COMSW4115
Programming Languages and Trand ators
Homework Assignment 1

Prof. Stephen A. Edwards Due February 20th, 2003
Columbia University at 11:00 AM EST (beginning of class)

On-campus students: submit solution on paper (no email).

CVN students: Mail a PDF file to sedwards@cs.columbia.edu

Write both your name and your Columbia ID (e.g., s€2007)
on your solutions.

Do this assignment alone. You may consult the instructor and
the TAs, but not other students.

1. Using ANTLR or Lex syntax, write an unambiguous gram-
mar or regular expression for each of the following regular
languages.

(a) Nonnegative even binary numbers.

(b) Nonnegative integer decimal numbers divisible by
three. (Hint: sum their digits)

(c) C’sfloating point numbers, as defined by Ritchie:

A floating constant consists of an integer
part, a decimal point, a fraction part, an e,
and an optionally signed integer exponent.
The integer and fraction parts both consist
of a sequence of digits. Either the integer
part or the fraction part (not both) may be
missing; either the decimal point or the e
and the exponent (not both) may be missing.

2. Draw a DFA for a scanner that recognizes and distinguishes
the following set of keywords. Draw accepting states with
double lines and label them with the name of the keyword
they accept.

aut o case char const continue default
do double else enumif ifelse

. Dragon book, 3.16, p. 149:

Construct nondeterministic finite automata for the follow-
ing regular expressions using Algorithm 3.3 (p. 122, shown
in class) and show the sequence of moves made by each
while processing the input string ababbab.

@ (alb)*

(b) (a*[b*)*

(©) ((e[a)b?)”

(d) (a|b) abb(alb)*

. Dragon book, 4.23, p. 270:

(a) Using the grammar

construct a rightmost derivation for (a,(a,a)) and
show the handle of each right-sentinel form.

(b) Show the steps of a shift-reduce (bottom-up) parser
corresponding to this rightmost derivation.

(c) Show the steps in the bottom-up construction of a
parse tree during this shift-reduce parse.

5. Disambiguate and remove left recursion from the following

grammar (i.e., show an equivalent grammar):
e—e>>ele?e: ele->e|id

Use C’s precedence rules, i.e., the precedence of - > is
higher than that of >> is higher than that of ?:. All are
left-associative.



