t, 'Y’); Return Value 0

termarray polyterm(...) : This function takes a parameter and returns a termaitay
the parameter as a member of the array. The input pamamwdt be broken into
constituent terms, if it happens to be a polynomiatameters of type int and float are
considered as terms with no variables. Valid invocatadrkis function are as follows:

polyterm (termt);
polyterm (int i);

polyterm (float f);

polyterm (char c);

polyterm ('poly p);

examples: inti=20; polyterm(i);
Return Value: a termarray of length 1, with 20 as its element

term t = 4X"3; polyterm (t);
Return Value: a termarray of length 1, with 4x*3 as its element.
poly p = 2X"*2 + 3X + 4; polyterm(p);

Return Value: a termarray of length 3, with 2X”2, 3X and 4 as itsnelets.

int length (...) : This function takes a termarray and returns an intégemrepresents the
number of items in the array. Valid invocations offinection:

length(terarray ta)

examples: termarray ta;

poly p = 2x"3 + 3x"2 + 4x;

ta = polyterm(p);

length (ta);

Return Value 3

