
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Mapwad 

 
A 3D modeling language 

 
Language Reference Manual 

 
Ben Smith – bhs16@columbia.edu 

AvrumTilman – amt77@columbia.edu 
Josh Weinberg – jmw211@columbia.edu 

Ron Weiss – ronw@cs.columbia.edu 

 1



1. Language Semantics 
A Mapwad program is a standard ASCII text file that can be generated on any 
computing platform that has an ASCII editor. Mapwad is a case-sensitive language 
that matches seven types of tokens: white space and comments, identifiers, number, 
strings, operators, keywords, and other tokens. 
 
1.1. White space and Comments 

1.1.1. White space 
Spaces, tabs, newlines, and carriage returns are all considered whitespace. 
All white space will be ignored 
 

1.1.2. Comments 
C and C++ style comments are supported. That is, “//” start a single-line 
comment, while all text, multi-line or single-line, between “/*” and “*/” 
will be considered a comment. All text that is considered a comment will 
be ignored. 
 

1.2. Identifiers (Variable, Function, and Object names) 
Identifiers are used for naming variables, functions, and objects. They can 
contain a mixture of alphanumeric characters as well as the underscore character 
(‘_’). It should be noted, that identifiers must begin with either a letter or an 
underscore.  This follows the C specification. 
 

1.3. Numbers 
Mapwad supports integer and floating point numbers. Integers consist of one or 
more digits. Floating point numbers can be defined in a couple different ways, 
with or without a decimal point, exponent, or the combination of the two. An 
exponent is defined as either the ‘e’ or ‘E’ character, followed by an optional 
sign character (‘-’ or ‘+‘), followed by an integer. For example: 
 
5       // integer or float (depending on type specified at declaration) 
0.45      // float 
5.2    // float 
5e10    // float 
5.3E-10 // float 

 
1.4. Strings 

Strings are character sequences enclosed within a set of double quotes. To place 
a double quote inside the string type two double quotes. You cannot place a 
newline character within the string. 
 
For example, the following assignment, 
 
string text = “He said, ””hi there”””; 
 
would set text equal to: He said, “hi there” 

 

 2



1.5. null 
Mapwad supports a null value like Java. 

 
1.6. Operators 

= % -- %= <= 
+ || += == . 
- && -= >  
* ! *= <  
/ ++ /= >=  

 
1.7. Keywords 

The following identifiers are reserved as keywords: 
Map Location string while false 
Room int if break return 
Wall float else continue null 
Thing boolean for true  
 

1.8. Other Tokens 
The following tokens are used for building statements: 
, ( { [ 
; ) } ] 

 
2. Program Layout 

A Mapwad program is a combination of variable, and function definitions as well a 
special “Map” program entry function at the end of the program. Aside from the 
“Map” function, which must be located at the end of the program, all variables, and 
functions definitions can be mixed together in any order. It should be noted, that any 
variable or function must be declared before use. 
 

3. Variables 
Mapwad supports both explicit/user-defined and implicit variables. User defined 
variables must be declared before use and have a specific structure for declaration and 
assignment. The structure forces types on variables at declaration time making 
Mapwad a strongly-typed language. Implicit variables are Mapwad built-in variables 
that are associated with specific types. 
 
3.1. Explicit (User-Defined) Variables 

3.1.1. Definition 
A user-defined variable is declared in the following manner: 
<type> <identifier> 
 

3.1.2. Assignment 
As stated above, a variable cannot be assigned a value or accessed until it 
has been declared. However, Mapwad does allow for variable 
initialization, that is, a variable can be assigned a value at the time that it is 
declared. 
 

 3



// incorrect – invalid declaration 
a; 
a = 5; 
 
// correct 
int b; 
b = 5; 
 
// correct 
int c = 5; 

 
3.1.3. Scope 

Variables in Mapwad can have either global or local scope depending on 
where they are declared. If a variable is declared in the program body (i.e 
outside function definitions), it is automatically assigned a global scope 
and can therefore be accessed by any construct that follows in the program 
(i.e. function definitions, conditionals, loops, etc). Variables that are 
declared within functions and constructs are local to that function or 
construct. 
 
It should be noted that Mapwad uses static scoping. 
 
int a = 5; // exists within the following if statement 
if(a > 3) 
{ 
 int b = 6; // exists only within this if statement 
} 

 
3.2. Implicit Variables 
 Mapwad includes a list of implicit variables that are associated with some of the 

built-in types (see Types/Objects section for a list of implicit variables belonging 
to the different types and objects). Furthermore, an implicit variable may or may 
not be read-only (see specific type or object for information on its associated 
implicit variables). 
 

4. Types/Objects 
Mapwad has many built in types and objects. The basic types include booleans, 
integer numbers, floating point numbers, and string literals. The advanced types and 
objects include Walls, Rooms, Things, Locations, and arrays. It should be noted that 
Mapwad does not support type casting, but does have limited support for type 
promotion. If an integer is added to a float, the integer is promoted to a float, and the 
result is a float. 
 
4.1. Basic Types 

4.1.1. boolean 
Boolean values that can take the values ‘true’ or ‘false’. 
 

4.1.2. int 
A 32-bit signed integer. 
 

4.1.3. float  

 4



A 64-bit floating point number. 
 
4.1.4. string 

Basic string of characters enclosed in double quotes. As explained in the 
first section, if double quotes are needed in the string itself, use a repeated 
double quote as an escape sequence (see first section for an example). 
Mapwad’s support of strings is very basic and extends only to string 
creation, and string equality comparison. Other string manipulation 
functions (i.e. regular expressions) are not supported. 

 
4.2. Advanced Types/Objects 

Mapwad has several built-in objects and advanced types. Mapwad’s objects are 
struct-like constructs. Because of their complex nature, each of these objects 
requires a form of instantiation, and therefore has an associated constructor. 
Furthermore, as is done in Java, all advanced types and objects are passed by 
reference. 

 
4.2.1. Wall 

Walls are a struct-like construct that are used to make up Rooms. Walls 
are made up of implicit variables that can be set and changed depending 
on the desired situation. Each of the Wall’s implicit variables has a default 
value. 

 
Walls can technically be created outside the context of a Room, but their 
main purpose is to connect together to form a Room. Since each Room has 
a list of Walls (see Room definition), the connection between a Wall and 
its neighbors is built into the Wall object. That is, each Wall stores the 
angle between itself and the next Wall in the Room’s Walls list. 

 
Furthermore, in order to create a multi-Room environment, there must be 
a means of interconnecting Rooms. Mapwad provides this ability with 
built-in functions to merge Walls from different Rooms, and also to create 
doorways between Rooms (see description of the Attach() and 
AttachWithDoor() built-in functions later in the manual). 

 
4.2.1.1. Implicit Variables 

Unless otherwise specified, each of the Wall’s implicit variables is 
read/write. 

 
string Name – Name associated with the wall. Default value is “” 
float Length – The length of the wall. Default value is 20 
float AngleNext – The angle between this Wall and the next 

Wall in a Room’s Walls list. Default value is 90 
Wall Next – The next Wall in a Room’s Walls list (read-only). 

Default value is itself 

 5



Wall Prev – The previous Wall in a Room’s Walls list (read-only). 
Default value is itself 

string Texture – The type of texture to be mapped onto the wall 
(inherited from the quake .WAD file – to be defined later). Default 
value is “” 

boolean IsEntry – Whether or not this Wall is connected to 
another Wall (read-only). This variable can only be set by a built-
in Attach-type function. Default value is false 

Wall ConnectedTo – The Wall that this Wall is connected to 
(read-only). This variable can only be set by a built-in Attach-type 
function. Default value is null. 

Room FromRoom – The Room that this Wall is a part of (read-only). 
Default value is null. 

    
4.2.1.2. Wall Constructor 

Wall(float Length=10, float AngleNext=90, string Name=””, string 
Texture=””) 

 
To create a Wall, use the following syntax: 
 
Wall <var name> = Wall(..); 

  
4.2.2. Room 

The Room object is a struct-like construct that is arguably the most 
important object in Mapwad. Simply stated, a Room is a circular 
connection of Walls that is singular (that is, Walls cannot cross). These 
Walls are stored in a special implicit Walls list that is associated with each 
Room object. The other defining attribute of a Room is its height, whose 
value is stored in a Room’s implicit Height variable. 

 
Central to the Room object is the list of Walls that make up the perimeter. 
The Walls list is a super data structure that has the dynamic growth 
functionality of a linked list and the ease of access provided by arrays and 
associative arrays. When a Room is first created, its Walls list is null.  

 
Access to a Room’s Wall objects is accomplished by either indexing into 
the Walls array (i.e. Walls[0], Walls[1], and Walls[2]), or grabbing the 
first Wall object’s handle and iterating using a Wall object’s list properties 
(i.e. Walls[0].Next refers to Walls[1], and so on, with the last Wall’s Next 
variable pointing to Walls[0]). If a Wall in the Walls list has a name, it can 
be accessed associatively by that name (i.e. Walls[“three”]). It should be 
noted, that if multiple Walls have the same name and associative access is 
desired, the first Wall in the list relative to Walls[0] that matches will be 
returned. 

 

 6



Adding and removing Wall objects from the Walls list is done using the 
built-in functions Add(), AddAfter(), and Remove() (see description of 
these built-in functions later in the manual). 

 
The flexibility of the Walls list allows the programmer to iterate through a 
Room’s Wall objects in a few different ways (assume x is the name of a 
Room object): 

 
a) Iterate using normal array functionality 
 
Wall currentWall; 
int i; 

 for(i = 0; i < x.Walls.Size; i++) 
{ 
 currentWall = x.Walls[i]; 
} 
 
b) Iterate using list functionality 

 Wall iterator = x.Walls[0]; 
 Wall currentWall = iterator; 
 iterator = iterator.Next; 
 for(; iterator != x.Walls[0]; iterator = iterator.Next) 
 { 
  currentWall = iterator; 
 } 

 
4.2.2.1. Implicit Variables 

Each of the Room’s implicit variables is read/write. 
  

float Height – Height of the Room. Default value is 10. 
Wall[] Walls – List of Walls associated with the Room object 

(explained above). Walls is empty (null) by default. 
 

4.2.2.2. Room Constructors 
Room(float Height=10) 

 
To create a Room, use the following syntax: 
Room <var name> = Room(..) 

 
4.2.3. Thing 

Things are simple entities supported by Quake that can be put within 
Rooms. Things include monsters, lava pits, guns, power-ups, etc. A Thing 
is placed into a Room using a Location (see below). 

 
4.2.3.1. Implicit Variables 

Each of the Thing’s implicit variables is read/write. 
 
string Type – Type of Thing. Default value is “” 
Location Position – Thing’s start location. Default value is 

null. 

 7



 
4.2.3.2. Thing Constructor 

Thing(string Type=””, Location Position=null) 
 
To create a Thing, use the following syntax: 
Thing <var name> = Thing(..) 

 
4.2.4. Location 

A Location is a three-tuple consisting of a Wall object, a string 
representation of a position relative to the Wall, and a distance 
perpendicularly outward into the Room from the Wall. 

 
4.2.4.1.Implicit Variables 

Each of the Location’s implicit variables is read/write. 
 
Wall NearWall – The Wall that this Location will be relative to. 

Default value is null. 
string WallPosition – Where along the NearWall to place this 

location. This can take the values, “left”, “right”, or “center”. 
Default value is “center.” 

float WallDistance – How far out into the Room from 
NearWall this Location will exist. Default value is 2. 

 
4.2.4.2. Location Constructor 

Location(Wall NearWall=null, string WallPosition=”center”, float 
WallDistance=2.0) 
 
To create a Location, use the following syntax: 
Location <var name> = Location(..) 

 
4.3. Arrays 

Mapwad arrays are very similar to C and Java arrays. Before an array can be used, 
it must be declared with the number of elements. For simplicity, Mapwad also 
allows the use of array constants, where an array is initialized with all the element 
values. Elements in an array are indexed by number starting with 0. The array 
type extends to every type and object that Mapwad supports. Furthermore, 
multidimensional arrays are allowed. 

 
4.3.1. Usage 

Syntax for array declaration follows C except that the brackets are glued to 
the type and not the variable name. For example, 

 
int[] a; // correct 
int b[]; // incorrect 

 
There are two ways to assign values to an array. Firstly, before adding 
elements to an array the size must be stated explicitly. Secondly, Mapwad 
supports array constants where all values are enclosed in curly braces, and 

 8



separated by commas. Access to elements in the array is performed by 
using the variable name immediately followed by a left bracket, then the 
index, then a right bracket. For example, to create an array called numbers 
that will hold 4 integer values 1,2,3,4, the following two implementations 
would be correct. 

 
int[] numbers = int[4]; 
numbers[0] = 1; 
numbers[1] = 2; 
numbers[2] = 3; 
numbers[3] = 4; 
 
or, 
 
int[] numbers = {1,2,3,4}; 
 
For multidimensional arrays the following implementation would be 
correct. 
 
int[][] numbers = int[2][4]; 
 
numbers[0][0] = 1; 
numbers[0][1] = 2; 
numbers[0][2] = 3; 
numbers[0][3] = 4; 
numbers[1][0] = 1; 
numbers[1][1] = 2; 
numbers[1][2] = 3; 
numbers[1][3] = 4; 
 
Multidimensional array constants are not supported. 

 
4.3.2. Implicit Variables 

Mapwad arrays have an implicit variable, Size, that stores the maximum 
number of elements that the array can contain. The Size variable is read-
only. 

 
int Size – Maximum number of elements that the array can store. 
For multidimensional arrays each dimension has a size.  So given the 
above example numbers.Size=2 and numbers[0].Size=4. 
 

5. Statements 
Statements make up the heart of a block of code.  Every code block is made up of 
multiple statements that define how the block operates.  If a code block is thought of 
as a recipe, then the variables would be the ingredients and the statements would be 
the instructions for how to cook the recipe.  Within Mapwad there are four basic types 
of statements.  An Operator statement (also called an expression), an assignment 
statement, a control flow statement, and a function call statement. 
 
5.1. Operator Statements 

5.1.1. Arithmetic Operator 

 9



Arithmetic operators allow basic arithmetic to be performed on numerical 
values.  Mapwad allows arithmetic operators to be performed on integer 
variables, float variables, or constant numerical values. 
 
Mapwad supports multiple types of arithmetic operators.  The first basic 
types are the +, -, *, /, and % operators.  These operators take two 
variables or constants and return the value of the operation.  They must be 
combined with another statement to be useful within the program. 
 
The next type of operator is the assignment arithmetic operators.  These 
are +=, -=, *=, /=, and %=.  These operators act similar to the operators 
above except that the left hand operand must be a variable that can store 
the return value of the operation.  So x=x+5 would be written as x+=5. 
 
Finally there are two more arithmetic operators that are defined for 
programmer convenience.  They are the increment (++) and decrement (--) 
operators.  These operators act similarly to the assignment operator above 
except they only have a left hand operator.  The right hand operator is 
assumed to be 1.  So x+=1 would be written as x++. 
 
Mapwad supports limited upcasting for arithmetic operations.  If an 
arithmetic operation is given a mixture of floats and ints all the ints will be 
promoted to floats and a float will be returned.  However, if the return type 
expects an integer then an error value will be thrown. 
 

5.1.2. Boolean Operators 
Mapwad supports two different types of Boolean operators.  The first type 
compares two values and returns true or false.  These operators are ==, !=, 
<, >, <=, >=.  The == and != are valid for all types, while the other 
comparison operators are only valid for ints and floats.  You can mix ints 
and floats and Mapwad will upcast an int into a float in order to perform 
the operation.  The are also valid for strings and booleans.  However, both 
operands must be a string and the other operators(<, >, <=, >=) are not 
supported for strings. 
 
Beyond those operators Mapwad also allows Boolean algebra.  Mapwad 
supports &&, ||, and !.  && compares the Boolean value of the left hand 
operand to the Boolean value of the right hand operand.  If both of them 
are true it returns true otherwise it returns false.  || acts similarly to && 
except that it returns true if either the left hand or the right hand operand is 
true.  Finally, ! returns the opposite of its right hand operand.  ! does not 
take a left hand operand. 
 

5.1.3. Dot Operator 

 10



The dot operator ‘.’ accesses a member variable of the object.  For 
example if x is a room object then x.Height will access the height variable 
associated with x. 
 

5.1.4. Precedence 
The following chart defines the precedence order for Mapwad.  Note the 
first row has the highest precedence: 
f(r,r,..) (expression) ID boolean 

constant
string 
literal

int 
constant 

float 
constant 

a[i]       
s.m       
l++ l--      
+a -a !a     
a*b a/b A%b     
a+b a-b      
a>b a<b a>=b a<=b    
a==b a!=b      
x&&y       
x||y       
x=a x+=b x-=c x*=d x/=e x%=f  

 
5.2. Assignment 

An assignment statement takes a value and assigns it to a specified variable.  
Within Mapwad only variables can have a value assigned to them.  The format of 
an assignment statement is <variable name> = <value>.  The variable name can 
be any variable that was previously defined and matches the type of the value.  
Value can be any constant, variable, or statement with a return value.  Assuming 
that X and Y are integers and addfunc() is a function that returns an integer then 
the following would all be valid assignment statements. 
 X=5; 
 X=5+1; 
 X=y-2; 
 X=addfunc(2,3); 
 

5.3. Control Flow 
A control flow statement describes what statements will be executed next.  There 
are two basic types of control flow constructs, conditional statements and loops.  
Within all of the control flow statements a section of code is designated with { }.  
The code within that section has its own scope and any variable that is declared 
within that section will not exist outside of the section. 
 

5.3.1. Conditional Statements 
Conditional statements allow for statements to be executed only in specific 
cases.  The format for a conditional statement is as follows: 
 
if (<Boolean expression>) 
{ 
 <statement>* 

 11



} 
 
 or 
 
if (<Boolean expression>) 
{ 
 <statement>* 
} 
else if (<Boolean expression>) 
{ 
 <statement>* 
} 
else 
{ 
 <statement>* 
} 
 
The statement within the {} for if will be executed if the Boolean 
expression evaluates to true.  If the statement evaluates to false then the 
next else if statement will be checked and the program will continue to 
check the else if statements until a Boolean expression evaluates to true.  
If the program reaches an else without an if those statements are 
evaluated.  Once one Boolean expression returns true and the 
corresponding block is executed the rest of the conditions are skipped and 
the program continues after the else or the final else if. 

 
5.3.2. Loop Statement 

A loop statement allows the same code to be executed multiple times 
before continuing with the rest of the program flow.  There are two types 
of loops supported in Mapwad, for loops and while loops. 
 

5.3.2.1.For Loop 
A for loop in Mapwad follows the same basic syntax as a C/C++/Java 
for loop. 
 
for (<variable initialization>;<Boolean 
expression>;<iteration action>) 
{ 
 <statement>* 
} 
 
The variable initialization can be any valid expression; however it is 
intended to initialize some loop variable for the loop.  The one 
exception to this is that a variable can not be declared in a for loop 
statement. 
 
The Boolean expression is evaluated each time the loop is iterated.  If 
the value returns true the loop statements are executed one more time. 
 
The iteration action can be any valid expression; however it is 
intended to increment the loop variable. 
 

5.3.2.2.While Loop 

 12



The while loop is a more general purpose loop than the for loop.  The 
syntax for the while loop is as follows: 
 
while (<Boolean expression>) 
{ 
 <statement>* 
} 
Any valid Boolean expression can be used and any number of 
statements can then be put within the body of the loop.  The Boolean 
expression is evaluated before executing the code block on each 
iteration.  If the Boolean expression becomes false the loop terminates. 
 

6. Functions 
A function is basically an encapsulation of a section of code.  This function can then 
be called at a later time and the code within the function will then be executed.  A 
function in Mapwad performs similarly to how a function in C/C++/Java performs. 
 
6.1. Structure 

A function is made up of four parts, a return type; an identifier; a parameter list; 
and the function body.  A basic function declaration follows the following 
format 
 
<return type>? <identifier>(<parameter list>) 
{ 
 <body> 
} 
 
The return type can be any valid type such as, a basic type, an advanced type, or 
an object. However, if the function does not return a value then a return type is 
not given at all. 
 
The identifier is any valid Mapwad identifier as defined earlier in this manual. 
 
The parameter list is a list of 0 or more variable declarations (type and name) 
separated by a comma.  Any variable can have a default value specified.  If a 
default value is specified then the variable is optional when the function is 
invoked.  A parameter list would look like the following: 
(int x, int y=1, int z=2, string a=”default”, string b) 
 
In the above example, variables y, z, and a are all optional variables that do not 
have to be specified when the function is called. 
 
The body of the function is made up of 0 or more statements. 
 

6.2. Invocation 
A function is invoked in a statement by its name followed by the necessary 
parameters enclosed in parentheses.  The following example would call a 
function called myFunc() with the parameter list defined in the previous section. 
 

 13



myFunc(3, ,5 , ,”the end”) 
 
Recall, that variables x and b were not optional and therefore required that 
values be included in the parameter list.  Variables y, z, and a were optional and 
could be left blank.  However, z was included in the parameter list so that the 
new value of z will be used within the function instead of the default value of 2.  
Notice that any value that was not included in the function invocation still 
included the comma separator to indicate that the default should be used.  
However, if the parameter list includes optional parameters at the end of the list 
then the function can be called without including the extra commas.  So, given a 
function myFunc2(int x=1, string y=”name”, int z=3) all of the following would 
be valid function calls: 
 
myFunc2(5,”hi”,9) //x=5, y=”hi”, z=9 
myFunc2(6)        //x=6, y=”name”, z=3 
myFunc2()         //x=1, y=”name”, z=3 
 

6.3. Returning 
If a function has a return type it must have a return statement somewhere in the 
body of the function.  If the program flow reaches a return statement, the value 
given in the return statement is returned to whatever called the function, and the 
function terminates. 
 
The function invocation can be a statement by itself or it can be part of a larger 
statement.  If the function invocation is a statement by itself then any return value 
that the function might give is ignored.  However if the function invocation is 
used as part of a larger statement then it must return a value.  Once that value is 
returned, the rest of the statement executes as if that value had been supplied 
instead of the function call. 
 

6.4. Map Function 
Mapwad has one special function, the Map function.  This is the equivalent to the 
main function in C.  The Map function is run first and is used to describe the 
layout of the entire map.  The Map function must be the last declaration in the 
file since anything declared after Map can not be used by Map and therefore will 
never be used. 
 
In addition, there is one implicit variable, MapStart, that must be assigned in the 
Map function.  MapStart defines where the player starts when the final map is 
run in the game engine.  MapStart is of type Location. 
 

6.5. Built-in Mapwad Functions 
Mapwad includes some predefined functions.  These are Add, AddAfter, 
Remove, Attach, and AttachWithDoor.  They are defined as follows: 
 
boolean Add(Room r, Wall newWall) 
 

 14



This function adds newWall to the end of the Walls linked list associated with 
Room r.  Add() will return true if the operation succeeds.  If you attempt to add a 
Wall that already exists in a Room other than r, then Add() will terminate and 
return false.  When called on a Room with an empty Walls list (i.e. a Room that 
was just initialized), Add() will initialize the list, setting r.Walls[0] to newWall. 
 
boolean AddAfter(Wall locat, Wall newWall) 
 
This function adds newWall to the linked list of Walls that contains locat.  
newWall is added after locat in the linked list.  AddAfter() will return true if the 
operation succeeds.  If you attempt to add a Wall that already exists in a Room 
other than r, then AddAfter() will terminate and return false. 
 
Remove(Wall rem) 
 
Remove will remove the Wall rem from the Walls linked list that contains rem.  
 
boolean Attach(Wall a,Wall b, string wallconnect) 
 
This function is used to connect two rooms at the point specified by Wall a and b 
within each room. 
 
Walls a and b are walls in separate rooms that are going to be connected with an 
entry.  Attach() says to connect a to b and remove their intersection.  wallconnect 
indicates where the two walls will be connected relative to each other, and can 
take the values "left", "right", or "center". That is, "left" connects the walls at 
their leftmost point, "right" at their rightmost point, and "center" at their 
respective center points.  Note, Wall b's "left" point is defined as follows: When 
standing in the Room containing Wall a, facing Wall a, the "left" side of Wall b 
will be the side that is perceived to be on the left.  Attach() will return true if it 
succeeds and false if it fails. 
 
boolean AttachWithDoor(Wall a, Wall b, string wallconnect, string 
doorpos, float height, float width) 
 
This function works the same as Attach() except that instead of the entry being 
the entire size of the intersection, the entry is now the specified width and height.  
doorpos specifies where along the intersection the enrty will be placed, and can 
take the values “right,” “left,” or “center.” AttachWithDoor() will return true if it 
succeeds and false if it fails. 
 
Mapwad will have a built-in limited library of math functions (i.e. Sqrt(), Sin(), 
Cos(), Tan(), RandInt(), etc.). 
 

7. Appendix 
7.1. Example 1 

/* 
 *  FourWall() 
 *  Creates a 4 wall regular room 

 15



 */ 
Room FourWall() 
{ 
 Room newRoom = Room(); 
 
 int i; 
  
 for(i=0;i < 4;i++) 
 { 

// Adds a Wall of length 10 with an angle  
// of 90 to the Walls list. 

  Add(newRoom,Wall(10,90)); 
 } 
 
 return newRoom; 
} 
 
/************************************************************* 
 * Generates a simple map consisting of 20 corridors 
 * connected by a long corridor 
 * 
 *  something like this: 
 * 
 *  ====================|| 
 *  ====================|| 
 *  ====================|| 
 *  ====================|| 
 * 
 *  This is done by first generating a 20x20 grid of 
 *  simple 4 wall rooms.  We then connect all the rooms 
 *  in each row, and connect all the rooms in the last column 
 *************************************************************/ 
Map() 
{ 
 //a 20x20 2D array 
 Room[][] rooms = Room[20][20]; 
 
 int row; 
 int col; 
 
 //Instantiate all the room objects 
 for(row=0;row < 20;row++) 
 { 
  for(col=0;col < 20;col++) 
  { 
   rooms[row][col] = FourWall();  
  } 
 } 
 
 for(row=0;row < 19;row++) 
 { 
  for(col=0;col < 19;col++) 
  { 
   //For even columns we attach wall 0 to wall 2, 
   //for odd columns wall 2 to wall 0 
   if(col % 2 == 0) 
   { 

          Attach(rooms[row][col].Walls[0], 
    rooms[row][col+1].Walls[2], 

       "center"); 
   } 
   else 
   { 
          Attach(rooms[row][col].Walls[2], 

 16



     rooms[row][col+1].Walls[0], 
     "center"); 
   } 
  } 
 
  //Build a corridor down the 20th corridor 
  Attach(rooms[rows][19].Walls[1], 
   rooms[rows+1][19].Walls[1]); 
 } 
 
 //Set the location where the player enters the map 
 MapStart = Location(rooms[0][0].Walls[0],"center",1); 
} 
 

7.2. Example 2 
/* 
 * AnyRoom(int walls, float length=0, float[] lengths={0}) 
 * 
 * Returns a room with 'walls' number of walls.  There are two 
 * ways to specify wall length.  If 'length' is used, then all 
 * walls have their Length variable set to 'length'.  When 
 * 'lengths' is used, then the length of each wall is passed in 
 * to the function.  'length' and 'lengths' cannot both be used 
 * in a single call (obviously). 
 * i.e. AnyRoom(5,10) builds a pentagon shaped room with each 
 * wall 10 units long 
 * 
 */ 
Room AnyRoom(int walls, float length=0,float[] lengths=null) 
{ 
 Room newRoom = Room(); 
 int i; 
 float angle = 360/walls; 
  
 if(lengths == null) 
 { 
  lengths=float[walls]; 
    

 for(i=0;i < walls;i++) 
 { 
  lengths[i]=length; 
 } 

 } 
  
 for(i=0;i < walls;i++) 
 { 
  Wall wall= Wall(); 

 wall.Length=lengths[i]; 
 wall.AngleToNext=angle; 
    
 Add(newRoom,wall); 

 } 
 
 return newRoom; 
} 
 
/* 
 * attachSpoke(Wall wall, Thing thing) 

 17



 * 
 * Attaches a "spoke" to 'wall'.  A spoke is a corridor with a 
 * pentagon shaped room attached to its end. 
 * 
 */ 
attachSpoke(Wall wall,Thing thing) 
{ 
 float[] lengths = {10,20,10,20}; 
 Room corridor = AnyRoom(4,,lengths); 
 Room vestibule = AnyRoom(5,10);  
 
 Thing.Position = Location(vestibule.Walls[2],"center",2); 
  
 Attach(corridor.Walls[2],vestibule.Walls[0],"center"); 
 Attach(wall,corridor.Walls[0],"center"); 
} 
 
/* 
 * This mapwad generates a map consisting of a large octagon 
 * shaped room with four corridors leading out from it.  Each 
 * corridor is terminated with a pentagon shaped room. 
 * 
 */ 
Map() 
{ 
 Room central = AnyRoom(8,20); 
 
 string[] thingTypes = 
   {"Monster","","PowerUp","","RailGun","","Monster"}; 
 int i; 
 
 for(i=0;i < 8;i += 2) 
 { 
  attachSpoke(central.Walls[i],thingTypes[i]); 
 } 
} 
 

 18


	Mapwad
	A 3D modeling language


