

Joker
a Card Game Programming Language

Language Reference Manual

Team Leader
JGE15@columbia.edu Jeffrey Eng

Team Members

HHC42@columbia.edu Howard Chu
TKS21@columbia.edu Timothy SooHoo
JLT93@columbia.edu Jonathan Tse

Document History

2003 October 27 – Document Created

Joker: Language Reference Manual

Index
1. Lexical Conventions
2. Meaning of Idenifiers
3. Expressions
4. Statements
5. Declarations

1 Lexical Conventions
1.1 Tokens
There are four classes of tokens: identifiers, keywords, operators and other
separators. As in the other free-form languages, blanks, horizontal and vertical
tabs, newlines (and "form feeds"), and comments as described below
(collectively as "white space") are ignored except to note they separate tokens.
Whitespace is required to separate otherwise adjacent identifiers, and keywords.

If the input stream has been separated into tokens up to a given character, the
next token is the longest string of characters that could constitute a token.

1.2 Comments
The two types of comments: the start-stop comment and the end-of-line
comment. A start-stop comment begins with a /* and includes all text until a
closing */. The end-of-line comment starts with a // and continues until the end
of the line. Comments do not nest and do not incur within string or character
literals.

1.3 Identifiers
An identifier is a sequence of letters and digits. The first character of an
identifier must be a letter; an underscore counts as a letter. Identifiers are case
sensitive. Identifiers may have any length.

Joker: Language Reference Manual

1.4 Keywords
The following identifiers are reserved for use as keywords, and may not be used
otherwise:

int
boolean
card
pack
string
if
else
for
while
break

continue
init
main
game
option
case
default
true
false

2 Meaning of Identifiers
Identifiers refer to actions and variables. Identifiers are described by their type.

2.1 Basic Types
Types in Joker can be divided into two categories: value types and reference
types. Value types consist of boolean and numeric, or integer, types.
References types consist of card or pack types. Value types are passed by
value. And reference types are, surprise, passed by reference.
Variables of the integer type are signed integers. They have a maximum value
of 2147483647 and a minimum value of -2147483648.
Variables of the boolean type can have the value of true or false.
Variables of the card type represent playing cards. See section 2.1.1.
Variables of the pack type represent groups of playing cards. See section 2.1.2.

2.1.1 Card type
The card type is an object that represents a playing card. These objects
have attributes, which consist of: a number, a suit, and a viewability.
The number is the number value of a card. On a playing card, this is the
corner numeral. In the case of face cards,

foo.number = 10;
The suit is the suit of a card.

foo.suit = “spades”;
The viewability is a boolean attribute of whether or not a card is viewable to
everyone. It can be accessed by:
 foo.private = true;

Joker: Language Reference Manual

2.1.2 Pack type

The pack type is an object that represents a group of playing cards. A
number of special operators can be performed on pack (see section 5.3).
Like the card type, pack objects also have a number of attributes, which
consist of: size.
The size of a pack is the number of elements in the pack. The “bottom” or
last element of the pack can be found at size-1.

if (foo.size == 5)

2.2 Derived Types
In addition to the basic types, programmers may specify types derived from these
basic types. Users have the ability to make an array of int and boolean values.
For declaration of the array derived type, please check section 5.1. For example,
declaring an array of five integers is:

int[5] foo;

2.3 Configuration Type
There is a special object from the special configuration type. This object allows
the passing of parameter constants into the game logic. It is the equivalent of
C’s and Java’s argv parameter, whereas in C and Java, string values of argv are
obtained from the command line execution, configuration parameters are
abstractly obtained through the Joker special runtime.
To access configuration parameters, programmers may access attributes
through the special singleton variable config. For example:
 int[config.NUM_PLAYERS] foo;
where the Joker file may have been executed using:
 $ joker Blackjack.jkr –config NUM_PLAYERS=4
The actual passing of configuration values depends on the runtime
implementation. Possibilities include command line name-value pairs (as shown
above), GUI dialog boxes, or even a parsed configuration file.

3 Expressions
The precedence of expressions operators is the same as the order of the major
subsections of this section, highest precedence first. Within each subsection,
the operators have the same precedence. Left- or right- associativity is
specified in each subsection for the operators discussed therein.
Like in JavaTM, the order of evaluation of expressions is left-to-right.

Joker: Language Reference Manual

3.1 Primary Expressions
Primary expressions are identifiers, string, or expressions in parentheses.

 primary-expression: identifier
 | string
 | (expression)
An identifier is a primary expression, provided it has been suitably declared as
discussed below. Its type is specified by its declaration. Examples of an
identifier include: variable names.
A parenthesized expression is a primary expression, whose type and value are
identical to those of the unadorned expression.

3.2 Arithmetic Expressions
Arithmetic expressions take primary expressions as operands.

3.2.1 Postfix expressions
 postfix-expression:
 primary-expression
 | postfix-expression++
 | postfix-expression--

Unary arithmetic operators include “++” and “--”. These operators are post-
fix. The operand is either incremented (++) or decremented (--) and only
applies to int. The value of the expression is the value of the operand.

3.2.2 Multiplicative operators
 multiplicative-expression: multiplicative-expression * postfix-expression
 | multiplicative-expression / postfix-expression
 | multiplicative-expression % postfix-expression
 | primary-expression

The binary operators “*”, “/”, “%” indicate multiplication, division, and modulus,
respectively. They are grouped left-to-right. They are only applicable to int.
Please note that truncation of the result may occur when performing division.

3.2.3 Additive operators
 additive-expression: additive-expression + multiplicative-expression
 | additive-expression - multiplicative-expression
 | multiplicative-expression

The additive operators “+”, “-” indicate addition and subtraction, respectively
and are grouped from left to right. They are only applicable to int .

Joker: Language Reference Manual

3.3 Pack Operators
Pack expressions are grouped from right-to-left.
pack-expression :
 pack-expression >> integer-expression
 pack-expression << pack-expression
 pack-expression += pack-expression
 pack-expression -= integer-expression
 pack-expression @

3.3.1 Stack-style operators
The pack type supports a number of stack operations, including pop, push,
enqueue, backpop (which is popping from the rear).

3.3.1.1 Pop operator (or “deal”)
 pack-expression >> integer-expression
The pop operator removes a variable number of elements from the “top” of a pack.
The expression returns a pack containing the elements removed from the pack.
These elements are in the same order as they were in the pack. That is, the top
element on the source pack is the top element on the returned pack. The pack
operand no longer contains these elements.

For example,
 sourcePack >> 1

returns a pack containing a card from the top of sourcePack.

3.3.1.2 Push operator
 pack-expression << pack-expression
The push operator inserts elements at the “top” of a pack. The elements
are removed from “source” pack, maintaining order, moving as a whole, and
place on top of the “destination” pack. The “source” pack is now emptied
of elements.
For example, the expression

 destinationPack << sourcePack
has a value of the reference to the newly modified destinationPack.

3.3.1.3 Enqueue operator
pack-expression += pack-expression

The enqueue operator inserts elements from the right operand onto the
“bottom” or “back” of the left pack operand. The right pack operand is
emptied of elements; all elements are transferred to the left pack operand.
For example, the expression
 hand += (deck >> 1);

Joker: Language Reference Manual

enqueues 1 element from the deck onto the bottom of hand.
The expression has the value of a reference to the left pack operand.
Note: this operator is not to be confused with the integer assignment
operator (+=).

3.3.1.4 Back-pop operator
pack-expression -= integer-expression

The back-pop operator removes a variable number (determined by integer-
expression) elements from the “bottom” of the pack operand. The value of
this expression is a reference to a new pack containing the removed
elements.
For example, the expression
 hand -= 2;
removes and returns 2 elements from the bottom of hand.

Note: this operator is not to be confused with the integer assignment operator (+=).

3.3.2 Other pack expressions
3.3.2.1 Shuffle operators

pack-expression @
The shuffle operator is a unary operator that randomly reorders the elements
of a pack. This value of this expression is a reference to the reordered pack.
For example, the expression
 deck @
reorders deck randomly and returns deck itself.

3.3.2.2 Pack index operators
 pack-expression < integer-expression >

Pack index operators allow the extraction of the nth element in a pack. The
value returned by this expression is a reference to the card element at the nth
slot.

3.4 Relational Expressions
relational-expression : integer-relational-expression

 | card-relational-expression

The relational operators are binary which require two operands. They include
“>=”, “<=”, “>” and “<” which corresponds to greater than or equal to, less than or
equal to, greater than and less than, respectively.

3.4.1 Integer Relational Expressions

Joker: Language Reference Manual

integer-relational-expression: integer-expression < integer-expression

 | integer-expression > integer-expression
 | integer-expression <= integer-expression
 | integer-expression >= integer-expression

Integer relational expressions return a boolean true if the specified relation is
evaluated to true. Otherwise, they return a boolean false. For example,

 int foo = 5;
 if (foo > 3)

3.4.2 Card Relational Expressions

card-relational-expression : card-expression < card-expression
 | card-expression > card-expression
 | card-expression <= card-expression
 | card-expression >= card-expression

Card relational expressions return a boolean true if the specified relation is
evaluated to true. Otherwise, they return a boolean false. A card is greater than
(>) another when the product of its number-value and suit-value is greater than
the other. The same applies for the other three binary card relational operators
(< less than, <= less than or equal to, and >= greater than or equal to). For
example,

 card1 < card2

returns true if the value of card1 as defined in the card hierarchy is higher than
the value of card2.

The hierarchy of the cards is defined in the init section of each program (see
Section bla).

3.5 Equality Expressions
These equality expressions are binary and require two operands. They include
equal to (“==”) and not equal to (“!=”). For example,

integer-expression == integer-expression
integer-expression != integer-expression

Equality expressions return true if the specified equality is true. Otherwise, they
return false.

3.6 Logical Expressions
These logical expressions are binary and require two operands. They include
“&&” and “||” which correspond to “and” and “or” respectively. For example,

Joker: Language Reference Manual

conditional-expression && conditional-expression
conditional-expression || conditional-expression

Logical expressions return true if the logical statement is true. Otherwise, they
return false.

3.7 Assignment Operators
There are a number of assignment operators, all of which group right-to-left. All
require an lvalue as their left operand, and the type of an assignment expression
is that of its left operand. The value returned is the value stored in the left
operand after the assignment has taken place.

An assignment is in the form:

lvalue = expression;

in which a semi-colon indicates the termination of this assignment operation. The
value of lvalue will be replaced by that of the expression on the right provided
that both the lvaue and the expression are of the same type.

lvalue += expression

This assignment will replace the value of the lvalue by the result of the addition
operator applied to lvalue and expression. Both the lvalue and the expression are
of the same type.

lvalue -= expression

This assignment will replace the value of the lvalue by the result of the
subtraction operator applied to lvalue and expression. Both the lvalue and the
expression are of the same type.

lvalue *= expression

This assignment will replace the value of the lvalue by the result of the
multiplication operator applied to lvalue and expression. Both the lvalue and the
expression are of the same type.

lvalue /= expression

This assignment will replace the value of the lvalue by the result of the division
operator applied to lvalue and expression. The decimal portion of quotient will be
truncated. (Refer to Section 3.2.2) Both the lvalue and the expression are of the
same type.

Joker: Language Reference Manual

4 Statements
4.1 Statements surrounded by “{“ and “}”
A group of zero or more statements can be surrounded by “{“ and “}”, in which
case, all the statements are treated as a single statement.

4.2 Conditional Statements
Begins with the if keyword and followed by an optional else. The if is
followed by an expression contained within parenthesis. This expression is
evaluated returning a boolean value true or false. If the expression returns
true, then the statement following the if is executed. Otherwise, the statement
following the if is skipped. If an optional else follows the if, then the
statement following the else is executed. For example,

if (expression)
 statement

or

if (expression)
 statement
else
 statement

4.3 Iterative Statements
iterative-statement:

 while (expression) statement
 for (expressionopt ; expressionopt ; expressionopt) statement
 foreach (array-expression | pack-expression) as identifier statement

Iterative statements are loops. There are two kinds of loops in Joker: for (and its
cousin foreach) and while.

4.3.1 for statement
This statement has the form:
 for (expressionopt; expressionopt; expressionopt) statement
The first expression specifies variable initialization for the loop. The second
expression specifies the testing condition, which is made before each iteration
such that the loop is terminated when expression evaluates to false. The third
expression specifies the increment performed after each iteration.

4.3.2 foreach statement
 foreach (array-expression | pack-expression) as identifier statement

Joker: Language Reference Manual

The foreach-statement loops over the array given by array-expression or pack-
expression. On each loop, a reference of the current element is assigned to
identifier. That is worth re-iterating: a modification to the value contained in
identifier will modify the values in array-expression or pack-expression.

4.3.3 while statement
while (expression) statement

The statement is executed repeatedly as long as expression is evaluated as true.
The test takes place before each execution of the statement.

4.4 Break statement
This statement will terminate the execution of the inner-most iterative statement;
it consists of keyword break, followed by a “;”. It has the form:

break;

4.5 Continue statement
This statement will end the current iteration of the inner-most iterative statement
and proceed to its next iteration, if any. It consists of keyword continue, followed
by a “;”. It has the form:

continue;

4.6 Option statement
option-statement: option { option-statement-list }

option-statement-list: option-statement-item (option-statement-item)*

option-statement-item: case (identifier)? : (conditional-expression) statements
 default : statements

This statement specifies the actions simultaneously available to users. It consists
of a list of conditional expressions and their appropriate actions. The option
statement causes control to be transferred to one of the several actions,
depending on the choice made from input.

The identifier is the name of action. The value of the conditional-expression
determines if this action is available (true) or unavailable (false). The
statements are executed if the corresponding action had been chosen.

If a default case is specified, this is executed when none of the actions are
available; that is, their conditional expressions evaluated to false. If no default
case is specified and no actions are available, execution control will exit the

Joker: Language Reference Manual

option statement harmlessly.

4.7 Game statement
A Joker program is in the following form:

game identifier {
 init statements
 main statements
}

identifier is the name of the game.

State variables declared and within the init block exist for the entire lifespan of
the game, and have a global scope, accessible everywhere. Hierarchy of cards
should be defined within the init block.

The main section is where programmers specify the logic and rules of their
game. In other words, this is where the modification of the declared state
variables occurs. When all instructions in the main section are executed and
when the end of the main section is reached, the game is over.

5 Declarations
declaration: type-specifier identifier-list
type-specifier: int
 boolean
 pack
 card
identifier-list: identifier-init
 identifier-list, identifier-init
identifier-init: identifier
 identifier = (integer-expression | boolean-expression

 | pack-expression | card-expression)

A declaration consists of a type specifier, followed by an identifier (or a list of
identifiers), each may or may not be followed by an assignment to an initial
expression value.

5.1 Array Declarations for int and boolean

 array-declaration: type-specifier array-identifier;

 array-identifier: bracket-list identifier
 | empty-bracket-list identifier
 | empty-bracket-list identifier init-array-identifier

Joker: Language Reference Manual

 bracket-list: [integer-expression]
 | bracket-list [integer-expression]

 empty-bracket-list: []
 | empty-bracket-list [integer-expression]

 init-array-identifier: = { integer-expression-list }
 | = { boolean-expression-list }

 integer-expression-list: integer-expression
 | integer-expression-list, integer-expression

 boolean-expression-list: boolean-expression
 | boolean-expression-list, boolean-expression

5.2 Hierarchy Declaration
hierarchy-declaration: hierarchy: number by suit

number: { element-rule (, element-rule)* }

suit: { element-rule (, element-rule)* }

element-rule: name (value) (. name)*

Hierarchy of the domain of cards is defined by in the init block of every program.
The compiler will automatically generate a pack of cards with named, valued
cards.
A card will be created by taking an element-rule from number and suit. Thus,
the pack will be a Cartesian product of all numbers and suits. The hierarchy of
the cards is defined by the value in the element-rule. Element-rules with an
equivalent value are appended to the back of a name(value) with a period.
Cards with the same number and suit are equal.
For example,

hierarchy: {A(12), K(11).Q.J, 10(10)}
by {spades(4), hearts(3), clubs(2), diamonds(1)}

A domain of 25 cards covering all combinations of element-rules will be
generated of this hierarchy definition. For comparison between two individual
cards, see Section 3.4.2.

Code Sample- Blackjack
The following code sample describes a single game of Blackjack without dealer
rules.

Joker: Language Reference Manual

game Blackjack {
 init {
 pack DECK;
 pack [config.NUM_PLAYERS].playerHands;
 }

 main {

 // the deal
 // (one card up, one card down to each player)
 boolean flipMe = true;

 for (int n = 1; n < = 2; n++) {
 foreach playerHands as hand{
 //one care to each hand
 hand += (DECK >> 1);
 hand<bottom>.private = filpMe;
 }

 flipMe = false;
 }

 // the action
 foreach playerHands as hand {
 while(true) {
 int sum = 0;

 // find the player total
 foreach hand as card {
 sum += card.value;
 }

Joker: Language Reference Manual

 option:
 hit (if sum <= 21) {
 hand += (DECK >> 1);
 hand <bottom>.private = false;
 }

 stand (if sum <= 21) {
 break;
 }

 bust (true) {
 lost(hand);
 break;
 }
 }
 }

 // at this point every player has gone.
 Int maxPlayer = 0;

 foreach playerHands as hand {
 if (hand.sum > playerHands[maxPlayer].sum) {
 maxPlayer = i;
 }
 }
 }
}

	Index
	Lexical Conventions
	1.1Tokens
	1.2Comments
	1.3 Identifiers
	1.4 Keywords

	Meaning of Identifiers
	Basic Types
	
	2.1.1 Card type
	2.1.2 Pack type

	2.2Derived Types
	Configuration Type

	Expressions
	3.1Primary Expressions
	Arithmetic Expressions
	3.2.1 Postfix expressions
	3.2.2 Multiplicative operators
	3.2.3 Additive operators

	Pack Operators
	
	Stack-style operators

	Relational Expressions
	Equality Expressions
	Logical Expressions
	Assignment Operators
	Statements
	
	
	4.3Iterative Statements
	4.3.1 for statement
	4.3.2foreach statement
	4.3.3while statement
	4.4 Break statement
	4.5 Continue statement
	4.6 Option statement
	4.7 Game statement

	Declarations
	
	
	5.2 Hierarchy Declaration

	Code Sample- Blackjack

