

BROOM
A Matrix Manipulation Language

By:
Chris Tobin
Michael Weiss
Gabriel Glaser
Brian Pellegrini

 2

Chapter 1:
BROOM: An Introduction

1.1 Introduction

 The BROOM programming language is built for flexible, high-level matrix
manipulation. It supports a powerful set of built in operations and functions. A flexible
set of tools is included within the language to allow a user to define their own matrix
operations. An intuitive design allows the BROOM programming language to be learned
over the course of an hour. BROOM also supports a subset of most popular
programming language constructs of control flow and user-defined functions.

 BROOM is designed to be a translated language, with its target language being
Java. The user is able to define a set of operations in the form of a program in a text file.
The translator will then output a Java source file that can be edited and compiled into
Java byte-code. The BROOM translator is equipped with error detection so that BROOM
syntactical and semantical errors are not passed on to the Java source code. This also
allows for error-checking and debugging algorithms to be a relatively smooth process.
Since BROOM translates directly to Java and uses a Java-implemented translator,
BROOM is a highly portable.

 Code definitions in BROOM are structured to be modular. The syntax is friendly
and oriented towards matrix operations. BROOM is designed to be consistent with
standard methods and naming of matrix operations. If a user familiar with matrix
manipulation were to look at a program written in BROOM, the function of that program
would be intuitively clear to the user.

1.2 Background

A matrix is a mathematical construct that is used in a vast array of areas and
professions including: Linear Algebra, Computer Graphics, Internet Search Algorithms,
Graph Theory, Forest Management and Electrical Networks. This extremely wide range
of applications makes matrices and their operations an incredible powerful tool.

At its most basic and abstract level, a matrix is simply a set of numbers ordered

into rows and columns (as shown below):

 3

This collection of numbers can take on any number of meanings for both theoretical and
real world problems. For example, the rows can be sets of coefficients of a system of
simultaneous equations with each column representing an independent variable. The
columns or rows can also represent the vectors that span a certain subspace. On the other
hand, the columns and rows could represent the equation needed to solve a least squares
regression.
 Regardless of the meaning or particular application of a matrix, all matrices share
a common set of functions and operations. These functions include matrix multiplication,
determinants, Gaussian elimination, inversion, addition, subtraction, scalar multiplication
and others. The information that these functions and operations yield can give great
insight into the problem that the matrix represents. However, these operations and
functions (and their algorithms) are quite complex and time-consuming to implement
without the aid of artificial computation. Even the use of a scientific calculator would not
ease the tedium and computational complexity of these manipulations. Therefore, given
the wide-range applicability and power of matrices and their functions, a language that
could easily manipulate and calculate matrices would be a very powerful tool.

1.3 Related Work

 Most of today's existing matrix manipulation tools are contained as parts of larger
and expensive mathematical software. Some examples of these large programs with
matrix manipulation capabilities are Mathematica, Matlab, and Octave. These tools have
been consulted to observe the popular syntax used in declaring and manipulating
matrices. While these tools are powerful, they have high learning curves, difficult
function declarations, and excess functionality that is unnecessary for those interested
solely matrix manipulation. Even Octave, a freeware GNU project, has a 250 page user's
manual.

 4

1.4 Motivating Scenarios

 Poindexter is working on an assignment for a linear algebra class. His just
worked out several examples by hand and wishes to check his answers. He does not have
access to an expensive tool such as Matlab and wishes to check his work without having
to learn any syntax. He downloads BROOM and within 5 minutes he has checked all of
his work, without having to spend hours browsing through a 250 page instruction manual
for a professional matrix manipulation language.

 A graduate student has data from his research in a large number of matrices that
he plans to analyze with his own matrix operation intensive algorithms. Not having prior
experience with programming, he does not wish to learn the syntax and rules of a large,
extensive program. He uses BROOM to quickly implement these algorithms. BROOM
shares enough similarities to Matlab to make a good starting ground for students from
any background.

 Our language is designed to solve not only these simple, common problems, but
more advanced problems as well.

1.5 Goals

 BROOM is meant to be a syntactically intuitive, high level, portable, flexible
language for mathematical manipulations and computations of matrices.

 1) Syntactically Intuitive - One of the main goals of BROOM is that its syntax
should be easy to learn, read, write, and manipulate. BROOM's syntax is meant to be
simple and intuitively deducible from a simple knowledge of matrix operations and linear
algebra. If a user were to have knowledge of theoretical matrix mathematics and linear
algebra, that user should be able to learn to write and understand BROOM code quickly,
without extensive programming knowledge.

 2) High Level - Users do not have to worry about internal representation of data
and algorithm implementation. The modularity capabilities allow for expansion to
complex problem solving routines.

 3) Portable - Since BROOM is translated language with its target language as
Java and its translator implemented in Java, all BROOM code can be translated,
executed, and evaluated on any machine that has a Java Runtime Environment with
compiler. Java is a highly portable language, which therefore makes the translator and
the BROOM code that it translates highly portable as well.

 4) Flexible - Through BROOM's modularization and implementation of matrix
manipulation functions, the user can create more complex routines with these modules as
building blocks. The resulting code is not only very readable, but also flexible.

 5

1.6 Basic Features

 1) Control Flow – BROOM provides users with basic level programming
language control of events using conditionals. The statements for flow control include:
if-then-else, for loops, and while loops.

 2) Flexible Matrix Definitions – with BROOM, matrix definition closely
resembles the highly proven format in Matlab and matrices can be constructed relatively
effortlessly.

 3) Data types – two types of data are supported. These data types are real
numbers (Number) and matrices (Matrix).

 4) Built-In Functions- BROOM also contains a wide range of built in functions
including Gaussian elimination, rank, inversion, transpose, and determinants. However,
the user could theoretically implement these operations in the language with the basic
constructs.

 5) User-Defined Functions – BROOM allows the user to define their own
functions which makes their resulting code more modular, powerful, and reusable.

1.7 Primary Models of Computation

The primary model of computation for BROOM is a Java implemented translator.
ANTLR was used to create the lexer and parser which in turn creates the Abstract Syntax
Tree. Both the Static Semantic Analyzer and Code Generator are written as AST Tree
Walkers using antler. The basic Matrix types, Number types, basic operators, and built-
in functions will be written in a collection of Java source code. User-defined functions
are translated from BROOM to Java methods. The final output of the translator will be a
Java file of a user-defined title that can be compiled and run to produce the desired
behavior of the inputted BROOM program.

 6

Chapter 2

BROOM: A Tutorial

If you are familiar with Matrices and simple programming constructs, this tutorial will
help you to write useful programs in BROOM in no time. A BROOM program has 4
main parts: program name, global variable declarations and assignments, function
definitions, start function definition.

2.1 Simple Example

Remember that BROOM is a translated language, so when you run BCC (the translator)
on your source-file, you will get back a Java file which you must compile and run. The
first thing that you define in your BROOM program is the name of this file, called the
Program Name.

MyBroomProgram //Program Name!

start() //start function

 Matrix myMatrix; //local variable declarations
 Number num1, num2;

 //beginning of statements that
 //should be executed

 myMatrix = [1,2; //assign your matrix
 3,4;];
 num1 = det(myMatrix) //let num1 be determinant of matrix
 num2 = 5; //let num2 be 5
 num1 = num1 + num2; //num1 now 5 + determinant of matrix
 myMatrix.print(); //print the matrix
 print(“The inverse of that matrix + 5 is :”);
 num1.print();
endstart

This very simple example illustrates the basic layout and functionality of BROOM code.
The “start” function is the function that is going to be run when you start up your
compiled Java file. So everything that you define inside your start function will be run
when you run your program. Notice that the first thing in the start function is the
declarations of local variables. If you are going to use variables to store data, you need to
declare them at the beginning of the function. Once the variables have been declared,
you are free to assign them to valid type-agreeing arguments (e.g. in our example where
we assign myMatrix to the 2x2 matrix shown above). The last 4 lines of this program
show how output to standard out is written. In this case, we print myMatrix with the

 7

.print() call. Then we print text with the print(“. .“) call. Finally we print the Number
num1 with another .print() call. All of these calls will cause the appropriate text to be
printed to the screen.
 This example above illustrates a simple BROOM program without function calls
and without control flow (i.e. if statements, for loops, etc.). For a more in depth example,
see section 2.3. Once you feel comfortable with the above example and have practiced
writing a few simple programs, the transition should be easy to section 2.3

2.2 Translating & Compiling: Finally Make Something Happen

Now that you have a source code file written, save it to a file with extension “.broom”
(e.g. mycode.broom). The next step is to translate the BROOM file into a java file.
1) Translate:
 $ java BCC <yourprogram.broom>

This call will invoke the Java implemented translator BCC that will translate your
program into a java file. The outputted Java file will have the name that you specified as
the first thing in the .broom source-code. So in our example, running BCC on our source
file will generate a java file called: MyBroomProgram.java

Now that you have a java file that is the equivalent of your .broom file, you want to
compile it into java byte-code. For this you will need to have a JVM and compiler on
your machine (preferable 1.4.1). All that’s now left is to compile the .java file:
2) Compile:
 $ javac MyBroomProgram.java
 <youroutputtedprogramname.java>

This will now give you a java class file which is an executable. Execute the class file via:
3) Execute:
 $ java MyBroomProgram
 <yourouputtedprogramname>

This call will run your desired program.

Note: In order for this process to function as above, you need to make sure that your Java
compiler is set up properly and that the BroomMatrix.java library is in the same folder as
the source-code.

2.3 A More Complex Example: Control Flow and Functions

The following example is given to show the more complicated features of the BROOM
language. If you are a relatively experienced programmer, this should be second nature
to you. If you are not, don’t worry, BROOM is a simple language and the following
constructs might take a little getting used to, but are relatively easy to understand and
manipulate:

 8

MyNewBroomProgram
//what follows are global variable declarations
global Matrix globalMat;
global Number globalNum;

//global variable assignments
globalMat = [1,2;
 3,4;]
globalNum = 7;

//user defined function with control flow
//function multiplies 2 Matrices and a Number together only if
//the number is not 0
define function Void matrixScalarMult(Matrix a, Matrix b, Number c)
 //local variable declarations and assignments,
 //only seen inside this function
 Number unused1;
 unused1 = 0;

 //check if c is 0, if it is, print that you must get non-zero
 //number as an argument
 if(c == 0)then
 print(“You must give a non-zero Number argument”);
 else
 a= a*b;
 a = a*c
 print(“Below is the result of matrixScalarMult”);
 //print the Matrix
 a.print();
 endif
endfunction

//now define the start function which defines what happens when program
//is run. It simply calls the matrixScalarFunction
start()

 //call matrixScalarMult on the globalMat with a hardcoded matrix
 matrixScalarMult(globalMat, [1,1;2-3,4], globalNum);
endstart

The above example shows how global variables (globalMat and globalNum) can be
referenced anywhere in the program (they are used as arguments in start()). This
program also shows how you assign these variables outside of all function definitions.
The next interesting thing that this program introduces is the idea of a function. A
function is a piece of code that a user defines to take some variable number of arguments
and which returns some type (Matrix, Number, or Void). This function can then be
called later in the program. Calling a function means running the function code on the
arguments provided to it. Finally, this example introduces control-flow in the form of an
if statement. The program comments state what the if statement actually checks. For
more information on control-flow and functions, please see the Reference Manual (Ch.
2).

 9

Chapter 3:

Language Reference Manual

3.1 Lexical Conventions

Each BROOM program consists of a file which can be written in DOS, UNIX, or MAC
standard file format using ASCII or UNICODE text. BROOM is case sensitive. There
are 4 types of basic tokens that comprise a program. These are identifiers, keywords,
operators, and basic separators. Blank spaces, newlines, comments, and tabs are
necessary between any adjacent tokens of the same type. These non-token characters are
denoted as whitespace. Hence, the general format of the language is free form. The
detailed specifications of the lexical conventions of the language are defined below, as
well as fully specified in the grammar of the language appended to the end of this
document.

3.1.1 Whitespace
The DOS, UNIX, and MAC standards are all accepted as whitespace. That is, carriage
returns, newlines, and combinations will all be treated as whitespace.

Comments:
BROOM uses one type of commenting style. A comment can span only a single line. A
comment begins with ‘//’ and ends with a newline. All text after the ‘//’ and before the
newline are ignored by the parser:
Comment
 . . .
 //this is a comment, the parser will not look at this at all
 Matrix a. . . .

3.1.2 The Tokens
Outlined below are the lexical constructs for the basic token types in the BROOM
programming language. Their significance will be discussed shortly.

Identifiers
Identifiers are formally defined as any sequence of letters (a-z, A-Z) or digits (0-9) that
do not begin with a digit and are not a keyword. These are used to represent user defined
variables and functions.
 Grammar Rule:
 ID : ('a'..'z’’A'..’Z’) (('a'..'z’A’..’Z’') | DIG)*;

Keywords

 10

The BROOM programming language reserves the following words for built in functions:

Number gauss numRows endstart
Matrix inv numCols print
if det setRow addRow
else trans setCol addCol
then rank function deleteRow
endif rowSwap endfunction deleteCol
while colSwap return appendUD
endwhile getRow global appendLR
for getCol define
endfor getElement start

NOTE: BROOM also reserves all Java reserved words. Since the BROOM compiler,
BCC, translates into Java, no BROOM program can use the Java reserved words as
identifiers.

Operators
The following symbols each have unique functions in BROOM programming language:
 Arithmetic Operators : + - *
 Boolean Operators : ! && ||
 Logical Operators : != < > ==

Separators
() ; [] ,
These are used to build expressions and matrices.

3.2 BROOM Programs and Programming Constructs
(If unsure about the grammar notation, see footnote on ANTLR notation.)1

The total grammar for BROOM can be seen in the Appendix under the code listing
section. See the file broom.test.g (by Chris Tobin) for the entire grammar.

1A Note on Grammar Notation

All grammar symbols are defined in a standard ANTLR acceptable notation. These
standards are as follows: (...) denotes a sub rule. (...) * denotes a Kleene closure
operation on the enclosed expression within the brackets. (...) + denotes a positive
closure. (...) ? indicates that the enclosure is optional. A logical OR that abbreviates 2
productions or serves as the union operator in a regular expression is denoted '|'. If we
take the range of a set of values, for example, from numbers 2 through 7, the rank is
abbreviated with 2 dots, '2' .. '7'. A colon denotes a rule start. And a semi-colon
represents the termination of any given rule. For example, the rule A -> B, is then
denoted, A : B ; in ANTLR form.

 11

3.2.1 Program Layout
A BROOM program consists of a program name, a set of global variable declarations,
immediately followed by global variable assignments. These are followed by a list of
function definitions. Lastly, the start function is defined. This is the function that will
actually define the program flow (what functions will be called, etc). The general layout
of a BROOM program follows below:

 { Identifier } //the name of the program
 { Global Variable Declarations ... } //optional
 { Global Variable Assignments ... } //optional
 { Function definitions ... } //optional
 { Start Function (mandatory) }

Note: Each function definition has the same general format as the larger program. See
section 2.7 where this is more specifically defined.

3.2.2 The 2 Data Types: Matrix and Number

There are only two data types in BROOM: Number’s and Matrix’s:

3.2.2.1 Number
Numbers are high precision floating point numbers, which have a flexible definition.
They are formally defined by the grammar below:

signedDouble : (SUB NUMBER) | NUMBER ;
NUMBER : DECIMAL ('e' (SUB)? DECIMAL)? ;
protected DECIMAL : (DIG)+ (DOT (DIG)+)?;
protected DIG : ('0'..'9');
DOT: ‘.’;
SUB: ‘-‘;

Examples:
 1 1.2 -1.25 -0.555e17 1e-2 1.74e1.23

3.2.2.2 Matrix
A Matrix is a two dimensional array of numbers. A Matrix has m rows and n columns.
Every explicitly (hard-coded) defined Matrix has a specific form. Each Matrix has at
least one row whose elements are separated by commas. A semicolon terminates every
row.
Example Matrix row:

1, 2, a-b, det(someMatrix), 5*b ;

As seen above, the elements of each row are not restricted to only Numbers or
identifiers. Each element can be an expression whose evaluation yields a number.
Expression’s are defined later in the manual, but a loose rule is that an

 12

expression that can be used as an element of a row can be a: Number, identifier,
function call (that returns a Number), arithmetical expression that operates on any of the
above, provided that it yields a Number. (Note: Static Semantic Analysis will ensure
that only the aforementioned expressions can be used in a row declaration.)

The actual definition of a Matrix is one or more rows, of equal length, enclosed within
square bracket. While the grammar rules are not capable of ensuring equality of row
lengths, Static Semantic Analysis ensures that this is enforced.
Example Matrix definitions:

 [1, 2, 3, 4;
 5, 6, 7, 8;
 9, 10, 11, 12;]

 [a, b, c;
 det(someMatrix),rank(anotherMatrix), b*c+1;]

 [1;]

 [1; 2; 3;]

The rule that is used to define how a Matrix can be written explicitly in BROOM is
shown below (this is not the exact rule from the ANTLR grammar, it has been modified
to be more readable):

matrix:
 ‘[‘! (matrixrow)+ ‘]’!
 ;
matrixrow: (expr) (‘,’! expr)* ‘;’!
 ;

3.2.3 Variables

A variable is an Identifier which refers to a Matrix or a Number. Variables must
always be declared before being assigned or manipulated. There are two types of
variables: global and local. A global variable is declared in the beginning of the program.
A local variable is be declared at the beginning of a function body. These two types of
variable declarations are defined formally as follows:

globalvariabledec : "global"! declaration;
declaration : ("Matrix"|"Number") ID (COMMA! ID)* SEMI!

These rules allow for more than one variable of the same type to be declared in
the same declaration as shown in the following examples:

Example Global Variable Declarations:
 global Matrix myMatrix, yourMatrix, c, d;
 global Number a, b;

 13

 global Number anotherNumber;

(Local Variable Declarations are the same as global except they are not
 preceded by the “global” keyword).

3.2.3.1 Scope of Variables
Given that there are two types of variables, global and local, each must clearly have its
own scope. A global variable can be referenced, viewed, and modified from any function
in the program. Local variables are local only to the function in which they were
declared and therefore can only be referenced and modified from within said function.

Note: BROOM uses static scoping, as does Java, the language into which
 we are translating.

3.2.3.2 Variable Assignments
Once a variable has been declared, it must be assigned before it can be used. A variable
assignment consists of a destination variable, followed by the '=' operator (which denotes
assignment) followed by an expression, which the programmer needs to ensure returns a
value whose type matches the destination variable, or an error will occur.

In every case save one, assignments will be done by value (i.e. the value returned by the
expression will replace the value currently stored in the variable). The exception case
occurs when one Matrix variable is assigned to another Matrix variable (e.g. MyMat
= YourMat;). In this case the variable is assigned by reference.

Hence, an assignment can be formally defined as follows:

ASSIGNMENT : IDENTIFIIER '=' EXPRESSION ;

Examples of Variable Assignments:

 A = 1+2;
 B = det(c)* (rank(a) – 5);
 E = d;

 Note: The terminating semi-colons are not part of the assignment rule, they
 are part of the statement rule. The semi-colons are included here to make the
 examples appear more intuitive to those who use the language.

3.2.4 Arithmetic Operators
BROOM supports several fundamental operators to be used in expressions. These are the
arithmetic operators:

+ - * /

Each operator has a different function given the types of its arguments. These behaviors
and differences are described below.

 14

3.2.4.1 Addition Operator : +

Argument 1 Type Argument 2 Type Return Type or Error
Matrix Matrix Matrix (see note 1)
Number Number Number
Number Matrix Error
Matrix Number Error

 Note 1: Matrix addition can only be performed if each argument Matrix is of the
same size. The result will be a Matrix of the same dimension whose elements are the
sum of the respective elements in the argument Matrix’s. (For more information, see
Gilbert Strang’s Introduction To Linear Algebra). While the grammar cannot guarantee
the dimension equality condition, Static Semantic Analysis will ensure that it is fulfilled.

3.2.4.2 Subtraction Operator : -
 This operator performs exactly as the addition operator except the operation is
subtraction. See section 2.4.1

3.2.4.3 Multiplication Operator : *
The multiplication operator is the most overloaded basic operator in BROOM.
Depending upon its arguments, it can perform scalar multiplication of scalars or matrices,
and Matrix multiplication. The table below describes these behaviors.

Argument 1 Type Argument 2 Type Return Type or Error
Matrix Matrix Matrix (see note 1)
Number Number Number
Number Matrix Matrix (see note 2)
Matrix Number Matrix (see note 2)

 Note 1: Matrix-Matrix Multiplication. Two matrices of dimensions (m1 x
n1) and (m2 x n2) can only be multiplied together if n1 = m2. This cannot be enforced
by grammar, but if this condition is not met, errors will be thrown to notify users.
 Note 2: Matrix-Number Multiplication. In these two cases, you multiply a
Matrix with a Number. The result is a Matrix, of the same dimension as the
argument Matrix, with all of its Number elements multiplied by that scalar.

 15

3.2.4.4 Division Operator : /
The division operator in BROOM is defined to work only on Numbers. Therefore, its
argument table is a simple row as follows:

Argument 1 Type Argument 2 Type Return Type or Error
Number Number Number

 Note: as in all arithmetic, division by 0 is not permissible and will throw an error.

3.2.4.5 Precedence of arithmetic operators
The precedence of arithmetic operators is the same as in all other arithmetic grammars.
Multiplication and Division have the highest precedence and are therefore lower in the
AST and evaluated first. Subtraction and Addition are of lower precedence and are
therefore higher in the tree and evaluated after Multiplication and Division. Parentheses
can be included to change the order of evaluation. Arithmetic expressions in parenthesis
are of higher precedence. For more information, see language’s precedence order list at
end of section 2.5.1.

3.2.5 Expressions
Before we begin the formal definition of a statement, it is necessary to define expressions
because they will occur frequently within statements. An expression is a set of
optionally parenthesized and/or nested sequences of numbers, matrices, and functions
(which return numbers or matrices) connected in sequence with the arithmetic operators.
Expressions take into account the precedence order of the language. This can be seen in
the grammar for expressions below:

expr
 : term ((ADD^|SUB^) expr)?

 ;

term
 : atom ((MUL^|DIV^) term)?
 ;

atom
 : funcall
 | builtin_funcall
 | ID
 | signedDouble
 | LPAREN! expr RPAREN!
 | matrix
 ;

Note 1: funcall, is a function call of a user defined function, for more
 information see Section 2.7.

Note 2: builtin_funcall is a call to a function that is built into the BROOM
 language. See section 2.8 for more information.

 16

3.2.5.1 Expression Evaluation Precedence List
From these grammar rules, one can discern the precedence level of expressions in
BROOM to be as following, in descending order of precedence of evaluation:

1) Function Calls, Built-In Function Calls, Variable, constant Numbers,
 Expressions nested within parentheses, constant Matrix’s.

2) Multiplication or Division
3) Addition or Subtraction

3.2.6 Statements and Statement Lists
Statements are the basic instructions that comprise most of the body of a given function.
A statement can be thought of as a command that you want the program to execute for
you. A programming “sentence” as it were. Every function has a statement list (stmtlist)
which is a list of statements that should be executed in order. A statement list can be
thought of as a paragraph in a program. The primary purposes of statements, or the basic
instructions that are allowed in the body of a function are:

-assignments
-control-flow
-calling a function by itself (i.e. no return value)
-returning a value and escaping the current function scope (if function

 returns a value)

Hence, the grammar for statements and statement lists naturally follow as:

stmtList: (stmt)+
 ;
stmt : assignment | ‘return’ expr SEMI | control_flow | funcall SEMI
 |printcall SEMI;

Assignments have already been treated in a previous section. The next few sections
define the return expressions, control_flow, print calls, and function calls that are
considered statements.

3.2.6.1 Conditionals
Conditionals play a major role in the control_flow blocks and are therefore treated before
the control_flow rule. Conditionals ultimately return a boolean value of 'true' or 'false'.
Their usage is restricted to being place within a conditional clause of a for, while, or
if statement conditional.

A conditional is a set of two expressions compared with logical operators, (expr1 >
expr2), a conditional preceded by a not operator (!), or a set of 2 conditionals, enclosed
in parentheses connected with boolean operators.
Examples of Conditionals:
 a > b
 (a > b) && (b <c)

 17

 !(a <c)
 a == 2
 b != a
 !(a==b)||(12>det(myMatrix – yourMatrix))

The && is the logical AND operation, || is the logical OR operation, and '!' is the NOT
operation, which are binary operators that operate only on boolean values returned by two
expressions connected with a logical operator:

== (LOGEQ) - test Number-Number or Matrix-Matrix equality
< (LOGLT) - test Number-Number less-than
> (LOGGT) - test Number-Number greater-than
!= (LOGNEQ) - test Number-Number or Matrix-Matrix inequality

The grammar rule that formally defines a conditional follows below:

conditional : (logicalExpr1 ((AND^|OR^) logicalExpr1)?)
 ;

logicalExpr1 : (NOT^ LPAREN! logicalExpr RPAREN!) | logicalExpr
 ;

logicalExpr : (expr (LOGGT^|LOGLT^|LOGEQ^|LOGNEQ^) expr)
 ;

3.2.6.2 Control-flow unit
BROOM supports 3 built-in control flow statements: if, while, and for. The
functionality of these control loops is standard:

If-Statements:
ifstmt: ‘if’ ‘(‘ conditional ‘)’ ‘then’

stmt-list
(‘else’ stmt-list)? ‘endif’

If the conditional is evaluated as 'true', then the first statement-list is executed. If the
conditional is evaluated as ‘false’, and the optional ‘else’ followed by a stmtlist is
provided, the second statement list is evaluated. If the optional ‘else’ and stmtlist are not
provided, then the if statement is exited. Note that the whole statement must begin with
‘if’ and end with ‘endif’.

While-Statements:
whilestmt: ‘while’ ‘(‘ conditional ’)’

stmt-list
‘endwhile’

The basic control flow of the while loop is as follows. The parenthesized conditional is
evaluated. If it evaluates to true, the enclosed statement list is executed. Once this has
been executed, the condition is checked again and the process is repeated until the

 18

condition is evaluated to false. This allows for dynamic iteration but also provides the
dangerous possibility of infinite looping.

For-Statements:
forstmt: "for" ‘(‘ assignment conditional SEMI assignment ‘)’

stmtList
 "endfor"!

At the beginning of the for statement’s execution, the first assignment within the
parentheses is executed (note: the variable must be declared outside the for statement and
at the beginning of the desired scope). The conditional is then evaluated and if true, the
statement list is executed. Once the statement list has finished its execution, the second
assignment is executed. Then the condition is checked again and the process continues
until the conditional is evaluated to false. Briefly then: the for loop permits an
assignment statement that is run once at the very beginning of the loop, a conditional that
is checked after each loop iteration, and a iteration statement that is executed at the end of
each loop iteration. The assignments and conditions are usually used to implement
counters.

3.2.6.3 Lone Function Call
Whether or not a function returns a value, it can be called by itself for the benefit of side-
effects the function may have. The return value will be discarded. The user also has the
ability to define functions that have a ‘void’ return type. This means that they do not
return any value. Therefore, these functions can be called without an assignment. Print
Calls can be considered lone function calls since they have no return type, but they are
defined separately since they have a unique argument type.

3.2.6.4 Return Statements
All statements will be defined within a function, whether the function be user-defined or
the necessary start function. When a user defines a function, he/she defines what type of
argument that function will return (void, Matrix, Number). Therefore, inside of a
user defined function with a non-void return type, there must a return statement that
returns a variable or value that is consistent with the return type of the function. (For
more information on functions, see section 2.7) A return statement is defined simply
below:

'return' expr ;

3.2.6.5 Print Calls
BROOM provides the ability to print text, Matrix’s, or Numbers to standard out.
There are 2 main built-in functions that are used to print these values to the screen. The
first prints text and is defined below:

printtext: ‘print’ ‘(‘ TEXT ‘)’
 ;
TEXT: '"'(~('\n' | '"'))*'"'
 ;

 19

Here text is defined as any set of characters without a newline or quotation mark. The
given text will be printed out with a terminating newline.
Example of text printing:
 print(“Hello my name is Chris 123”)

 yields in stdout:
 Hello my name is Chris 123
 $. . .

The second type of printing prints a Matrix or Number to standard out. This is the
only call in BROOM that is “postfix”. Any Number or Matrix that is to be printed
must be assigned to a variable. Then print is called on that variable according to the
following rule:

printvariablevalue: ID DOT “print” ‘(‘ ‘)’
 ;

If the variable contains a Number, the Number will be printed without a newline. If the
variable contains a Matrix, the Matrix will be printed to stdout in a readable format.
Example of Matrix and Number Print Calls:
 a.print();
 b.print();
 (where a is a Matrix and b is a Number)

 yields in stdout:
 1 2 3 4
 5 6 7 8

 4.75$

3.2.7 Functions
Functions are constructs which, given zero or more parameters, run a series of
instructions (statements) and return a type (if return type is not void). They allow for the
construction of local variables for usage within the function. Side-effects are defined as
changes that a function makes to global variables. Parameters are passed by value and
therefore a function cannot indirectly change the value associated with one of its
parameters (such an operation would require an assignment). A copy of the parameter's
value is created when the function is called so that these values cannot be changed in the
instructions within the function. Recursion is supported. Functions can make function
calls to themselves.

Every function must be defined according to the following rule:

functiondefinition:
 "define" "function" ("Matrix"|"Number"|”Void”) ID arglist
 (declaration)*
 (stmtList)

 20

 "endfunction"
 ;
arglist: ‘(‘ (argdecl (COMMA! argdecl)*)? ‘)’
 ;

argdecl: ("Matrix"|"Number") ID
 ;

The “define” and “function” indicate that a function is being defined. The next necessary
token is the return type. A function can be defined to return a Matrix, Number, or
nothing (Void). The next necessary token is the Identifier which is the name that the
function will be referred to as for the duration of the program. Following the function
name, a parenthesized list of argument aliases and types are passed. This defines the
number of arguments and types that a function can be called on.

The function definition body consists of two sections. First, there is a list of local
variable declarations that follow the same pattern as all declarations. Second, there is a
list of statements that will be executed when the function is called. Those Identifiers used
in the argument list to define the function’s arguments can be used in the statements of
the function to represent the arguments given on a function call.
Note: the power of user defined functions is that they can be called within other
functions, allowing the user to encapsulate and structure the flow of their program and
allow for more power.

3.2.7.1 An Example of A User Defined Function

define function Number giveSum(Number a, Number b, Number c)
 Number sum;

 sum = a + b + c;

 return sum;
endfunction

This simple function has a Number return type, takes 3 Number arguments and returns
their sum. This illustrates the general format of a function definition in BROOM.

3.2.7.2 The Start Function
Every BROOM program must have defined in it a start function. This is analogous to
Java and C’s ‘main’ function. This is the actual function that will be called when the
program is executed. It has a structure very similar to that of a user-defined function and
is defined as follows:
startfunction: "start" ‘(‘ ‘)’
 (declaration)*
 stmtList
 "endstart"

The main difference between a user defined function and the start function is that the start
function definition begins with the word ‘start’ followed by empty parenthesis. It also
has no return statements.

 21

3.2.7.3 An Example of A Start Function Definition

start()

 Matrix mymatrix,m;
 Number z;

 mymatrix = [1, 2, 3, 1-1;
 3, 4, -5, 4;];

 z = sum(1,2,3);

endstart

Notice that the start function actually calls the sum function we defined earlier. This is
the code that will be executed when the program is run.

3.2.8 Built-in functions:

BROOM provides several built-in functions that are inherent to Matrix manipulation.
The following is a list of those functions that are built in. As can be seen from the
syntax, all built-in functions are invoked in a “pre-fix” manner.

1) Matrix newMatrix(Number m1, Number n1)
 creates a new empty Matrix, filled with zeros.
 m1 specifies the height of this new Matrix, and n1 denotes the height.
2) Matrix inv(Matrix a)

computes the inverse of input Matrix a. a must be a square Matrix for
this function to work properly

 returns the inverse Matrix
3) Matrix gauss(Matrix a, Matrix b)

Solves the Matrix equation ax=b, where input Matrix a is a square
Matrix and b is a vector of the same height as a.

 returns the solution x, a column vector of the same height as a.
4) Matrix trans(Matrix a)
 returns the transpose of Matrix a.
5) Number det(Matrix a)
 returns the determinant of a Matrix a.
6) Number getElement(Matrix a, Number b1, Number c1)
 returns the [b1,c1]th entry in Matrix a as a single Number.
7) Number numCols(Matrix a)
 returns the number of columns in Matrix a.
8) Number numRows(Matrix a)

 22

 returns the number of rows in Matrix a.
9) Matrix getRow(Matrix a, Number b1)
 returns a Matrix consisting of the b1’th row of Matrix a.
10) Matrix getCol(Matrix a, Number b1)
 returns a Matrix consisting of the b1’th column of Matrix a.
11) Matrix rowSwap(Matrix a, Number b1, Number c1)

returns a new Matrix identical to the Matrix a, except that the b1th and
c1th rows are swapped.

12) Matrix colSwap(Matrix a,float b1, float c1)
returns a new Matrix identical to the Matrix a, except that the b1th and
c1th columns are swapped.

13) Number rank(Matrix a)
 returns the rank of input Matrix a.
14)Matrix setElement(Matrix a,Number b,Number m1,Number n1)

returns a new Matrix, the same as input Matrix a, with the [m1,n1]th
entry in Matrix a now set to be equal to b.

15) Matrix setRow(Matrix a, Matrix b , Number pos1)
returns a new Matrix, the same as input Matrix a, with the pos1’th row
in Matrix a now set to be equal to the row Matrix b.

16) Matrix setCol(Matrix a, Matrix b , Number pos1)
returns a new Matrix, the same as input Matrix a, with the pos1’th
column in Matrix a now set to be equal to the column Matrix b.

17) Matrix addRow(Matrix a, Matrix b)
returns a new Matrix, the same as input Matrix a, with the row Matrix
b added on as the last row. (height of returned Matrix is 1 more than the
height of input Matrix a).

18) Matrix addCol(Matrix a, Matrix b)
returns a new Matrix, the same as input Matrix a, with the column
Matrix b added on as the last column. (Width of returned Matrix is 1
more than the width of input Matrix a.

19) Matrix deleteRow(Matrix a, Number pos1)
returns a new Matrix, the same as Matrix a, except that row at position
pos1 is deleted and the rows under it shifted up by 1.

20) Matrix deleteCol(Matrix a, Number pos1)
returns a new Matrix, the same as Matrix a, except that column at
position pos1 is deleted and the columns under it shifted left by 1.

21) Matrix appendLR(Matrix a, Matrix b)
 returns a new Matrix, constructed by appending Matrix b to the right of
 Matrix a.
22) Matrix appendUD(Matrix a, Matrix b)

returns a new Matrix, constructed by appending Matrix b to the bottom
of Matrix a.

 23

Chapter 4

Project Plan

4.1 General Project Processes

The group as a whole followed these general processes in the various stages of the
development of the project.
 Planning and Specification- General guidelines and specifications for the
language and the development process were laid out in a number of full group meetings.
These meetings were very helpful in order to focus the scope of our language and to
determine the most efficient way to implement our goal. Specifications of the interfaces
between 2 components were established in these meetings as well.
 Development and Testing – In general we felt that it was always better to
employ “Extreme Programming”. Code usually came out more streamlined and less
error-prone. However it was difficult to get 2 developers together for extended periods of
time. Therefore each was responsible for the individual testing of their components as
they developed them. This helped immensely during the final testing stage because those
who had developed the components had identified and addressed many errors that would
have confused the final debugging process.

4.2 Programming Style Guide

It was generally agreed by the entire team that clear programming style was essential to
this project because there were so many interdependent parts. The developer who was
creating the Static Semantic Checker needed to have a clearly written grammar with AST
specifications commented and explained well so that he could implement the Tree
Walker. This clear programming style also allowed for those who did not write a
component to change a component without having to wait for the component’s author to
discern where the error was. This enabled much faster development. The following rules
were stated to ease the development process:

1) All code should be clear and well-commented
2) All changes to code should have a comment saying on what date the code was

changed and what the reason for change was
3) RCS logs should be updated as well according to rule 2
4) If you update or modify code that you are not responsible for, or that will have an

effect on another developer’s work (e.g. change in grammar rules or AST
composition) you should immediately notify all affected developers.

 24

5) Names should be consistent throughout all programs that deal with the AST and
the grammar. Therefore TreeWalker rules should match closely in name to the
rules that generated that tree.

6) All Java code, be it back-end or embedded, should have variable and function
names that are intuitive and not generic (e.g. float a1,a2,a3 . .)

In general, these rules were followed, did ease development, and cut down on confusion
and difficulty in interpreting and/or modifying another developer’s code.

4.3 Project Timeline

Below follows the timeline that the team created upon the creation of the white paper.

Goal Due Date
Complete White Paper 2-18-03
Complete Grammar Specifications 3-10-03
Complete Language Specifications and Functions 3-10-03
Language Reference Manual 3-27-03
Final Version of Grammar 3-27-03
Lexer and Parser Complete 4-1-03
Semantic Analysis Complete 4-8-03
Backend Matrix Code Complete 4-8-03
Code Generation Complete 4-15-03
Compiler Assembled Begin Final Testing 4-22-03
Freeze Code and Present 4-29-03

4.4 Team Responsibilities

It was expected that everyone in the group would help in documentation and would help
each of the people below with their responsibilities. The table below indicates what each
person actually was responsible for and completed. All helped in testing their various
parts during development.

Group Member Responsibilities
Michael Weiss Static Semantic Analysis, Testing
Chris Tobin Grammar(AST), Lexer, Parser, Code Generation
Gabe Glaser Back-End Java Matrix Code
Brian Pellegrini Testing

Note: Documentation was generally a group effort. The Final Report was written by
Chris Tobin. Chapter 6 was written by Mike Weiss and Brian Pellegrini. Chapter 3 was
written by Chris Tobin and Gabriel Glaser.

 25

4.5 Software Development Environment

We did all of our development on Mike Weiss’ dual Athlon Processor Machine running
Linux. Each group member was given an account on his machine so that they could ssh
in and develop. RCS was used for version control. The Lexer, Parser, AST, Semantic
Checker and Code Generator were all implemented using the ANTLR language tool with
Java 1.4.1. The back-end Java code was written in Java 1.4.1 as well.

4.6 Project Log
(also see printed RCS logs of the various components at end of this document)

Achievement Date Done
White Paper Completed 2-18-03
RCS and Development Environment Created 3-10-03
Grammar Rough Draft I 3-18-03
Language Reference Manual Completed 3-27-03
Grammar Rough Draft II 3-27-03
Grammar Final Draft 4-10-03
Lexer and Parser Completed 4-10-03
Backend Matrix Code Complete 4-10-03
AST Final Structure Completed 4-13-03
Code Generation Version 1 Completed 4-23-03
Static Semantic Analysis Version 1 Completed 4-25-03
Static Semantic Analysis Completed 4-28-03
Code Generation Completed 4-28-03
Translator Assembled, Final Testing Begun 5-4-03
Documentation Completed/Edited 5-9-03
Code Freeze, Decision To Complete 5-9-03

 26

Chapter 5

Architectural Design of BROOM

5.1 Block Diagram of Translator

5.2 Description of Architecture

There are five main components of the BROOM translator: lexer, parser, Semantics
Checker, Code Generator, back-end Java source code library (BroomMatrix.java.
A user inputs a .broom file to the translator. The first thing that the translator does is
create a lexer on that input file. The lexer was created using ANTLR and produces the
tokens that were defined in the grammar file. This lexer is then passed to the parser
which was also defined in the ANTLR grammar file. The parser receives tokens from
the lexer as is necessary as it parses the file to match the file to the grammar rules that we
have defined. If there are syntactical errors, the parser reports these errors to the user via
standard out. These errors were modified slightly in the grammar so that they would be
easier to interpret by the user. If the inputted source file is syntactically correct, the
parser creates an Abstract Syntax Tree or AST from the grammar rules. This AST is the

 27

main data structure that is used to both test the semantics of the input file and to generate
the code.

Once the AST has been created, it is passed to the Static Semantics Analyzer, or
Semantics Checker. This is an ANTLR implemented TreeWalker that walks the AST
given by the parser. The Semantics Checker makes two passes over the AST. In the first
pass, the Semantics Checker creates the appropriate symbol tables for each scope. There
are two main scopes in a BROOM program: the global scope (global variables) and the
functional local scope (variables local to the function). The Semantics Checker creates a
symbol table for the global scope and for each defined function. On the second pass, the
Semantics Checker uses the symbol table and its knowledge of the built-in functions to
check the semantics of the inputted program. Some of the many things that the Semantics
Checker checks are: type-checking, appropriate arguments to functions, no use of
unassigned variables, correct argument structure (e.g. taking the inverse of a hard-coded,
non-square Matrix). If the Semantics Checker detects any errors, it reports these errors
to standard out. (Note: Much time has been invested in trying to create our own AST
node class based on the ANTLR interface. However, due to time constraints and errors
that were difficult to debug, we abandoned this effort. Therefore, the Semantics Checker
errors are not able to return the line numbers of the errors. Had we had more time, we
would have implemented this right away)

The Semantics Checker returns a Vector of Strings that contains the error messages that it
needs to send to the user. If this Vector is empty, that is the “Generate Code Signal” that
says that the AST is semantically correct and therefore can be used to generate code off
of. (The empty error Vector is the dotted-line between the Semantics Checker and the
Code Generator, it is the go ahead signal to the generator). The static semantic checker
examines the following: duplicate variable definitions, duplicate function definitions,
invalid assignments, missing return statements, mismatched return types, undefined
variables or functions, expression checking, function argument checking, logical
expression checking, built-in function checking, and java reserved word testing.

Once the AST has been approved by the Semantics Checker, the Code Generator begins
its walk of the AST. The Code Generator is also an ANTLR created TreeWalker that
maintains a global String that it accumulates over its walk of the AST. This global string
contains references to the Objects and methods of the BroomMatrix.java file
contains the code necessary to create a Matrix and perform the various built-in
functions. Once it has reached the end of the AST, the Code Generator prints out this
accumulated program string (which is the appropriately translated java source code) to
the file name that is specified at the beginning of the .broom file.

 28

5.3 Authors of Components

The following table lists which group member was responsible for implementing and
developing the aforementioned components:

Group Member Component(s)
Chris Tobin Lexer, Parser, Code Generator
Michael Weiss Semantics Checker, Symbol Tables
Gabe Glaser BroomMatrix.java

 29

Chapter 6:

Testing Broom Functionality

6.1 Testing Overview

Program testing is an ongoing progress in almost every software development situation.
As such, testing has been an integral part of our program since the first day of
development. During each phase of development, program segments were run through
intermediate test cases for specific tasks. Each group member involved with
programming designed small, specialized test cases for their domain. These separate test
categories fall into grammar functionality testing, static semantic checker testing, isolated
back-end matrix functionality testing, and finally fully-assembled compiler testing. The
latter is by far the most important and constitutes the majority of the test phases. Extra
effort was placed on assembling the final set of test cases.

6.1.1 Grammar Functionality Testing

While the grammar was in the design phase, 2-3 text files containing characteristic
grammar constructs were using to get the primary language parser and tree builder up and
running. Since the grammar is the foundation of the rest of the language, smaller errors
not detected in this phase were soon detected later on. The test text files in this phase
were not complete programs. The program was broken down into it’s sub rules, each of
which were tested individually. These cases, while syntactically correct, were not
necessarily semantically correct. In the end, segments of these programs were
incorporated into the final and most important testing phase.

6.1.2 Static Semantic Checking

Also based on the programming segments which later evolved into finalized test cases,
several intermediate test cases were used to test the functionality of the static semantic
checker. Eight separate programs were assembled for the intermediate steps of the static
semantic checker. These programs do not function in the final version, but were useful in
the process of building the static semantic checker.

6.1.3 Matrix Operation Checking

The built-in functions each had small test cases not written in broom, but they served to
test the matrix operations. The matrix operations were later testing in the final test suite
described below.

 30

NOTE: there are 2 representative test cases shown here in the testing
section. For each type of test in the test suite, there are references to the
test files that were used. These other files are located at the end of this
document in the code listing.

6.2 Static Semantic Checking and Runtime Error Checking

The next set of test cases were used to check the Static Semantic checker and the error
handling of the runtime errors detected by BroomMatrix.java since some errors were
undetectable until runtime.

6.2.1 Java Reserved Words

Another source of errors in BROOM is the use of reserved words as variable or function
names. One important point is that because BROOM is translated into JAVA code the
compiler needs to check for the illegal use of both BROOM, and JAVA keywords. This
function tests the error checking for both illegal naming of variables, and functions. The
compiler was correctly able to identify the use of the JAVA keywords “throws” as a
variable name, and “implements” as a function name. This aspect of error checking is
very important for obvious reasons. Needless to say reporting the use of BROOM
keywords illegally is necessary in order to compile the code correctly. But what is not so
immediately important is that the illegal use of JAVA keywords is equally if not more
important. At best non-functioning JAVA code would be created leaving the user
confused, and thinking that their code logic is implemented incorrectly. At worst it is
conceivable that incorrect code is generated that is able to run. Conceivably, this code
could produce results that would be incorrect, which would result in disastrous side-
effects. These errors are handled by placing all of the JAVA and BROOM keywords into
the initial set of symbol tables, and then during variable and function name binding the
names are checked against the pre-existing variables and keywords. If a match is found
an error is reported, and the process is terminated. BROOM was successfully able to
identify and report these errors.

Please refer to reservedWord.broom and reservedWord.results.txt (by Brian Pellegrini)

6.2.2 Matrix Assignments

A very basic, yet important type of error is matrix assignment where one of the rows has
an inconsistent number of columns listed. From the start it is apparent that no matrix
operations can be performed on a misshaped matrix, and at a more basic level no array
can be declared to hold a matrix with illegal dimensions. As a result it is imperative that
these errors be identified and dealt with. The program “wrongNumCols.broom” tests
BROOM’s ability to deal with this type of error. BROOM was able to identify and report
all errors in the program, and terminate the compilation process without generating any
code. The results of this test are located in the file “wrongNumCols.result.txt”.

 31

Please refer to wrongNumCols.broom and wrongNumCols.results.txt (by Brian
Pellegrini)

6.2.3 Type Checking

Data types are a crucial part of the BROOM language, thus a large part of the testing
focused on the use of data types in BROOMs’ built-in and user-defined functions. Data
types in this language are restricted to two types’ real numbers, and matrices. These two
types are in no way interchangeable, which means that it is essential we made sure that
type checking worked perfectly.

First we tested to make sure that functions would recognize when the types of their
arguments were wrong.
Please refer to unaryOp.broom and unaryOp.results.txt (by Brian Pellegrini)
Then type checking in logical operations used in control flow constructs was tested
Please refer to logicalOpps.broom and logicaOpps.results.txt (by Brian Pellegrini)
Type checking was also checked for agreement of function return types in user defined
functions
Please refer to returnNonVoid.broom and returnNonVoid.results.txt (by Brian Pellegrini)
 SetRowCol.broom and setRowCol.results.txt (by Brian Pellegrini)
 Rowcolswap.broom and rowcolswap.results.txt (by Brian Pellegrini)

6.2.4 Run-Time Errors

One possible source of serious errors is in the run time environment. In BROOM run-
time errors consist of out of bounds references to indices, and use of improperly
formatted matrices for a given matrix operation. To test run-time errors out of bounds
errors were tested in “runTimeTest.broom”, and improper format errors were tested in
“runTimeTest2.broom”. To test the out of bounds error the set element function was
used. The function was called on indices, which did not exist. As expected BROOM
reported that the indices provided were out of the proper range. The results of this test
can be seen at “runTimeTest.results.txt”. To test for improperly formatted matrices, two
matrices with different heights were used with the gaussian elimination function (which
is illegal). BROOM correctly caught this error and printed an error message reporting
that the two matrices need to have the same height (number of rows). The results of this
test can be seen in the file “runTimeTest2.results.txt”. These tests are shown at the end
of this section.

6.3 The Final Test Cases

The reliable aspects of the language are supported with a discrete set of test cases. These
final test sets are divided into two subsets. The first category is the set of working
programs. The other consists of programs containing intentional runtime errors, or errors

 32

that will be picked up by the parser and static semantic tree walker to illustrate the error
catching mechanisms of our language.

These test cases are included with the broom documentation. Each output is stored in the
primary test cases folder. The results of all of these test cases, along with error messages
generated by our compiler, are stored as well. There are many test cases in our test suite.
We include two examples which best represent the testing routines of the language.

6.3.1 The Simple Statistics Program

The basic statistics program included at the end of this section exemplifies a simple
program written in broom. It test the simple of functions, numbers, and expressions in a
simple demonstration of the language.

Please refer to Stat2.broom. (by Michael Weiss)

6.3.2 The LU Factorization Program

Also included below is an LU factorization program written in BROOM. It is not written
in the most efficient format in order to test most of the features of the language in an
applicative fashion. It represents the power of the language well. Essentially, it performs
LU factorization on a matrix. It breaks the matrix into two matrices. The first matrix is
in lower triangular form. The second matrix is in upper triangular form. The matrices,
when multiplied together form the original matrix from which they were factored. The
programs perform the factorization and then include the

This data set includes testing of functions, global variables, static semantic checking, and
many other aspects of the language. The complex nature of this program demands a fully
functional compiler. The program performs without flaws.

Please refer to ALU.broom. (by Michael Weiss)

6.3.3 A ‘HelloWorld’ Program

What good is a programming language without a HelloWorld application? This is
included to make sure that programs that are very simple still function as they should.

6.3.4 MatrixFun Program

This is a generalized random assortment of functions in the programming language that
don’t accomplish anything specifically, but do serve as a good basis to test certain aspects
that were not tested in other sections.

Please refer to MatrixFun.broom (by Michael Weiss)

 33

6.3.5 Identity Matrix Program

This programs generates an identity matrix using control flow loops and built-in matrix
append functions.

Please refer Identity.broom (by Michael Weiss)

6.3.6 Control Flow Program

This program tests a few control loops to ensure their functionality.

Please refer to ControMadness (by Michael Weiss)l

6.3.7 Gaussian Elimination Program

This program tests simple Gaussian elimination in order to test the built-in functions just
a little.

Please refer to Gauss (by Michael Weiss)

6.4 A Final Note on Testing

No test set is ever fully thorough, as it is extremely difficult to catch all of the possible
errors that a programmer may create with his program. However, our test suite, included
separately in our programming language package, lays the ground for a set of programs
which represent a subset of the languages that a BROOM programmer may encounter.

Breakdown of test case labor
Primary Grammar Debugging and Testing – Chris Tobin and Michael Weiss
Static Semantic Checking Cases – Michael Weiss and Brian Pellegrini
Runtime Error Checking – Brian Pellegrini
Matrix Function Checking – Gabriel Glaser, Michael Weiss and Brian Pellegrini
Primary Test Case Suite – Michael Weiss

Broom Test Source Code

Statistics
// test case by Michael Weiss
//
// this program computes the statistics
// which are stored in a matrix
//
global Matrix data1,data2;
data1 = [1,2,3;
 4,5,6;
 7,8,9;];

 34

data2 = [0,1,0;
 1,0,1;
 1,1,1;];
define function Number findAverage(Matrix d)
 Number i,j;
 Number m,n,avg,sum,num;

 m = 1; n = 1;
 m = numRows(d);
 n = numCols(d);

 num = m*n;

 sum = 0;

 for (i=0; i<m; i=i+1;)
 for (j=0; j<n; j=j+1;)
 sum = sum + getElement(d,i,j);
 endfor
 endfor
 avg = sum / num;
 return avg;
endfunction

start()
 Number a,b;

 a = findAverage(data1);
 print("average:");
 a.print();
 print("");

endstart

The Corresponding Java Output : Statistics.java

//Thus begins your broom program
public class Statistics
{
BroomMatrix data1, data2;
public Statistics()
{
 float[][] _temp0 = {{(float) 1, (float) 2, (float) 3}, {(float) 4, (float) 5,
(float) 6}, {(float) 7, (float) 8, (floa
t) 9}};
 data1 = new BroomMatrix(_temp0);
 float[][] _temp1 = {{(float) 0, (float) 1, (float) 0}, {(float) 1, (float) 0,
(float) 1}, {(float) 1, (float) 1, (floa
t) 1}};
 data2 = new BroomMatrix(_temp1);
}
public float findAverage (BroomMatrix d)
{
 d = BroomMatrix.copy(d);
 float i, j;
 float m, n, avg, sum, num;
 m = (float) 1;
 n = (float) 1;
 m = BroomMatrix.numRows(d);
 n = BroomMatrix.numCols(d);
 num = BroomMatrix.multiply(m,n);
 sum = (float) 0;
 for(i = (float) 0; i < m; i = BroomMatrix.add(i,(float) 1))
 {
 for(j = (float) 0; j < n; j = BroomMatrix.add(j,(float) 1))
 {
 sum = BroomMatrix.add(sum, BroomMatrix.getElement(d, i, j));
 }
 }
 avg = (float)sum/ (float)num;

 35

 return avg;
}

public void start()
{
 float a, b;
 a = findAverage(data1);
 System.out.println("average:");
 BroomMatrix.printVariable(a);
 System.out.println("");
}

public static void main(String[] args)
{ Statistics myProgram = new Statistics();
 myProgram.start();
}
}

Program Output

[mjw133@aluminor plt-project]$ java Statistics
average:
5.0

--
RuntimeTest2
runTimeTest2

// Run Time errors
// Author Brian Pellegrini

// This is supposed to make sure that error checking for
//run-time errors works...it is supposed to fail
// MUA HAHAHHAHAHHAH

global Matrix A,B;

A= [1, 0; 0, 1; 2,0;];
B= [0, 1; 1, 0;];

start()
 //matrices have different heights
 //should cause a run time error
 A = gauss(A, B);

Endstart

RunTimeTest2 Output:

Run-time test for improperly formatted matrices:

Input matrix (first parameter) to gaussian elimination must be square
B vector (second parameter) to gaussian elimination must be an M x 1 matrix.

0.0 1.0
1.0 0.0
is not M x 1, it has 2 columns.
The height (M) of the B vector must equal the height (M)of the (A) input matrix.
Here, (A) has 3 rows, but (B) has 2 rows.

RunTimeTest.broom Source Code:

runTimeTest

// Run Time errors
// Author Brian Pellegrini

 36

// This is supposed to make sure that error checking for
//run-time errors works...it is supposed to fail
// MUA HAHAHHAHAHHAH

global Matrix A,B;

A= [1, 0; 0, 1; 2,0;];
B= [0, 1; 1, 0;];

start()
 //row number is out of bounds
 //should cause a run time error
 A = setElement(A, 5, 1, 10);

Endstart

RunTimeTest.broom Output:

Results of run time test for out of bounds error:

Requested N coordinate (10) is out of range. Width range is 0 to 1
setElement: Element requested out of matrix range

 37

Chapter 7

Lessons Learned

7.1 Each Member’s Lesson Learned

Chris Tobin – I found that the most important thing in this project was delegation of
work, communication and personal responsibility. It was very important that every
person know what was going on with each component and when. When this didn’t
happen, confusion ensued. I would suggest to future groups that they set strict deadlines
for themselves. This project can seem deceptively shorter than it is. I would also suggest
that every person on the team learn ANTLR syntax so that they can understand what is
written by other team members. In terms of the class, I would suggest that the professor
have more due dates and deadlines to force the students to adhere to a schedule.

Michael Weiss - I found that good planning, organization, caffeine, and hours of coding
were essential ingredients in designing a programming language. While writing the static
semantic checker, I learned the following: a list of program tasks to implement and
version control are essential tools. Good team communication is necessary for project
interdependencies. Lastly, thorough testing rolls out all of the lumps in the dough of the
program. Regular scheduling of intermediate deadlines greatly aided the flow of the
project design.

Gabe Glaser – As in any group project, I found that the most important thing as far as
the design and implementation process goes is organization. As clichéd as that sounds
(obviously it is important), it cannot be overstated as to how important this really is.
Assignment of tasks and responsibility, along with intercommunication between group
members is what allowed us to use a streamlined, modular development model where
each member could build their own piece of the project, working with standards that we
have imposed in order to treat each module as a ‘black box’ component. There is also
incentive for each team member to learn about what the other team members are doing so
that when the time comes to start the integration phase, there is little room for confusion
and repeated work.

Brian Pellegrini - I for one learned a whole lot in the process of completing this
project. First and foremost I learned that when working on a large scale project with a
group it is imperative that there be a game plan. In addition communication and
scheduling are key because they ensure that the game plan stays on track. Overall I
learned that coordinating, and controlling group efforts is just as important (and
sometimes more difficult) as the coding itself.

 38

Appendix L:
(The Long appendix)

Code Listing:

THE MAKEFILE WE USED:

makefile (mjw133)
--

.DEFAULT:
 co RCS/$@,v

makes everything that we have so far (default, just type "make")
all: grammars testingfiles semanticfiles main
 javac *.java

clean:
 rcsclean

main: BCC.java

grammars: broom.treewalker.g broom.test.g codegenerator.g
 java antlr.Tool broom.test.g
 java antlr.Tool broom.treewalker.g
 java antlr.Tool codegenerator.g

testingfiles: Main.java program.test.txt

these are for the static semantic checker
semanticfiles: StaticMain.java BroomSymbolTable.java Symbol.java Context.java

--

NOTE: For rlog files: authors: mjw133 -- Michael, cmt & cmt69 Chris Tobin
 gg - Gabriel Glazer (did most work from home so checkins
 are less frequent)
 bdp - brian pellegrini

--
The Compiler - BCC.java Authors: Michael Weiss, Gabriel Glaser, Chris Tobin
--

import java.io.*;
import java.util.*;
import antlr.CommonAST;
import antlr.collections.AST;
import antlr.debug.misc.ASTFrame;

/**
 * Translates a broom program into java.
 * contains the main method.
 */
public class BCC
{

 //please see the string USAGE for information on USAGE
 //
 public static void main(String[] args) {

 39

 try {
 if (args != null && args.length == 1 && args[0] != null) {
 String filename = args[0];

 System.out.println(filename);

 StringTokenizer tokenizer = new StringTokenizer(filename,"." , false);

 String lastToken = "error";
 while (tokenizer.hasMoreTokens()) {
 lastToken = tokenizer.nextToken();
 }

 if (lastToken.equalsIgnoreCase("broom")) {

 DataInputStream in = new DataInputStream (new FileInputStream (
filename));

 //build the lexer object
 broomL lexer = new broomL(new DataInputStream(in));

 //build the parser
 broomP parser = new broomP(lexer);

 //parse the file
 parser.startRule();

 //get the parse tree
 CommonAST parseTree = (CommonAST)parser.getAST();

 //run the static semantic checker
 StaticSemanticWalker swalker = new StaticSemanticWalker();

 //run the primary phase of the static checker (global
variable/function) table
 swalker.buildGlobalTable(parseTree);

 //run the rigourous static semantic check
 swalker.semanticCheck(parseTree);

 //get the vector containuing all of the errors
 Vector errorVector = swalker.getErrorVector();

 //run the code generation if there were no errors
 if (errorVector == null) {

 CodeGenerator cg = new CodeGenerator();

 //run code generation
 cg.buildCode(parseTree);

 } else {

 //print the semantic errors and quit
 System.out.println("BroomProgram did not compile; the following
errors were detected:");

 for (int i = 0; i < errorVector.size(); i++) {
 String error = (String) errorVector.elementAt(i);
 System.out.println(error);
 }

 //indicate an error occured with 1
 System.exit(1);
 }

 } else {
 System.out.println("Invalid filename. Expecting *.broom.");
 printUsageAndExit();
 }

 40

 } else {
 printUsageAndExit();
 }

 //catch exceptions generated during parsing
 } catch(IOException e) {
 System.out.println("Error occured while reading your broom file.");
 e.printStackTrace();
 System.out.println("exception: "+e);
 } catch(antlr.RecognitionException re) {
 System.out.println("Recognition Exception occured while reading your broom
file.");
 re.printStackTrace();
 System.out.println("exception: "+re);
 } catch(antlr.TokenStreamException re) {
 System.out.println("Token Stream Exception occured while reading your broom
file.");
 re.printStackTrace();
 System.out.println("exception: "+re);
 }
 }

 /** Usage is fairly straightforward.
 Make sure that the file ends in .broom */
 public static final String USAGE = "java BCC [broomfile]";

 /**
 * Prints how to use the program and terminates
 */
 public static void printUsageAndExit() {
 System.out.println(USAGE);
 System.exit(1);
 }

}

--

RCS LOG FILES ATTACHED:

revision 1.4
date: 2003/05/12 18:33:19; author: mjw133; state: Exp; lines: +15 -5
Cleaned the file up for the final turnin.

revision 1.3
date: 2003/05/09 19:42:44; author: mjw133; state: Exp; lines: +1 -1
Fixed help message.

revision 1.2
date: 2003/05/09 17:35:26; author: mjw133; state: Exp; lines: +1 -1
Fixed trivial error.

revision 1.1
date: 2003/05/05 02:22:37; author: mjw133; state: Exp;
Initial revision
===

--
grammar.test.g -- our grammar file, performs the parsing
Author: Chris Tobin
--

{
 import antlr.CommonAST;
}
class broomP extends Parser;

options {

 41

 buildAST = true;
 k=2;
 exportVocab = broom;

 //this would have been for line numbers, but time did not
 //permit implementation
 //ASTLabelType = "LineAST";
}

tokens {
 BUILTIN_FUNCALL;
 NOARYOP;
 DECLARATION;
 IFSTMT;
 STMTLIST;
 WHILESTMT;
 FUNCTIONDEFINITION;
 ARGLIST;
 ARGDECL;
 START;
 FUNCALL;
 EXPRLIST;
 FORSTMT;
 BINARYOP;
 UNARYOP;
 LOGICALEXPR;
 MATRIX;
 MATRIXROW;
 TERNARYOP;
 PRINTTEXT;
 PRINTVARIABLEVALUE;
}

//5-1-03, cmt69, program now starts with ID which is the name of the program
startRule : ID^ program;

//4-9-03, cmt69, adding in final program structure

program : (globalvariabledec)*
 (globalvariableassignment)*
 (functiondefinition)*
 startfunction
 ;

globalvariabledec : "global"! declaration;

declaration : ("Matrix"|"Number") ID (COMMA! ID)* SEMI!
 { #declaration = #([DECLARATION, "declaration"], declaration);}
 ;

globalvariableassignment : assignment;

functiondefinition: "define"! "function"! ("Matrix"|"Number"|"Void")? ID arglist
 (declaration)*
 (stmtList)
 "endfunction"!

 {#functiondefinition = #([FUNCTIONDEFINITION, "functiondef"],
functiondefinition); }; //for now

//4-12-03, cmt69, adding arglist for function definition
//4-26-03, cmt69, correcting arglist to include commas
arglist: LPAREN! (argdecl (COMMA! argdecl)*)? RPAREN!
 {#arglist = #([ARGLIST, "arglist"], arglist);}
 ;

argdecl: ("Matrix"|"Number") ID
 {#argdecl = #([ARGDECL, "argdecl"], argdecl);}
 ;

startfunction: "start"! LPAREN! RPAREN!

 42

 (declaration)*
 stmtList
 "endstart"!
 {#startfunction = #([START, "start"], startfunction);}
 ;

//4-9-03, cmt69, adding in statements

stmt : assignment | "return"^ expr SEMI! | funcall SEMI! | control_flow | printtext SEMI!
| printvariablevalue SEMI!
 ;

stmtList: (stmt)+
 {#stmtList =#([STMTLIST, "stmtList"], stmtList);}
 ;

assignment: (ID EQUALS^ expr SEMI!)
 ;
//4-25-03, cmt69, adding in the print statement
printtext: PRINT! LPAREN! TEXT RPAREN!
 {#printtext = #([PRINTTEXT, "printText"], printtext);}
 ;
//4-26-03, cmt69, adding in print statement for matrices and numbers, so that it is not
in the
//builtin_funcall. the reason for this is that all builtin_funcall's return
//some value. a.print() does not, so it cant be in that rule.
//realize that this will print print BOTH matrices and numbers, so gabe's rules need to
have a
//print statement for NUMBERS!

printvariablevalue: ID DOT! PRINT LPAREN! RPAREN!
 {#printvariablevalue = #([PRINTVARIABLEVALUE,"printvariablevalue"],
printvariablevalue);}
 ;

//4-9-03, cmt69, adding in Control Flow Constructs

control_flow: ifstmt| whilestmt |forstmt;

ifstmt : "if"! LPAREN! conditional RPAREN! "then"! stmtList
 ("else"! stmtList)? "endif"!
 {#ifstmt = #([IFSTMT, "ifstmt"], ifstmt);}
 ;

whilestmt: "while"! LPAREN! conditional RPAREN!
 stmtList "endwhile"!
 {#whilestmt = #([WHILESTMT, "whilestmt"], whilestmt);}
 ;

//mjw133, fixed semi missing semi-colon in for statement
forstmt: "for"! LPAREN! assignment conditional SEMI! assignment RPAREN! stmtList
 "endfor"!
 {#forstmt = #([FORSTMT, "forstmt"], forstmt);}
 ;

//4-9-03, cmt69, adding in Conditionals

//condtional tree structure looks good as it is
conditional : (logicalExpr1 ((AND^|OR^) logicalExpr1)?)
 ;

logicalExpr1 : (NOT^ LPAREN! logicalExpr RPAREN!) | logicalExpr
 ;

logicalExpr : (expr (LOGGT^|LOGLT^|LOGEQ^|LOGNEQ^) expr)
 {#logicalExpr = #([LOGICALEXPR,"logicalExpr"], logicalExpr);}
 ;

 43

//below follows rules for expressions that work
//with the help of edwards
expr
 : term ((ADD^|SUB^) expr)?
 ;

term
 : atom ((MUL^|DIV^) term)?
 ;

atom
 : funcall
 | builtin_funcall
 | ID
 | signedDouble
 | LPAREN! expr RPAREN!
 | matrix
 ;

//4-12-03, cmt69, adding in matrix syntax for declarations
//AST: matrix node, with row items as its children
//
//4-12-03 causing major non-determinism, cannot resolve
matrix:
 LBRACK! (matrixrow)+ RBRACK!
 {#matrix =#([MATRIX,"matrix"], matrix); }
 ;

//if signed double or id is made into expr, it causes non-determinism
//problem is that we need to have expressions inside the matrix so that you
//can do things like:
//
//[1+2 3 4 5;
// a b c d.inv();];
//
//this should be allowed and we cant get that in the grammar right now.
//
//4-12-03 - got this to work with no non-determinism, only problem is that everything
//needs to be separated by commas.
matrixrow: (expr) (COMMA! expr)* SEMI!
 {#matrixrow = #([MATRIXROW, "matrixrow"], matrixrow);};

funcall
 : ID LPAREN! (expr_list)? RPAREN!
 {#funcall = #([FUNCALL,"funcall"],funcall);}
 ;

expr_list : (expr (COMMA! expr)*)
 {#expr_list =#([EXPRLIST,"expr_list"], expr_list);}
 ;
//4-27-03, cmt69, this call would not allow for such things as the determinant of the
//inverse of a matrix. the postfix syntax was stupid looking eg. (a.inv()).det(). so,
even
//though its late in the game, were gonna change the builtin_funcalls to look like normal
//funcalls. eg. det(inv(a)). the old rule remains commented out in case we run into
problems
//and need to revert. the only nice thing about the old rule was that only one function
coulde
//be called at a time which would simplify the tree. so if the tree is getting crazy, we
might
//want to change this back.
builtin_funcall

 :
 (noaryOp LPAREN! expr RPAREN!
 | unaryOp LPAREN! expr COMMA! expr RPAREN!
 | binaryOp LPAREN! expr COMMA! expr COMMA! expr RPAREN!
 | ternaryOp LPAREN! expr COMMA! expr COMMA! expr COMMA! expr RPAREN!)
 {#builtin_funcall = #([BUILTIN_FUNCALL,"builtin_funcall"] , builtin_funcall);}

 44

 ;

signedDouble : (SUB NUMBER^) | NUMBER^ ;

//the matrix operators
noaryOp : (INV | DET | TRANS | RANK | NUMROWS | NUMCOLS)
 {#noaryOp = #([NOARYOP, "noaryOp"], noaryOp);}
 ;
unaryOp : (GAUSS | ROW | COL | ADDROW | ADDCOL | APPENDLR | APPENDUD |DELETEROW |
DELETECOL | NEWMATRIX)
 {#unaryOp = #([UNARYOP, "unaryOp"], unaryOp);}
 ;

binaryOp : (ELEMENT | ROWSWAP | COLSWAP | SETROW | SETCOL)
 {#binaryOp = #([BINARYOP, "binaryOp"], binaryOp);}
 ;

ternaryOp : (SETELEMENT)
 {#ternaryOp =#([TERNARYOP, "ternaryOp"], ternaryOp);}
 ;

/*---
--
LEXER LEXER LEXER LEXER LEXER LEXER LEXER LEXER LEXER LEXER LEXER LEXER LEXER LEXER LEXER
LEXER LEXER LEXER LEXER LEXER LEXER LEXER LEXER LEXER LEXER LEXER LEXER LEXER LEXER LEXER

Authors: Chris Tobin Secondary Author to Lexer not grammar: michael weiss
--
*/
class broomL extends Lexer;

options {

 k=3;
 exportVocab = broom;
 charVocabulary = '\3'..'\377';
}

tokens {
 //built-in functions
 GAUSS="gauss";
 INV="inv";
 DET="det"; // determinant
 TRANS="trans"; // transpose
 RANK="rank";
 SETELEMENT="setElement";
 SETROW="setRow";
 SETCOL="setCol";
 PRINT = "print";

 //accessor methods
 ROWSWAP="rowSwap"; //rowswap
 COLSWAP="colSwap";
 ROW="getRow"; //row for access
 COL="getCol"; //column for access
 ELEMENT="getElement"; //element
 NUMROWS="numRows"; //m
 NUMCOLS="numCols"; //n
 //5-1-03, cmt69, adding in addrow, addcol and append commands
 ADDROW="addRow";
 ADDCOL="addCol";
 APPENDLR ="appendLR";
 APPENDUD ="appendUD";

 //5-2-03, cmt69, adding in deletefor, and deletecol
 DELETEROW = "deleteRow";
 DELETECOL = "deleteCol";

 //5-2-03, cmt69, adding in the newMatrix method which returns a matrix full of 0's

 45

 NEWMATRIX = "newMatrix";

}

ID
options {
 paraphrase = "an identifier";
}
 : (('a'..'z')|('A'..'Z')) ((('a'..'z')|('A'..'Z')) | DIG)*
 ;

TEXT: '"'(~('\n' | '"'))*'"';

NUMBER : DECIMAL ('e' (SUB)? DECIMAL)? ;

protected DECIMAL : (DIG)+ (DOT (DIG)+)?;

protected DIG : ('0'..'9');

LPAREN : '(' ;
RPAREN : ')' ;
COMMA : ',' ;
LBRACK : '[' ;
RBRACK : ']' ;
SEMI : ';' ;
DOT : '.' ;

// arithmetic operators
ADD : '+';
SUB : '-';

MUL : '*'; //handles scalar multiplication, m * m, m * s, s * m
DIV : '/'; //handles scalar division

// exponential operator
POW : '^'; //to be implemented

EQUALS
options {
 paraphrase = "an assignment operatior '='";
}
 :'='
 ;

// boolean operators
NOT : '!';
AND : "&&";
OR : "||";

//logical operator s
LOGEQ : "==" ;
LOGNEQ : "!=" ;
LOGGT : '>' ;
LOGLT : '<' ;

//whitespace
WS: (
 ' ' |
 '\t' |
 ("\r\n" | '\r' | '\n') { newline (); }) { $setType(Token.SKIP); }
;

//4-25-03, comments are put in
//4-27-03, cmt69, allowing quotes to be in the comment
COMMENTS :
 ('/''/'(~('\n'))* '\n')
 {newline();}
 {$setType(Token.SKIP);}
 ;

 46

total revisions: 23; selected revisions: 23
description:
An intermediate level for developing grammer.
This one currently handles numbers and has a funny list of numbers
thing. Will be expanded later on. Initial Revision.

revision 1.23
date: 2003/05/12 18:35:06; author: mjw133; state: Exp; lines: +2 -1
Updated comments for final revision.

revision 1.22
date: 2003/05/04 23:47:11; author: cmt; state: Exp; lines: +4 -1
changed builtin_funcall to include the newMatrix rule which takes the
of rows and then the # of cols.

revision 1.21
date: 2003/05/03 20:23:57; author: mjw133; state: Exp; lines: +1 -1
Need to add "Void" return types so that the static semantic
checker can do it's job.

revision 1.20
date: 2003/05/03 20:08:40; author: mjw133; state: Exp; lines: +19 -4
Tried to add special AST nodes that would allow for
line number reporting on the static semantic checker,
but it did not work. Only changed only line of code
and have remarked changes out.

Also, added to paraphrase's to the LEXER for slightly
better error reporting.

revision 1.19
date: 2003/05/02 19:38:38; author: cmt; state: Exp; lines: +3 -2
added in colswap

revision 1.18
date: 2003/05/02 17:46:58; author: cmt; state: Exp; lines: +5 -21
changed the grammar to take the deleteRow and deleteCol

revision 1.17
date: 2003/05/02 02:52:13; author: cmt; state: Exp; lines: +2 -1
changes start rule so that the first token is an IDENTIFIER which is the desired name of
the program
MIKE, YOU GOTTA CHANGE STATIC SEMANTIC WALKER TO REFLECT THIS CHANGE

revision 1.16
date: 2003/05/01 19:44:54; author: cmt; state: Exp; lines: +7 -1
cmt69, 5-1-03. added into the builtin_funcall rule the ability
to have the appendUD, appendLR, addRow, addCol function calls.
static semantics needs to worry about this to make sure that it only gets
matrix args.

revision 1.15
date: 2003/04/28 20:51:46; author: mjw133; state: Exp; lines: +1 -1
reverted back to previous version after introducing error.... oops
go rid of semi-color, realizing it was included in the assignment

revision 1.14
date: 2003/04/28 20:43:47; author: mjw133; state: Exp; lines: +2 -1
In the for statement, added a semicolor after the assignment
so that the for body looks like
for (i=0 ; i<5 ; i=i+1)
endfor

instead of:
for (i=0 i<5 ; i=i+1)
endfor

revision 1.13
date: 2003/04/27 21:31:36; author: cmt; state: Exp; lines: +2 -1
cmt69, changed comment rule to allow quotation marks.

 47

revision 1.12
date: 2003/04/27 20:16:57; author: cmt; state: Exp; lines: +5 -5
cmt69, 4-27-03, just changed a few of the token strings for the built in function
calls, so that they reflect the function names that gabe used in his java files

revision 1.11
date: 2003/04/27 18:12:37; author: cmt; state: Exp; lines: +25 -8
BUILTIN FUNCALL CHANGED!:
Built in function calls are no longer post fix. meaning its no longer a.inv().
now it's inv(a).
this allows us to nest builtin function calls.
with the old method this was not possible. may have to roll back the update if this is
too hard
to do with the tree walker, we might have to simplify this rule to make the compiler
work.

revision 1.10
date: 2003/04/26 20:07:05; author: cmt; state: Exp; lines: +1 -0
were at 1.10, madness!
small change to the grammar for the conditionals. now you can use ! on a
logical expression. so you can write !(a ==b). that works now. remember though
the logical expression that is being notted needs to be nested in parentheses.

revision 1.9
date: 2003/04/26 20:03:02; author: cmt; state: Exp; lines: +5 -6
cmt69, 4-26-03, the grammar now works with the conditionals

revision 1.8
date: 2003/04/26 17:14:33; author: cmt; state: Exp; lines: +15 -3
cmt69, function definitions now recoginize appropriate arglist
a.print()'s are now void methods, meaning that they return nothing and are
not a part of the builtin_funcall rule.
note: these a.print()'s now apply to all variables, be they matrices or numbers
this means that in gabe's code, we need to have something that will have a
similar print method for our numbers. might be a problem.

revision 1.7
date: 2003/04/25 17:49:20; author: cmt; state: Exp; lines: +27 -4
This grammar now has a print method
print("hello my name i sjo");
strings inside cannot contain quotes or newlines
also has matrix print:
a.print();
also added in comments with //

revision 1.6
date: 2003/04/12 21:27:54; author: cmt; state: Exp; lines: +4 -1
non-determinism in matrix has been solved, but now we have to have the elements of each
row seperated by commas.

revision 1.5
date: 2003/04/12 19:48:29; author: cmt; state: Exp; lines: +107 -30
this now creates the AST well. there is one MAJOR problem, and htat is that
the matrix rule is not working. it wont allow us to nest expressions inside
of the matrix. e.g. [1+2 3;]; is not allowed bc 1+2 is an expression
and putting the expression rule into the matrix rule causes non-determinism
were gonna have to look hard at this, and if that doesnt work go to edwards.
right now the matrix rule works by accepting only variables and signed
doubles. it works fine like that and the AST looks good. need to talk to group about
non-determinism and problem

revision 1.4
date: 2003/04/10 04:01:26; author: cmt; state: Exp; lines: +104 -86
everything is working except:
need to add matrix rule for our matrix definitions (i,e, [1 2 3; 4 5 6;];)
also need to decide about function definitions: should we seperate declaraion and
definition?
finally, maybe we should make built-in function names the nodes of the builtin calls

revision 1.3

 48

date: 2003/04/09 04:18:46; author: cmt; state: Exp; lines: +5 -4
problem has not been resolved from 1.2

revision 1.2
date: 2003/04/09 01:48:09; author: cmt; state: Exp; lines: +70 -7
This now has the expression rule working except that terms cannot be surrounded by
parens. ie. the following would fail:
myFun(1, 2, 3 * (a))
this is because the (a) following the * is meant to be a term which so far cannot be in
parens. so this needs to change
other than that, expressions kick ass.

revision 1.1
date: 2003/04/08 21:20:00; author: cmt; state: Exp;
Initial revision
===

{
 import java.util.*;
}

//static semantic checker

// all code and documenation:
// -- by Michael Weiss

//this class keeps track of the errors in a vector
//after running first the global table builder
//then the static checker function, if the vector
//is not null, then there are errors, contained
//as strings in the vector
//
//print these and do not generate code from these
//errors
//
//NOTE: if the static semantic checker is given
//a file that is syntactically incorrect, then
//it will not function properly.
//
//proper error messages appear when the file is syntactically
//correct, or least mostly, but contains only semantic errors
//
//on syntactically incorrect files, some errors may be detected
//but there is no garuntee for completeness
class StaticSemanticWalker extends TreeParser;
options {
 importVocab = broom;
}

{
 //indicates whether or not to display error messages
 private boolean debugMode = false;

 private boolean globalScope = false;

 //our global symbol table
 public BroomSymbolTable globalTable;

 //our local context and global symbol table together
 //creating a context for one function
 public Context context;

 //for error messages -- indicating the location
 public String curFunc = "*global declaration*";

 //keeps track of the expected return type for a function
 //in case the wrong type is returned.
 public int expectedReturnType = Symbol.VOID;

 49

 // check if m==n for matrix dimension checking
 public boolean isSquare(int[] dimensions) {
 return (dimensions[0] == dimensions[1]);
 }

 //java reserved words && builtin class words cannot be used...build a hash table
 //which contains these words
 public Hashtable rwords;

 // contains all of the errors that the static semantic checker picks up
 // (as strings)
 Vector ev;

 // returns the error vector
 public Vector getErrorVector() {
 return ev;
 }

 //adds an error to the error vector in the proper
 //format, also recording the location
 public void err(String errMsg) {
 if (ev == null) { ev = new Vector(); }

 String error = new String();
 error += "* Error in " + curFunc + " : " + errMsg;
 //System.out.println(error);
 ev.add(error);
 }

 //a lengthy method to build the hash table of java reserved keywords
 //I only include it here to avoid any file dependencies
 public void buildrtable() {

 rwords = new Hashtable();

 // code below generated by 1-liner awk program: { printf
"rwords.put(\"%s\",\"%s\");\n", $0, $0 } from rwords.txt
 // sorry for the generated code right upfront
 // - hand writen code is below, but this generated code avoids any extra file
dependencies on runtime.
 rwords.put("abstract","abstract");
 rwords.put("default","default");
 rwords.put("if","if");
 rwords.put("private","private");
 rwords.put("this","this");
 rwords.put("boolean","boolean");
 rwords.put("do","do");
 rwords.put("implements","implements");
 rwords.put("protected","protected");
 rwords.put("throw","throw");
 rwords.put("break","break");
 rwords.put("double","double");
 rwords.put("import","import");
 rwords.put("public","public");
 rwords.put("throws","throws");
 rwords.put("byte","byte");
 rwords.put("else","else");
 rwords.put("instanceof","instanceof");
 rwords.put("return","return");
 rwords.put("transient","transient");
 rwords.put("case","case");
 rwords.put("extends","extends");
 rwords.put("int","int");
 rwords.put("short","short");
 rwords.put("try","try");
 rwords.put("catch","catch");
 rwords.put("final","final");
 rwords.put("interface","interface");
 rwords.put("static","static");
 rwords.put("void","void");

 50

 rwords.put("char","char");
 rwords.put("finally","finally");
 rwords.put("long","long");
 rwords.put("strictfp","strictfp");
 rwords.put("volatile","volatile");
 rwords.put("class","class");
 rwords.put("float","float");
 rwords.put("native","native");
 rwords.put("super","super");
 rwords.put("while","while");
 rwords.put("const","const");
 rwords.put("for","for");
 rwords.put("new","new");
 rwords.put("switch","switch");
 rwords.put("continue","continue");
 rwords.put("goto","goto");
 rwords.put("package","package");
 rwords.put("synchronized","synchronized");
 rwords.put("Array","Array");
 rwords.put("Byte","Byte");
 rwords.put("Character","Character");
 rwords.put("Character.Subset","Character.Subset");
 rwords.put("Character.UnicodeBlock","Character.UnicodeBlock");
 rwords.put("Class","Class");
 rwords.put("ClassLoader","ClassLoader");
 rwords.put("Compiler","Compiler");
 rwords.put("Double","Double");
 rwords.put("Float","Float");
 rwords.put("InheritableThreadLocal","InheritableThreadLocal");
 rwords.put("Integer","Integer");
 rwords.put("Long","Long");
 rwords.put("Math","Math");
 rwords.put("Number","Number");
 rwords.put("Object","Object");
 rwords.put("Package","Package");
 rwords.put("Process","Process");
 rwords.put("Runtime","Runtime");
 rwords.put("RuntimePermission","RuntimePermission");
 rwords.put("SecurityManager","SecurityManager");
 rwords.put("Short","Short");
 rwords.put("StackTraceElement","StackTraceElement");
 rwords.put("StrictMath","StrictMath");
 rwords.put("String","String");
 rwords.put("StringBuffer","StringBuffer");
 rwords.put("System","System");
 rwords.put("Thread","Thread");
 rwords.put("ThreadGroup","ThreadGroup");
 rwords.put("ThreadLocal","ThreadLocal");
 rwords.put("Throwable","Throwable");
 rwords.put("Void","Void");
 //whew, that was a lot

 /** finished building table */

 }

}

/**
 * Makes two passes:
 *
 * First pass: builds global symbol table.
 * -Ensure that no duplicate variable or function definitions are made.
 *
 * Second pass: performs checking on the following:
 * -repeated variable definitions
 * -ensuring that unknown identifiers are not referenced
 * -function arguement count match
 * -function return type
 * -a few other little picky things, including missing return statements to functions

 51

 * -matrix invalid size declarators
 * -start method (no return statement allowed)
 * -built-in checking for all incorrectly used builtin functions
 * -checks that the return statement exists if function is not "void" (missing return
statement)
 * -assignment checking
 * -expression checking
 * -logical expression checking
 *
 * dead code checker: these cannot be detected in this version:
 * include a cautionary note in the documentation
 *
 * not all errors can be detected. the java compiler detects for 'possible'
 * undefined variables and sections of 'dead code'. Because of the code generated
 * these messages are intelligable, but they are not caught here.
 *
 * also checked
 *
 */
buildGlobalTable // does not return anything
{
 //build new symbol tables
 globalTable = new BroomSymbolTable();
 context = new Context(globalTable);

 //fill the reserved word table with the reserved words
 buildrtable();
}
 : #(program:ID {cid(program);} //note: cid checks if identifier is java keyword

 {globalScope=true;} //globalScope tells rule 'variabledec' to use global
stack
 (variabledec)*
 { globalScope=false; }

 (EQUALS)* (funcdef)* START) // note: will throw odd error if start does not
exist
 {
 if (debugMode) { //print global table contents if in debug mode.
 System.out.println("*** PASS ONE COMPLETE ***");
 System.out.println("GLOBAL TABLE CONTENTS AT END OF PHASE 1:");
 System.out.println(globalTable);
 System.out.println("\n\n");
 }
 };

variabledec
 : #(dec:DECLARATION ("Matrix"|"Number") (test:ID {cid(test);})+)
 {

 //System.out.println("Declaration with:" + dec.getNumberOfChildren() + "
children.");
 int numChildren = dec.getNumberOfChildren();

 AST typeSpecifier = dec.getFirstChild();
 String type = typeSpecifier.getText();
 //System.out.println("The type in this specific is: " +
typeSpecifier.getText());

 AST var = typeSpecifier.getNextSibling();
 for (int i=1; i<numChildren; i++) {

 Symbol newSym = new Symbol(var.getText(),type);

 //System.out.println("Current symbol: "+ i+ "=" + newSym);

 /** Check for static error: duplicate variable declaration. */
 if (context.in(newSym)) {
 //System.out.println("Semantic error on line :");
 err("variable " + newSym.getName() + " has already been defined.\n"
 + "\t Please remove duplicate declaration.");

 52

 } else {
 if (globalScope)
 globalTable.add(newSym); //add variables to global or local
scope
 else {
 context.addToLocal(newSym); //depending on location of
declaration
 }
 }

 var = var.getNextSibling();
 }

 };

funcdef
{
 context = new Context(globalTable);
}

 : #(f:FUNCTIONDEFINITION rtype:("Matrix"|"Number"|"Void")

 fname:ID { cid(fname); curFunc = fname.getText(); }

 ARGLIST
 (variabledec)* //local variable declarations
 STMTLIST
)
 {

 //the following is a complex set of commands that really
 //just constucts a symbol out of the function and adds it to the symbol
 //table

 AST typeNode = f.getFirstChild();
 AST nameNode = typeNode.getNextSibling(); // the return type

 AST arglistNode = nameNode.getNextSibling();
 int numArgs = arglistNode.getNumberOfChildren();
 Symbol[] args = new Symbol[numArgs];

 if (numArgs > 0) {

 AST argList = arglistNode.getFirstChild();
 for (int i=0 ;i<numArgs; i++) {
 args[i] = new Symbol(
argList.getFirstChild().getNextSibling().getText(), //name
 argList.getFirstChild().getText()); //type
 argList = argList.getNextSibling();
 }
 }

 Symbol newSym = new Symbol(nameNode.getText(), typeNode.getText(), args);

 /** Check for static error: function declaration. */
 if (globalTable.in(newSym)) {
 err("function " + newSym.getName() + " has already been defined.\n" +
 "\t Please remove duplicate function declaration.");
 //System.out.println("\nERROR: attempted duplicate function definition: "
+ newSym.getName());
 //System.out.println("Symbol: " + globalTable.get(fname.getText()) + "
already in table.");
 } else {
 globalTable.add(newSym);
 }

 };

// SECOND PASS FUNCTION // SECOND PASS FUNCTION
// This checks for the rest of the errors (most of them)

 53

// SECOND PASS FUNCTION // SECOND PASS FUNCTION

semanticCheck //ignore declarations this time
 : #(program:ID {cid(program);} (DECLARATION)* (assignment)* (function)* startfunction
) //add support for START later
 {
 if (debugMode) {
 System.out.println("static semantic check complete."); }
 }
 ;

assignment
{
 int dest, src;
}
 : #(expr:EQUALS dest=expr src=expr)
 {
 //System.out.println("Found an assignment with " + expr.getNumberOfChildren()
+ " kids.");
 //System.out.println("Left is type: " + dest + " and right: " + src);

 /** Static check - make sure that the assignment types match */
 if (dest==src) {
 if (debugMode) {System.out.println("Assignment okay."); }
 }
 else if (dest==Symbol.VOID) {
 err("left side of assignment is not a Number or Matrix.");
 //System.out.println("ERROR: left side of assignmnet invalid.");
 }
 else if (src==Symbol.VOID) {
 err("right side of an assignment is invalid.\n\t" +
 "No value detected. Make sure functions return value and are
operational.");
 //System.out.println("ERROR: right side of assignment is invalid.");
 }
 else {
 //check for type mismatch on assignment
 String leftType = Symbol.getTypeN(dest);
 String rightType = Symbol.getTypeN(src);
 err("assignment type mismatch.\n\t " + leftType + " := " + rightType + "
is not valid.");
 //System.out.println("ERROR: assignment type mismatch detected: " + dest
+ "," + src);
 }
 }
 ;

startfunction
{
 context = new Context(globalTable);
 expectedReturnType = Symbol.VOID; //start method returns nothing
 curFunc = "start()";
 boolean r;
}
 : #(START (variabledec)* r=stmtlist)
 ;

function
{
 context = new Context(globalTable);
 boolean freturns = false; //means that control flow must return
statements
}

 : #(f:FUNCTIONDEFINITION ("Matrix"|"Number"|"Void")
 {
 AST rtype = f.getFirstChild();
 String returnType = rtype.getText();
 Symbol s = new Symbol("dummy", 0);

 54

 expectedReturnType = s.findType(returnType);
 }

 fname:ID { cid(fname);
 if (debugMode) {
 System.out.println("*** Scanning function arguments for: " +
fname.getText() + ". ***");
 }
 curFunc = fname.getText();
 }

 (arglist)
 (variabledec)*
 freturns = stmtlist
 { if (!freturns && expectedReturnType != Symbol.VOID)
 {
 err("function " + fname.getText() + " is missing a return
statement.\n\t" +
 "It expected to return " + Symbol.getTypeN(expectedReturnType) +
".");
 //System.out.println("ERROR: function: " + fname.getText() + " is
missing a return statement.");
 }
 }

)
 {
 if (debugMode) {
 System.out.println("Function " + fname.getText() + " finished check.");
 //System.out.println("Local context contents: " + context);
 System.out.println();
 }
 }
 ;

// add the local arguements passed to the function to the local context
arglist
 : #(ARGLIST (arg:ARGDECL
 {

 AST typeNode = arg.getFirstChild();
 AST nameNode = typeNode.getNextSibling();

 String type = typeNode.getText();
 //System.out.println("DEBUG: type specifier for function param: " +
type);

 String name = nameNode.getText();
 //System.out.println("DEBUG: the respective name for the function:" +
name);

 /** Add static semantic checking here, besides internal
 making sure that it has not been defined locally. */
 Symbol newSym =new Symbol(name,type);

 /** Static check NO DUPLICATES IN FUNCTION PARAMETER NAMES */
 if (context.in(newSym)) {
 err("function parameter " + newSym + " conflicts with global
variable " + context.get(name)
 + "\n\t"
 + "Please rename the function parameter.");
 }
 else {
 context.addToLocal(new Symbol(name,type));
 }

 }
)*
)
 ;

 55

stmtlist returns [boolean returnsValue] //checks for missing return statement
{
 int type;
 returnsValue = false;
}
 : #(a:STMTLIST { if (debugMode) System.out.println("Beginning of statement list");
}

 (
 b:"return"
 {
 type = expr (b.getFirstChild());

 if (expectedReturnType == Symbol.VOID) {
 err("return statement in function of 'Void' return type.\n\t"
 + " Please remove the return statement or give function
return type.");

 //System.out.println("ERROR: return statement used in function of
void return type.");
 //System.out.println("\t " + b.toStringList() + " should be
removed.");

 } else if (type != expectedReturnType) {
 err("mismatched return type.\n\t Returns type " +
Symbol.getTypeN(type)
 + " but should expected to return type " + Symbol.getTypeN(
expectedReturnType));
 //System.out.print("\nERROR: Mismatched return type");
 //System.out.println("\t " + b.toStringList());
 } else {
 if (debugMode) {
 System.out.println("return statement is okay.");
 }
 }

 returnsValue = true;
 }

 | assignment

 | type=funcall

 | returnsValue=control_flow

 | PRINTTEXT //no checking needed : handled by the grammar

 | #(PRINTVARIABLEVALUE varname:ID {cid(varname);} PRINT) {
 Symbol s = context.get(varname.getText());
 /** check to make sure that varname defined */
 if (s==null) {
 err("trying to print undefined variable " + varname.getText());
 }
 //System.out.println("ERROR: " + varname.getText()
 // + "(that you are trying to print) is an undefined variable.");
 }
)+

)
 ;
expr returns [int type]
{
 int a,b;
 type=Symbol.VOID;

 int[] mval;

}
 : #(ADD a=expr b=expr)
 {
 if (a==b) type=a; else err("mismatched type on '+'");

 56

 }
 | #(SUB a=expr b=expr)
 { if (a==b) type=a; else err("mismatched type on '-'"); }
 | #(MUL a=expr b=expr)
 {
 if (a==b) {
 type=a;
 } else if ((a==Symbol.MATRIX && b==Symbol.NUMBER) ||
 (a==Symbol.NUMBER && b==Symbol.MATRIX)) {
 type = Symbol.MATRIX;
 }
 else {
 err("mismatched type on '*'");
 }
 }

 | #(DIV a=expr b=expr) //make sure that these are not MATRICES! (can't divide
matrices)
 {
 if (a==Symbol.NUMBER && b==Symbol.NUMBER) { type=Symbol.NUMBER; }
 else {
 err("division attempted on non-scalar.\n\t This operation is not
permitted.");
 }
 }

 | (a=funcall)
 { type=a; }

 | a=builtin_funcall { type=a; }

 | varname:ID
 {
 cid(varname);
 Symbol s = context.get(varname.getText());
 if (s==null) {
 err("reference to undefined variable " + varname.getText());
 } else {
 int t = s.getType(); // return type
 //System.out.println("expr matcher: VARIABLE matched: " + s);
 type = t;
 }
 }

 | n:NUMBER
 { type=Symbol.NUMBER; }

 | m:(mval=matrixcheck)
 { type=Symbol.MATRIX; }

 ;

funcall returns [int type] //check for missing return types
{
 type = Symbol.VOID;

 int[] paramtypes = new int[0]; //for testing function parameter matchings
}

 : #(FUNCALL f_id:ID {cid(f_id);} (paramtypes=expr_list)?)
 {
 String fname = f_id.getText();

 Symbol f = context.get(fname); // f is the function called

 /** Static check - make sure that the function is defined */
 if (!context.in(fname)) {
 err("reference to undefined function " + fname);
 } else {

 57

 Symbol[] functionSymbols = f.getArgs();

 /** Static check - make sure that the number of arguments is correct. */
 if (functionSymbols.length != paramtypes.length) {
 err("function call with incorrect number of arguments.\n\t" +
 fname + " expected " + functionSymbols.length + ", but got " +
paramtypes.length + ".");
 }
 else {
 /** Static check - make sure that argument types match definition of
function in context */
 boolean pmismatch = false; int i;
 for (i=0;i<paramtypes.length;i++) {
 if (paramtypes[i] != functionSymbols[i].getType()) {
 pmismatch = true;
 break;
 }
 }
 if (pmismatch) {
 err("function call on " + f.getName() + " with type mismatch on
argument number " + i + ".\n");
 } else {
 if (debugMode) System.out.println("Function call " + f.getName()
+ " okay.");
 } //end arg type

 } //end arg num check

 //pass back the return type of the function in any case except if the
function
 //is not defined.
 type = f.getType();

 } //end not defined check

 }
 ;

expr_list returns [int[] paramtypes] //returns the parameters as symbols so that they can
be tested
{
 int n,r;
 int i=0;
 paramtypes = new int[0];
}
 : #(p:EXPRLIST {n=p.getNumberOfChildren(); paramtypes=new int[n];}
 (r=expr { paramtypes[i]=r; i++; })*)
 ;

matrixcheck returns [int[] dimension]
{
 dimension = new int[2]; // m x n
 int m = 0;
 int n = 0; //number of columns
}
 : #(mroot:MATRIX (
 row:MATRIXROW
 {
 int elem_count = row.getNumberOfChildren();
 if (n==0) { n=elem_count; }
 else if (n!=0 && n!=elem_count) {
 err("invalid matrix specification.\n\t Expected a row with "
 + n + " elements, but got " + elem_count);
 }
 m++;
 }

)*
 {

 58

 dimension[0] = m;
 dimension[1] = n; //set the dimensions that it returns
 }
)
 ;

control_flow returns [boolean returnsValue]
{
 boolean t=false;
 returnsValue = false;
}
 : #(IFSTMT conditional

 t=stmtlist
 { if (t) returnsValue = true; }

 (t=stmtlist { if (t) returnsValue = true; })?

) //else clause optional

 | #(WHILESTMT conditional (t=stmtlist) { if (t) returnsValue = true; })

 | #(FORSTMT assignment conditional assignment (t=stmtlist) { if (t) returnsValue =
true; })

 ;

conditional
 : #(NOT conditional)

 | #(AND conditional conditional)

 | #(OR conditional conditional)

 | #(LOGICALEXPR logicalExpr)
 ;

logicalExpr
{
 int a,b;
}
 : #(lexpr:LOGGT a=expr b=expr)
 {
 if (a!=b) err("mismatched types on '>' logical operator.\n");
 /** > OP cannot be applied to matrices */
 if (a==Symbol.MATRIX || b==Symbol.MATRIX) {
 err("'>' operator cannot be applied to matrices.");
 }
 }
 | #(lexpr2:LOGLT a=expr b=expr)
 { if (a!=b) err("mismatched types on '<' logical expression.\n");
 /** < OP cannot be applied to matrices */
 if (a==Symbol.MATRIX || b==Symbol.MATRIX) {
 err("'<' operator cannot be applied to matrices.\n");
 }
 }
 | #(lexpr3:LOGEQ a=expr b=expr)
 { if (a!=b) err("mismatched types on '==' logical expression.\n"); }
 | #(lexpr4:LOGNEQ a=expr b=expr)
 { if (a!=b) err("mismatched types on '!=' logical expression.\n"); }
 ;

builtin_funcall returns [int type]
{
 int[] dim;
 int p1, p2, p3, p4;
 AST arg, arg2, arg3, arg4;

 // int[] p; //return types on the parameters

 59

 //int i=0;
 type = Symbol.VOID;

 int t;
 /** Begin static semantic checking for builtin functions */
}
 : #(fcn:BUILTIN_FUNCALL (NOARYOP|UNARYOP|BINARYOP|TERNARYOP) (t=expr)+)
 {
 AST bf = fcn.getFirstChild();

 /** first, determine the basic category of builtin funcall */
 int c = bf.getType();

 int nargs = fcn.getNumberOfChildren() - 1;
 arg = bf.getNextSibling();

 AST callNode = bf.getFirstChild();
 int ftype = callNode.getType();
 String fname = callNode.getText();

 /** perform a semantic check on each **/

 // note: don't have to worry about the number of arguments, grammar checks
for that
 // checking included so that in case grammar changes, will work later

 switch (c) {

 case NOARYOP:
 if (nargs != 1)
 err(fname + " expected 1 arg, but got " + nargs);

 /** coincidentally, all noaryop functions require matrices, so we check
here */
 p1 = expr (arg);

 if (p1 != Symbol.MATRIX)
 err(fname + " needs a matrix as input.");

 switch (ftype) {
 case INV:
 /** do the following check if the matrix is defined explicity in the
function */
 if (arg.getType() == Symbol.MATRIX) {
 dim = matrixcheck(arg);
 //System.out.println("Dimensions detected: " + dim[0] + " x " +
dim[1]);
 if (!isSquare(dim)) {
 err("inv needs to be called on a square matrix.");
 }
 }
 type = Symbol.MATRIX;
 break;
 case TRANS:
 type = Symbol.MATRIX;
 break;
 case DET:
 case RANK:
 case NUMROWS:
 case NUMCOLS:
 type = Symbol.NUMBER;
 }

 break;

 case UNARYOP:

 if (nargs != 2)
 System.out.println(fname + " expected 2 args, but got " + nargs);

 arg2 = arg.getNextSibling();

 60

 p1 = expr(arg);
 p2 = expr(arg2);

 switch (ftype) {
 /** Make sure the the inputs are both MATRICES */
 case GAUSS:

 if (p1!=Symbol.MATRIX) {
 err("gauss(MATRIX, MATRIX) needs matrix for its input first
parameter.");
 }
 if (p2!=Symbol.MATRIX) {
 err("gauss(MATRIX, MATRIX) needs matrix for its input second
parameter.");
 }

 type=Symbol.MATRIX;

 /** Special type check: make sure input is square */
 if (arg.getType() == MATRIX) {
 dim = matrixcheck(arg);
 if (debugMode) {
 System.out.println("DEBUG Dimensions detected: " + dim[0] + "
x " + dim[1]);
 }
 if (!isSquare(dim)) {
 err("gauss(A,b) needs to be called on a SQUARE matrix A.");
 }

 /** Now that we know dim of A, m x n, check the dimensions of the
b_col */
 if (arg2.getType() == MATRIX) {
 int[] b_col_dim = matrixcheck(arg2);

 // make sure the A.m = b_col.m
 if (b_col_dim[0] != dim[0]) {
 err("for gauss(A,b) A.m != b.m. A.m should be b.m");
 }

 // make sure that b_col.n = 1
 if (b_col_dim[1] != 1) {
 err("for gauss(A,b) b.n != 1");
 }
 }
 }
 break;
 case ROW:

 if (p1 != Symbol.MATRIX) {
 err("row requires MATRIX as first argument.");
 }
 if (p2 != Symbol.NUMBER) {
 err("row requires NUMBER as second argument.");
 }

 if (arg.getType() == MATRIX && arg2.getType() == NUMBER) {
 dim = matrixcheck(arg);
 int m = dim[0];
 int i = Math.round(Float.parseFloat(arg2.getText()));
 if ((i<0) || (i>m)) {
 err("the row specified is out of bounds.");
 }
 }

 type = Symbol.MATRIX;
 break;
 case COL:

 if (p1 != Symbol.MATRIX) {
 err("col requires MATRIX as first argument.");

 61

 }
 if (p2 != Symbol.NUMBER) {
 err("col requires NUMBER as second argument.");
 }

 if (arg.getType() == MATRIX && arg2.getType() == NUMBER) {
 dim = matrixcheck(arg);
 int n = dim[1];
 int i = Math.round(Float.parseFloat(arg2.getText()));
 if ((i<0) || (i>n)) {
 err("The col specified is out of bounds.");
 }
 }

 type = Symbol.MATRIX;
 break;

 case ADDROW: //todo: confirm that this is correct
 case ADDCOL:
 if (p1 != Symbol.MATRIX) {
 err(fname + " requires MATRIX as first argument.");
 }
 if (p2 != Symbol.MATRIX) {
 err(fname + " requires MATRIX as second argument.");
 }
 type = Symbol.MATRIX;
 break;
 case DELETEROW:
 case DELETECOL:
 if (p1 != Symbol.MATRIX) {
 err(fname + " requires MATRIX as first argument.");
 }
 if (p2 != Symbol.NUMBER) {
 err(fname + " col requires NUMBER as second argument.");
 }
 type = Symbol.MATRIX;
 break;

 case APPENDLR:
 case APPENDUD:

 if (p1 != Symbol.MATRIX) {
 err(fname + " requires MATRIX as first argument.");
 }
 if (p2 != Symbol.MATRIX) {
 err(fname + " requires MATRIX as second argument.");
 }
 type = Symbol.MATRIX;
 break;

 case NEWMATRIX:

 if (p1 != Symbol.NUMBER) {
 err(fname + " requires NUMBER as first argument.");
 }
 if (p2 != Symbol.NUMBER) {
 err(fname + " requires NUMBER as second argument.");
 }

 type= Symbol.MATRIX;

 break;

 }

 break;

 case BINARYOP:
 if (nargs != 3)

 62

 err("" + fname + " expected 3 args, but got " + nargs);

 arg2 = arg.getNextSibling();
 arg3 = arg2.getNextSibling();

 p1 = expr(arg);
 p2 = expr(arg2);
 p3 = expr(arg3);

 switch (ftype) {

 case ELEMENT: //NUMBER <- (MATRIX NUMBER NUMBER) //check range of
numbers
 case ROWSWAP: //MATRIX <- (MATRIX NUMBER NUMBER) //check range of
numbers
 case COLSWAP: //MATRIX <- (MATRIX NUMBER NUMBER) //check range of
numbers
 if (p1 != Symbol.MATRIX) {
 err("on param 1, " + fname + " requires MATRIX, NUMBER, NUMBER as
arguments.");
 }
 if (p2 != Symbol.NUMBER) {
 err("on param 2, " + fname + " requires MATRIX, NUMBER, NUMBER as
arguments.");
 }
 if (p3 != Symbol.NUMBER) {
 err("on param 3, " + fname + " requires MATRIX, NUMBER, NUMBER as
arguments.");
 }

 if (ftype == ELEMENT) type = Symbol.NUMBER;
 else type = Symbol.MATRIX;

 break;

 case SETROW: //MATRIX <- (MATRIX MATRIX NUMBER) //check range of
NUMBER, and that arg2 is column
 case SETCOL: //MATRIX <- (MATRIX MATRIX NUMBER) //check input of

 if (p1 != Symbol.MATRIX) {
 err("on param 1, " + fname + " requires MATRIX, MATRIX, NUMBER as
arguments.");
 }
 if (p2 != Symbol.MATRIX) {
 err("on param 2, " + fname + " requires MATRIX, MATRIX, NUMBER as
arguments.");
 }
 if (p3 != Symbol.NUMBER) {
 err("on param 3, " + fname + " requires MATRIX, MATRIX, NUMBER as
arguments.");
 }

 type = Symbol.MATRIX;

 break;

 }
 break;

 case TERNARYOP:

 arg2 = arg.getNextSibling();
 arg3 = arg2.getNextSibling();
 arg4 = arg3.getNextSibling();

 p1 = expr(arg);
 p2 = expr(arg2);
 p3 = expr(arg3);
 p4 = expr(arg4);

 if (nargs != 4)

 63

 err("" + fname + " expected 4 args, but got " + nargs);

 //must be setelement, it is the only ternary operations
 //case SETELEMENT: // MATRIX : (MATRIX NUMBER NUMBER NUMBER)

 if (p1 != Symbol.MATRIX) {
 err("on param 1, " + fname + " requires MATRIX, NUMBER, NUMBER,
NUMBER as arguments.");
 }
 if (p2 != Symbol.NUMBER) {
 err("on param 2, " + fname + " requires MATRIX, NUMBER, NUMBER,
NUMBER as arguments.");
 }
 if (p3 != Symbol.NUMBER) {
 err("on param 3, " + fname + " requires MATRIX, NUMBER, NUMBER
,NUMBER as arguments.");
 }
 if (p4 != Symbol.NUMBER) {
 err("on param 4, " + fname + " requires MATRIX, NUMBER, NUMBEr,
NUMBEr as arguments.");
 }

 type = Symbol.MATRIX;
 break;
 }
 }
 ;

// checks to make sure that the ID is not one of the java reserved
// words and also that it is not one of the basic java word languages
cid
 : j:ID
 {
 if (rwords.containsKey(j.getText())) {
 err("The word " + j + " is a reserved java keyword.");
 }
 }
 ;

revision 1.25
date: 2003/05/12 18:54:03; author: mjw133; state: Exp; lines: +58 -14
Updated documentation

revision 1.24
date: 2003/05/09 19:45:29; author: mjw133; state: Exp; lines: +1 -1
Removed an unnecessary print statement.

revision 1.23
date: 2003/05/05 01:30:58; author: mjw133; state: Exp; lines: +18 -2
I don't know what I changed.

revision 1.22
date: 2003/05/04 20:07:59; author: mjw133; state: Exp; lines: +2 -1
Fixed a smaller picky formatting error.

revision 1.21
date: 2003/05/04 20:07:13; author: mjw133; state: Exp; lines: +2 -0
Now it should work.

revision 1.20
date: 2003/05/04 20:06:45; author: mjw133; state: Exp; lines: +178 -119
Added vector list of errors and improved messages that
give you the function name of the error. This version
is not yet functional. I have broken something. will fix.

revision 1.19
date: 2003/05/04 15:06:27; author: mjw133; state: Exp; lines: +6 -2
Fixed an error that was introduced by the previous edit.
The current revision should no longer be confused by
many local variable declarations on the first pass.

 64

revision 1.18
date: 2003/05/04 15:02:04; author: mjw133; state: Exp; lines: +2 -1
Removed local variable declaration checking from
the primary phase of the static semantic checker.

revision 1.17
date: 2003/05/03 20:47:16; author: mjw133; state: Exp; lines: +20 -10
Fixed a few bugs related to null argument lists, void return types,
an error in the builtin_function calls.

revision 1.16
date: 2003/05/03 15:52:35; author: mjw133; state: Exp; lines: +1 -0
Correct a missing '}' that was preventing the program from compiling.

revision 1.15
date: 2003/05/03 15:51:22; author: mjw133; state: Exp; lines: +29 -15
Added support for the built-in print statements.

revision 1.14
date: 2003/05/03 04:00:44; author: mjw133; state: Exp; lines: +122 -7
Got the ID checking for java reserved words to work.
Also added the matrix type checking functionality.
Everything should be ready except for line numbers of errors
and print statement scanning.

revision 1.13
date: 2003/05/03 03:11:29; author: mjw133; state: Exp; lines: +15 -131
This version compiles, but the individual semantic
checking for all of the nodes has not been completely checked yet.
This needs to be done.

revision 1.12
date: 2003/05/03 03:04:08; author: mjw133; state: Exp; lines: +304 -22
Not quite working yet...lot's of code to insert for the stupid issues of the builtin
functions.

revision 1.11
date: 2003/05/02 23:48:51; author: mjw133; state: Exp; lines: +72 -18
Still working on the adding the builtin functions.

revision 1.10
date: 2003/05/02 20:25:54; author: mjw133; state: Exp; lines: +85 -14
ADding builtin functions, but not finished yet.

revision 1.9
date: 2003/04/28 21:16:04; author: mjw133; state: Exp; lines: +39 -19
Control flow added.
Static checker in semi-functional stage at this point.
The error messages need to be improved so that the text
from the error is reported.
Also, in this version, the print statements are not yet
supported.

revision 1.8
date: 2003/04/28 17:58:17; author: mjw133; state: Exp; lines: +27 -12
--> Added support for checking that a return statement must exist
somewhere in a function if it is not void.
--> Added, if a function is void, and uses a return statement, print error msg

revision 1.7
date: 2003/04/28 17:30:27; author: mjw133; state: Exp; lines: +22 -3
Added checking of matrix row sizes. Tested on one example:
2pass.3expr.txt and appears to be given proper error messages and clean output.

revision 1.6
date: 2003/04/28 03:29:21; author: mjw133; state: Exp; lines: +30 -8
Tested the previous revision and worked out a few inconsistencies,
the features stated in the previous revision or 2 should be
working.

 65

revision 1.5
date: 2003/04/28 02:40:44; author: mjw133; state: Exp; lines: +171 -52
Fixed bug that was causing a null pointer exception with calling undefined functions.
Improved the error messages to remove anything inappropriate.
This version has undergone some testing, but not thorough testing.

revision 1.4
date: 2003/04/27 18:34:05; author: mjw133; state: Exp; lines: +117 -130
Updated so that the following are now working:
expr type checking with */-+ operators
assignment type checking
no duplicate
variable not defined

the usage is limited. in this version, statementlists are not allowed.

revision 1.3
date: 2003/04/26 21:24:57; author: mjw133; state: Exp; lines: +117 -23
Not finished.

revision 1.2
date: 2003/04/26 17:31:52; author: mjw133; state: Exp; lines: +159 -7
Added handling for expressions. Some of the work is done, but more remains to be done.

revision 1.1
date: 2003/04/25 20:47:59; author: mjw133; state: Exp;
Initial revision
===

The following classes are needed by the treewalker: (also by Michael Weiss)

/**
 * Represents a symbol in the symbol table
 * These symbols correspond to Identifiers in BROOM
 *
 * @author Michael Weiss
 */
public class Symbol
{
 public Symbol(String name, int type) {
 this.name = name;
 this.type = type;
 isFunction = false;
 }

 public Symbol(String name, String type) {
 this.name = name;
 this.type = findType(type);
 isFunction = false;
 }

 /**
 * Special constructor for a function symbol.
 * @type is the return type of the function
 * @param args are the function arguments, presumably not functions
 */
 public Symbol(String name, int type, Symbol[] args) {
 isFunction = true;
 this.type = type;
 this.name = name;
 this.args = args;
 }

 public Symbol(String name, String type, Symbol[] args) {
 isFunction = true;
 this.type = findType(type);
 this.name = name;
 this.args = args;
 }

 66

 public String getName() {
 return name;
 }

 public int getType() {
 return type;
 }

 /**
 * Return true if the symbol is a function
 */
 public boolean isFunction() {
 return isFunction;
 }

 /**
 * Returns the numeric value corresponding to the type t
 */
 public int findType(String type) {
 int x;
 if (type.equalsIgnoreCase("Matrix")) {
 x = MATRIX;
 } else if (type.equalsIgnoreCase("Number")) {
 x = NUMBER;
 } else if (type.equalsIgnoreCase("void")) {
 x = VOID;
 } else {
 System.out.println("ERROR: unknown type specification." + type);
 x = 0;
 }
 return x;
 }

 /**
 * Reverse lookup to findType
 */
 public String getTypeName (int type) {
 switch (type) {
 case VOID: return "void";
 case NUMBER: return "number";
 case MATRIX: return "matrix";
 }
 return "error, type not defined.";
 }

 /**
 * Reverse lookup to findType
 */
 public static String getTypeN (int type) {
 switch (type) {
 case VOID: return "void";
 case NUMBER: return "number";
 case MATRIX: return "matrix";
 }
 return "error, type not defined.";
 }

 public String toString() {

 if (!isFunction) {
 return "Symbol: " + name + ":" + getTypeName(type);
 }
 else {
 String o = new String();
 o+="Symbol: Function " + name + " returns " + getTypeName(type)
 + " with args:\n";
 for (int i=0;i<args.length;i++) {
 o+=args[i].toString() + "\n";
 }

 67

 return o;
 }
 }

 /**
 * Returns the array of arguemnt symbols
 */
 public Symbol[] getArgs() {
 return args;
 }

 public static final int VOID = 0; //no type defined
 public static final int NUMBER = 1;
 public static final int MATRIX = 2;

 private String name;
 private int type;
 private boolean isFunction = false;

 //the following should not be null only if symbol represents function
 private Symbol[] args;
}

import java.util.*;

/**
 *
 * Wrapper class for hash table which is used as a SymbolTable
 *
 * @author Michael Weiss
 */
public class BroomSymbolTable
{
 /**
 * Constructor
 */
 public BroomSymbolTable() {
 st = new Hashtable();
 }

 /**
 * Add a symbol to the table
 */
 public void add(Symbol s) {
 if (in(s)) {
 //TODO: maybe implement error as an exception thrown !!!WITH LINE NUMBER!!!
 System.out.println("Error: duplicate symbol entry attempted on:\n" + s);
 } else {
 st.put(s.getName(), s);
 }
 }

 /**
 * Object in the table?
 */
 public boolean in(Symbol s) {
 return st.containsKey(s.getName());
 }

 /**
 * Object in table by name?
 */
 public boolean in(String sname) {
 return st.containsKey(sname);
 }

 /**
 * Lookup directly the type of an object
 */
 public int typeOf(String sname) {

 68

 Symbol s = (Symbol) st.get(sname);
 return s.getType();
 }

 /**
 * Lookup the object itself
 */
 public Symbol get(String sname) {
 return (Symbol) st.get(sname);
 }

 /**
 * Get the entire contents of the hashtable
 */
 public String toString() {
 String r = new String();

 r += "Begin table contents:\n";

 Collection c = st.values();
 Symbol[] allContents = (Symbol[]) c.toArray(new Symbol[c.size()]);

 for (int i=0;i<allContents.length;i++) {
 r+=String.valueOf(i)+ "-->" +allContents[i].toString()+ ".\n";
 }

 r += "End table contents.";

 return r;
 }

 private Hashtable st;
}

/**
 * A small wrapper class to both a global and a local
 * context.
 *
 * @author Michael Weiss
 */
public class Context
{
 public BroomSymbolTable global;

 //direct access to local not permitted
 //why? don't want to accidentally add something to local
 //context that is also in the global context. Control should
 //be automatic.
 private BroomSymbolTable local;

 public Context (BroomSymbolTable g) {
 this.global = g;
 local = new BroomSymbolTable();
 }

 /**
 * Add the Symbol to the local context
 *
 * Checks to make sure that the object is not already defined
 * locally and that it is also not defined globally.
 *
 * If either of these conditionals occur, then it will not
 * add the symbol to the context, otherwise it will.
 */
 public void addToLocal(Symbol s) {
 if (global.in(s)) {
 System.out.println("Cannot add " + s + " to context.");
 System.out.println("It is already in the globalTable.");
 }
 else if (local.in(s)) {

 69

 System.out.println("Cannot add " + s + " to context.");
 System.out.println("It is already in the *local* context.");
 } else {
 //if here, everything is okay to add
 local.add(s);
 }
 }

 // in
 public boolean in(Symbol s) {
 return (global.in(s) || local.in(s));
 }

 public boolean in(String s) {
 Symbol test = get(s);
 if (test == null) { return false; }
 else { return true; }
 }

 // get
 public Symbol get(String s) {
 //first, look in the local context
 Symbol r = local.get(s);

 //if it's not there look in the global context
 if (r==null) {
 r = global.get(s);
 }

 return r;
 }

 public String toString() {
 return local.toString();
 }

}

--
CODE GENERATION - Chris Tobin
--

//4-26-03, cmt69, beginning code generator tree walker
//4-27-03, cmt69, continuing code generator
//5-01-03, cmt69, major problem hit, {1,2,3} array declarations can only
// be used at initialization, so taking Edwards' suggestion
// to have temp variables. really changing all the rules.
// If this doesnt work, check codegenerator1.g, this contains
// the previous version of codegenerato grammar.
{import java.io.*;}
class CodeGenerator extends TreeParser;
options
{
 importVocab = broom;

}

{
 //this is the string that will be printed as the output file
 public String programString;
 //simple integer that contains the number of tabs that you are using
 int tabs;
 //integer that will be used to generate unique temporary variable names
 int unique =0;
 String programName;
}

//thus begins the code generation

 70

buildCode
{
 programString ="//Thus begins your broom program \n";
 tabs =0;
}

 :#(
 i: ID
 {
 programName = i.getText();
 programString += "public class "+programName+" \n{\n";
 }

 //global variable declaration
 (variabledec)*

 //before the assignments you start up the constructor
 {
 programString += "public "+programName+"()\n{\n";
 tabs++;
 }

 //assignments
 (
 {String temp ="";}
 temp = equalsrule
 {programString += temp;}
)*

 //close off the constructor
 {
 programString += "}\n";
 tabs--;
 }

 //BEGIN MATCHING THE FUNCTION DEFINITIONS IF THEY ARE THERE
 (functiondefinition)*

 startfunction
 //now you want to put it all together in the main method.
 //1) create new object,
 //2) call start function
 {
 programString += "public static void main(String[] args)\n{";
 programString += "\t"+programName+" myProgram = new
"+programName+"();\n";
 programString += "\t"+"myProgram.start();\n";
 programString += "}\n";

 programString += "}";
 }

)
 //here is where you would want to print out to the file, right now just print out
the
 //the string to standard out
 //5-9-03, cmt69, stoppping printint to standard out
// {System.out.println(programString);}

 //5-2-03, cmt69, now add in the ability to print out to the file that they have
specified
 {
 try{
 BufferedWriter out = new BufferedWriter(new FileWriter
(programName+".java"));
 out.write(programString);
 out.close();
 }
 catch(IOException e)
 {
 System.out.println(e);

 71

 }
 }
 ;

variabledec

 :#(dec:DECLARATION ("Matrix"|"Number") (ID)+)
 {
 //holds the number of children, one for the type, the rest for the variables
 int numChildren = dec.getNumberOfChildren();
 //type holds the type of it
 AST typenode = dec.getFirstChild();
 String type = typenode.getText();

 //check to see what the type is and write the appropriate java type.
 if(type.equals("Matrix"))
 programString += "BroomMatrix ";
 else
 programString += "float ";

 for (int i = 1; i< numChildren; i++)
 {
 typenode = typenode.getNextSibling();
 programString += " "+typenode.getText();
 if(i == numChildren-1)
 {}
 else
 {
 programString +=",";
 }
 }
 //add in the semi colon and youre all set
 programString += ";\n";
 }

 ;

/*---
cmt69, 4-27-03, now beginning the code that is used for the main body of program,
not only the stuff for globals.
--*/
//5-4-03, cmt69, changed so that program has to define void type.

functiondefinition
 {
 String copyString ="";
 }
:
 #(
 f : FUNCTIONDEFINITION
 ("Matrix"|"Number"|"Void")
 {

 tabs++;
 String t = "";
 for(int j = 0; j< tabs; j++)
 t+="\t";

 programString += "public ";
 AST type = f.getFirstChild();
 String name = type.getText();
 if(name.equals("Matrix"))
 programString += "BroomMatrix ";
 else if (name.equals("Number"))
 programString += "float ";
 else
 programString += "void ";

 72

 }
 i : ID
 {
 programString += i.getText()+" (";

 }

 copyString = arglist

 {programString += ")\n{\n";}

 {programString += t+" "+copyString;}
 (
 {programString+= t;}
 variabledec
)*

 stmtlist

 //finally add in the closing bracket
 {
 programString += "}\n\n";
 tabs--;
 }
)
 ;

startfunction:
 #(
 f : START
 {

 tabs++;
 String t = "";
 for(int j = 0; j< tabs; j++)
 t+="\t";

 programString += "public void start() \n{\n";
 }

 (
 {programString+= t;}
 variabledec
)*

 stmtlist

 //finally add in the closing bracket
 {
 programString += "}\n\n";
 tabs--;
 }
)
 ;

stmtlist: #(STMTLIST (stmt)+)
 ;

stmt
 {
 String stmtString="";
 String t = "";
 for(int j = 0; j< tabs; j++)
 t+="\t";

 73

 }
 :
 {String temp;}
 temp = equalsrule
 {programString += temp;}

 |#("return"
 {
 programString += t+"return ";
 }

 stmtString = expr
 {
 programString += stmtString+";\n";
 }
)

 |stmtString = funcall
 {programString += stmtString+";\n";}

 //5-1-03, cmt69, adding in the ability to print text
 |#(PRINTTEXT texttowrite:TEXT

 {programString += t+"System.out.println("+texttowrite.getText()+");\n";}
)

 |#(PRINTVARIABLEVALUE
 myid : ID
 PRINT

 {
 //this function prints out the variable's value
 //if its a matrix, it prints out the formatted matrix text.
 //if its a number, it prints the number followed by a space, with no
newline character.
 String name = myid.getText();
 programString += t+"BroomMatrix.printVariable("+name+");\n";
 }

)

 | #(p :IFSTMT

 {String tempString ="";}
 tempString = conditional

 //going to start if code here to give the conditional
 //the ability to have temp variables declared outside
 //of the the ifstmt.
 {
 programString += t+"if("+tempString+")\n";
 programString += t+"{\n";
 tabs++;
 }

 stmtlist

 {
 programString += t+"}\n";
 programString += t+"else\n"+t+"{\n";
 }

 (stmtlist)?
 {
 programString += t+"}\n";
 tabs--;
 }

 74

)

 |#(WHILESTMT
 {String tempString ="";}
 tempString = conditional
 //again printing the code after the conditional is evaluated so that it can
print
 //temp variables outside the loop before it starts
 {
 programString += t+"while("+tempString+")\n";
 programString += t+"{\n";
 tabs++;
 }

 stmtlist

 {
 programString += t+"}\n";
 tabs--;
 }
)

 |#(FORSTMT
 {String ass1,cond,ass2;}
 ass1 = equalsrule
 cond = conditional
 ass2 = equalsrule
 {
 //note, all the equalsrules end with semis and a newline, so use String
replace method
 //to get rid of these things
 ass1 = ass1.replace('\n',' ');
 ass1 = ass1.replace('\t',' ');
 ass2 = ass2.replace('\n',' ');
 ass2 = ass2.replace(';',' ');
 ass2 = ass2.replace('\t',' ');
 programString +=t+"for("+ass1+cond+"; "+ass2+")\n"+t+"{\n";
 tabs++;
 }
 stmtlist

 {
 programString += t+"}\n";
 tabs--;
 }
)
 ;

conditional returns [String conditionalString]
 {
 conditionalString = "";
 String tempString = "";
 }

 : conditionalString = logicalExpr1

 | #(AND
 conditionalString = logicalExpr1
 tempString = logicalExpr1
 {
 conditionalString += " && "+tempString;
 }
)
 | #(OR
 conditionalString = logicalExpr1
 tempString = logicalExpr1
 {
 conditionalString += " || "+tempString;
 }
)

 75

 ;

logicalExpr1 returns [String logicalString]
 {
 logicalString ="";
 String tempString = "";
 }
 :#(LOGICALEXPR logicalString = logicalExpr)

 |#(NOT #(LOGICALEXPR tempString = logicalExpr
 {
 logicalString += "!("+tempString+")";
 }
)
)
 ;

logicalExpr returns [String logicalString]
 {
 logicalString ="";
 String tempString ="";
 }
 : //match the logical operator tree
 (#(LOGGT
 tempString = expr
 {logicalString += tempString+" > ";}
 tempString = expr
 {logicalString += tempString;}
))
 | (#(LOGLT
 tempString = expr
 {logicalString += tempString+" < ";}
 tempString = expr
 {logicalString += tempString;}
))
 | #(LOGEQ
 tempString = expr
 {logicalString += "BroomMatrix.equals("+tempString+", " ;}
 tempString = expr
 {logicalString += tempString+")";}
)
 | #(LOGNEQ
 tempString = expr
 {logicalString += "BroomMatrix.notEquals("+tempString+", ";}
 tempString = expr
 {logicalString += tempString+")";}
)

 ;

arglist returns [String copyString]
 {
 copyString = "";
 String tempString;
 }
 :
 #(ARGLIST
 (
 tempString= argdecl
 {copyString += tempString;}
 (
 {programString += ",";}

 tempString = argdecl
 {copyString += tempString;}
)*
)?
)
 ;

 76

argdecl returns [String argdeclString]
 {
 argdeclString = "";
 }
 :
 #(a: ARGDECL ("Matrix"|"Number") ID)
 {
 AST type = a.getFirstChild();
 AST arg = type.getNextSibling();
 //add the type text to the string
 String name = type.getText();
 String argName = arg.getText();
 if(name.equals("Matrix"))
 {
 programString += " BroomMatrix";
 argdeclString += " "+argName+" = BroomMatrix.copy("+argName+");\n";
 }
 else
 {
 programString += " float";
 }
 programString += " "+arg.getText();
 }
 ;

equalsrule returns [String equalsruleString]
 {
 equalsruleString = "";
 String exprString;
 }
 :
 #(EQUALS i:ID

 exprString = expr

 {
 String t = "";
 for(int il = 0; il< tabs; il++)
 t+="\t";

 equalsruleString +=t;

 equalsruleString += i.getText()+" = ";

 equalsruleString+= exprString +"; \n";
 }

)

 ;

//5-01-03, cmt69, the rules are now being changed so that every expression returns
// a string which is what should be added to the program string. the only
// things that are written directly to the program string in this rule are the
// temporary variables.
expr returns [String exprString]
 {
 //this string will contain the expr call
 exprString = "";
 String tempString = "";
 }

 //simple #
 //just return the string that represents the #
 : (n:NUMBER)
 {
 if(n.getNumberOfChildren() == 0)
 exprString += "(float) "+n.getText();
 else

 77

 exprString += "(float) -"+n.getText();
 }
 //simple id
 //just return the ID string back
 |(i : ID)
 {
 //you have an identifier, so add the text of the id's name
 exprString += i.getText();
 }

 /*NOTE: cmt69, 4-27-03. In the java library that we make, we will have
 an overloaded function for the arithmetical operators, one that takes
 2 matrices and one that takes 2 floats. This way, there is no need
 for a symbol table in the code generator.*/

 //cmt69, 5-1-03, adding in the fact that these rules will return
 //expr string which is what should be put into programString
 //checking to see if it is addition
 |#(ADD
 {exprString+="BroomMatrix.add(";}
 tempString = expr
 {exprString += tempString+",";}
 tempString = expr)
 {exprString += tempString+")";}

 //checking to see if its subtraction
 |#(SUB
 {exprString += "BroomMatrix.subtract(";}
 tempString = expr
 {exprString += tempString+",";}
 tempString = expr
 {exprString += tempString+")";}
)

 //checking to see if you have multiplication
 |#(MUL
 {exprString += "BroomMatrix.multiply(";}
 tempString = expr
 {exprString += tempString+",";}
 tempString = expr
 {exprString += tempString+")";}
)
 //checking to see if you have division,
 //semantic checker is making sure that no arguments to division are matrices
 //this means that we can just plug in the java /

 |#(DIV
 //make sure to cast just in case
 {exprString += "(float)";}
 tempString = expr
 //simple divide operation followed by the float cast
 {exprString += tempString + "/ (float)";}
 tempString = expr
 {exprString += tempString;}
)

 //5-1-03, cmt69, when youre matching the builtin funcalls,
 // you want to return the string that has these calls in them
 // not print out to the program string
 //I dont need to worry about the number of args because that is taken
 //care of by grammar and by static semantics
 |#(functionname:BUILTIN_FUNCALL
 (NOARYOP|UNARYOP|BINARYOP|TERNARYOP)

 //now get the name of the function that youre calling
 //and add it to the exprString
 {
 AST testnode = functionname.getFirstChild();
 testnode = testnode.getFirstChild();
 exprString +=" BroomMatrix."+testnode.getText()+"(";

 78

 }
 //your first expression you just want plain text

 tempString = expr

 {
 exprString += tempString;
 }

 //any other expressions you match, you wanna plug in a comma as well
 (

 tempString = expr
 {
 exprString += ", "+ tempString;
 }
)*

 //finally, close up your parenthesis
 {exprString+=")";}
)

 //HERE IS WHERE YOU ARE USING THE TEMP VARIABLES
 |#(matroot: MATRIX
 {
 //start with a call to the constructor, it will take the temporary 2-d
array
 exprString +=" new BroomMatrix(";
 }

 //HERE IS WHERE YOU ARE DECLARING THE TEMPORARY 2-D ARRAY
 //FIRST YOU WANNA DECLARE, THEN ASSIGN
 //add the declaration to the PROGRAM STRING

 { //make the temp var name

 String t = "";
 for(int il = 0; il< tabs; il++)
 t+="\t";

 programString += t+"float[][] _temp"+unique+" = {";
 }

 tempString = matrixrow

 {
 programString += tempString;
 }

 (
 //{programString += ", ";}
 tempString = matrixrow
 {programString += ", "+tempString;}
)*

 //add a semi colon to the temp declaration
 {
 programString += "};\n";
 }

 //add in temp name to exprString along with closing paren
 {
 exprString += "_temp"+unique+")";
 //increment unique so that its not used again
 unique++;
 }
)

 //funcall returns a string now as well

 79

 | exprString = funcall

 ;

funcall returns [String funcallString]
 {
 funcallString ="";
 String tempString = "";
 }

 :#(FUNCALL
 id: ID
 {
 //print out the name of the function
 funcallString += id.getText()+"(";
 }
 (tempString = exprlist)?
 {
 funcallString += tempString+ ")";
 }
)
 ;

exprlist returns [String exprlistString]
 {
 exprlistString = "";
 String tempString = "";
 }

 : #(EXPRLIST
 //no comma beforehand
 tempString = expr
 {exprlistString += tempString;}
 (
 //{programString += ", ";}
 tempString = expr
 {exprlistString += ", "+tempString;}
)*
)
 ;

matrixrow returns [String matrixrowString]
 {
 matrixrowString = "";
 String tempString = "";
 }
:
 #(MATRIXROW
 //add in the beginning curly bracket
 {matrixrowString += "{";}
 //match the first expression and add in the commas afterwards
 tempString = expr
 {matrixrowString += tempString;}
 (
 //{programString += ", ";}
 tempString = expr
 {matrixrowString += ", "+tempString;}
)*
 //add the closing curly bracket
 {matrixrowString+= "}";}
)
;

First Version of Code Generator. So far it looks good, though im sure bugs, needs
extensive testing.

revision 1.8
date: 2003/05/09 17:32:47; author: cmt; state: Exp; lines: +2 -1

 80

changed so that code isnt printed to standard out.

revision 1.7
date: 2003/05/05 02:16:12; author: cmt; state: Exp; lines: +32 -8
changed so that every function definition copies all the args so that pass by value is
allowed

revision 1.6
date: 2003/05/04 23:21:36; author: cmt; state: Exp; lines: +2 -1
simple change to tree walker so that programs now have void type

revision 1.5
date: 2003/05/02 19:28:37; author: cmt; state: Exp; lines: +22 -5
Removed some bugs where 'Matrix' would be printed instead of BroomMatrix.
- now it prints out to file whose name is root of AST
- now it imports the class BroomMatrix.java. this needs to be changed to a package

revision 1.4
date: 2003/05/02 17:30:53; author: cmt; state: Exp; lines: +2 -0
tried to change the builtin funcs so that they would subtract one from the
any indexes so that they are zero indexed for gabes methods. couldnt
do this cause i dont worry about number of args, since it works
ok without knowing bc grammar and ssc take care of it.

revision 1.3
date: 2003/05/02 16:17:44; author: cmt; state: Exp; lines: +10 -2
Changed so that start in Broom program becomes a method called start.
The main method now calls the constructor, and then start() on the
constructed object.

revision 1.2
date: 2003/05/02 03:04:05; author: cmt; state: Exp; lines: +8 -2
few errors where the generated code would print NUMBER instead of float, think its fixed

revision 1.1
date: 2003/05/02 02:50:19; author: cmt; state: Exp;
Initial revision
===

--
THE BACK END (BroomMatrix.java utility) Gabriel Glaser
--
import java.util.*;

/**
 * BroomMatrix.java
 * @author Gabe Glaser
 *
 */

public class BroomMatrix
{

 float matrix[][];
 int m,n;

 /**
 * BroomMatrix constructor
 *
 * @param a A two dimemsional array that will populate the matrix
 */

 public BroomMatrix(float a[][])
 {
 matrix=a;
 m=matrix.length;
 n=matrix[0].length;

 81

 }

 /**
 * makes a new matrix, filled with zeros
 *
 * @param m1 height of new matrix
 * @param n1 width of new matrix
 */

 public static BroomMatrix newMatrix(float m1, float n1)

 {
 int m2=Math.round(m1);
 int n2=Math.round(n1);

 float temp[][]=new float[m2][n2];
 return new BroomMatrix(temp);

 }

 /**
 * duplicates a matrix and returns the copy
 *
 * @param a the matrix to be copied.
 */

 public static BroomMatrix copy(BroomMatrix a)
 {
 float[][] tempMat=new float[a.m][a.n];
 for (int i=0;i<a.m;i++)
 for (int j=0;j<a.n;j++)
 tempMat[i][j]=a.matrix[i][j];

 return new BroomMatrix(tempMat);

 }

 /**
 * returns the inverse of a matrix, using the invC method to calculate.
 *
 * @param a the matrix to be inverted.
 */

 public static BroomMatrix inv(BroomMatrix a)
 {
 BroomMatrix dup=BroomMatrix.copy(a);
 if (BroomMatrix.rank(a)==a.m && a.m==a.n)
 {
 BroomMatrix result=BroomMatrix.invC(dup);
 return result;
 }
 else
 {
 System.out.println("Matrix :");
 BroomMatrix.printVariable(a);
 System.out.println("is not invertible. Invertibility requires a square,
full rank matrix");
 e("");

 return null;
 }

 }

 /**
 * calulates inverse of a matrix.
 *

 82

 * @param a the matrix to be inverted.
 */

 public static BroomMatrix invC(BroomMatrix a)
 {
 BroomMatrix dup=BroomMatrix.copy(a);
 float mat[][]=dup.matrix;
 float inverse[][]=new float[dup.m][dup.n];
 for(int i=0;i<a.m;i++)
 for (int j=0;j<a.m;j++)
 if (i==j)
 inverse[i][j]=1;
 else inverse[i][j]=0;
 BroomMatrix in=new BroomMatrix(inverse);
 float tempRow[]=new float[dup.n];

 for (int i=0;i<dup.n;i++)
 {

 for (int j=i+1;j<dup.m;j++) // swap rows
 {
 if (Math.abs(dup.matrix[i][i])<Math.abs(dup.matrix[j][i]))
 {dup=BroomMatrix.rowSwap(dup,i,j);
 in=BroomMatrix.rowSwap(in,i,j);
 }

 }//rows have been swapped

 float pivot=dup.matrix[i][i];

 if ((new Float(pivot)).isNaN()||(new Float(pivot)).isInfinite())
 {
 System.out.println("singular");
 System.out.println(pivot);
 return null;

 }

 //for each row under current, get a multiplier and apply it
 for (int k=i+1;k<a.m;k++)
 {
 if(true)//dup.matrix[k][i]!=0)
 {
 float m=dup.matrix[k][i]/pivot;

 for (int l=0;l<a.n;l++) //for each element in the row
 {
 dup.matrix[k][l]=dup.matrix[k][l]-
m*dup.matrix[i][l];
 }

 for (int l=0;l<a.n;l++) //for each element in the row
 {
 in.matrix[k][l]=in.matrix[k][l]-m*in.matrix[i][l];
 }
 }
 }//now have an upper triangular matrix.

 }

 for (int i=a.m-1;i>=0;i--)
 {

 float pivot2=dup.matrix[i][i];//get column pivot
 if ((new Float(pivot2)).isNaN()||(new Float(pivot2)).isInfinite())
 {
 System.out.println("singular");
 System.out.println(pivot2);
 return null;

 83

 }

 for (int j=i-1;j>=0;j--) //for each row above..
 {
 float m2=dup.matrix[j][i]/pivot2; //get multiplier for row

 for (int k=0;k<a.n;k++)
 {
 dup.matrix[j][k]=dup.matrix[j][k]-m2*dup.matrix[i][k];
 in.matrix[j][k]=in.matrix[j][k]-m2*in.matrix[i][k];
 }
 }

 }

 for (int i=0;i<a.m;i++)
 for (int j=0;j<a.n;j++)
 in.matrix[i][j]=in.matrix[i][j]/dup.matrix[i][i];

 return in;
 }

 /**
 * performs gaussian elimination (Ax=b) and returns "x"
 *
 * @param a "A" in Ax=b
 * @param b the "b" vector in "Ax=b"
 *
 */
 public static BroomMatrix gauss(BroomMatrix a,BroomMatrix b)
 {

 if (a.m==a.n && b.m==a.m && b.n==1 && BroomMatrix.rank(a)==a.m)
 {
 BroomMatrix dup=BroomMatrix.copy(a);
 //float mat[][]=dup.matrix;
 float inverse[][]=new float[dup.m][dup.n];
 for(int i=0;i<a.m;i++)
 for (int j=0;j<a.m;j++)
 if (i==j)
 inverse[i][j]=1;
 else inverse[i][j]=0;
 BroomMatrix in=BroomMatrix.copy(b);
 float tempRow[]=new float[dup.n];

 for (int i=0;i<dup.n;i++)
 {

 for (int j=i+1;j<dup.m;j++) // swap rows
 {
 if (Math.abs(dup.matrix[i][i])<Math.abs(dup.matrix[j][i]))
 {
 dup=BroomMatrix.rowSwap(dup,i,j);
 in=BroomMatrix.rowSwap(in,i,j);
 }

 }//rows have been swapped

 float pivot=dup.matrix[i][i];

 if ((new Float(pivot)).isNaN()||(new Float(pivot)).isInfinite())
 {
 System.out.println("singular");
 System.out.println(pivot);

 84

 return null;

 }

 //for each row under current, get a multiplier and apply it
 for (int k=i+1;k<a.m;k++)
 {
 if(true)//dup.matrix[k][i]!=0)
 {
 float m=dup.matrix[k][i]/pivot;

 for (int l=0;l<a.n;l++) //for each element in the
row
 {
 dup.matrix[k][l]=dup.matrix[k][l]-
m*dup.matrix[i][l];

 }

 for (int l=0;l<b.n;l++) //for each element in the
row
 {
 in.matrix[k][l]=in.matrix[k][l]-
m*in.matrix[i][l];
 }
 }
 }//now have an upper triangular matrix.

 }
 //System.out.println("HHHH");
 for (int i=a.m-1;i>=0;i--)
 {

 float pivot2=dup.matrix[i][i];//get column pivot
 if ((new Float(pivot2)).isNaN()||(new Float(pivot2)).isInfinite())
 {
 System.out.println("singular");
 System.out.println(pivot2);
 return null;
 }

 for (int j=i-1;j>=0;j--) //for each row above..
 {
 float m2=dup.matrix[j][i]/pivot2; //get multiplier for row

 for (int k=0;k<a.n;k++)
 {dup.matrix[j][k]=dup.matrix[j][k]-m2*dup.matrix[i][k];

 }
 for (int k=0;k<b.n;k++)
 {
 in.matrix[j][k]=in.matrix[j][k]-m2*in.matrix[i][k];
 }
 }

 }
 //System.out.println("HHHH");

 for (int i=0;i<b.m;i++)
 for (int j=0;j<b.n;j++)
 in.matrix[i][j]=in.matrix[i][j]/dup.matrix[i][i];

 return in;
 }
 else
 {

 85

 // e("Gaussian elimination requires first argument to be a square matrix
and the second argument be a column vector with length equal to height of the first
arguement");

 if (a.m!=a.n)
 System.out.println("Input matrix (first parameter) to gaussian
elimination must be square");
 else if (a.m==a.n && a.m!=BroomMatrix.rank(a))
 {
 System.out.println("Matrix: ");
 BroomMatrix.printVariable(a);
 System.out.println("is not full rank");
 System.out.println("Input matrix (first parameter) to gaussian
elimination must be full rank.");
 }
 if (b.n!=1)
 {
 System.out.println("B vector (second parameter) to gaussian
elimination must be an M x 1 matrix. ");
 BroomMatrix.printVariable(b);
 System.out.println("is not M x 1, it has "+BroomMatrix.numCols(b)+"
columns.");
 }
 if (b.m!=a.m)
 {
 System.out.println("The height (M) of the B vector must equal the
height (M)of the (A) input matrix.");
 System.out.println("Here, (A) has "+ BroomMatrix.numRows(a)+" rows,
but (B) has "+ BroomMatrix.numRows(b)+" rows.");
 }
 e("");
 return null;
 }

 }

 /**
 * returns the tranpose of a matrix.
 *
 * @param a the matrix to be transposed
 */

 public static BroomMatrix trans(BroomMatrix a)
 {
 float temp[][]=new float[a.n][a.m];
 for (int i=0;i<a.m;i++)
 for (int j=0;j<a.n;j++)
 temp[j][i]=a.matrix[i][j];
 return new BroomMatrix(temp);
 }

 /**
 * returns the determinant of a matrix using the cofactor method
 *
 * @param a matrix to determinize
 *
 */

 public static float det(BroomMatrix a)
 {
 if (a.m==a.n)
 {
 float d=0;

 if (a.m==a.n && a.n==1)

 86

 {//System.out.println("d is "+a.matrix[0][0]);
 return a.matrix[0][0];
 }
 else

 for (int i=0;i<a.n;i++)
 {
 if (i%2==0)

d+=a.matrix[0][i]*BroomMatrix.det(BroomMatrix.getSubMatrix(a,0,i));
 else
 d-
=a.matrix[0][i]*BroomMatrix.det(BroomMatrix.getSubMatrix(a,0,i));
 }
 //System.out.println("d is "+d);
 return d;
 }
 else return 0;

 }

 /**
 * used in det(), this method will return the cofactor matrix , eliminating the row
and column of specified coordinate and returning the result
 *
 * @param a input matrix
 * @param b M coord
 * @param c N coord
 */

 public static BroomMatrix getSubMatrix(BroomMatrix a, int b, int c)
 {
 float temp[][]=new float[a.m-1][a.n-1];
 for (int i=0;i<a.m;i++)
 for (int j=0;j<a.m;j++)
 {
 if (i<b)
 {
 if (j<c)
 temp[i][j]=a.matrix[i][j];
 if (j>c)
 temp[i][j-1]=a.matrix[i][j];
 }
 if (i>b)
 {
 if (j<c)
 temp[i-1][j]=a.matrix[i][j];
 if (j>c)
 temp[i-1][j-1]=a.matrix[i][j];
 }
 }

 return new BroomMatrix(temp);
 }

 /**
 * returns the element at the specified location
 *
 * @param a source matrix
 * @param b1 M coord
 * @param c1 N coord
 *
 */

 public static float getElement(BroomMatrix a, float b1, float c1)
 {
 int b=BroomMatrix.round(b1);
 int c=BroomMatrix.round(c1);

 87

 if(b<a.m && c<a.n && !(b<0) && !(c<0))
 return a.matrix[b][c];
 else
 {
 if(b<0 || c<0)
 {

 if(b1<0)
 {
 System.out.println("M= "+b);
 }

 if(c1<0)
 {
 System.out.println("N= "+c);
 }
 System.out.println("Matrix coordinates cannot be below zero");
 }

 if(b>=a.m)
 {
 System.out.println("Requested M coordinate ("+b+") is out of range.
Height range is 0 to "+(a.m-1));
 }
 if(c>=a.n)
 {
 System.out.println("Requested N coordinate ("+c+") is out of range.
Width range is 0 to "+(a.n-1));
 }

 e("GetElement: Element requested out of matrix range");
 return 0;
 }
 }

 /**
 * returns the number of Columns in a matrix
 *
 * @param a source matrix
 *
 */

 public static int numCols(BroomMatrix a)
 {
 return a.n;
 }

 /**
 * returns the number of Rows in a matrix
 *
 * @param a source matrix
 *
 */
 public static int numRows(BroomMatrix a)
 {
 return a.m;
 }

 /**
 * returns a specified row of a matrix
 *
 * @param a source matrix
 * @param b1 Row Coord
 */

 public static BroomMatrix getRow(BroomMatrix a, float b1)
 {
 int b=BroomMatrix.round(b1);

 if (b<a.m && !(b<0)){

 88

 BroomMatrix dup=BroomMatrix.copy(a);
 float temp[][]=new float[1][dup.n];
 temp[0]=dup.matrix[b];
 return new BroomMatrix(temp);
 }
 else
 {

 if (b<0)
 {
 e("getRow: arguement cannot be less than zero. Row "+b+" was
requested");
 return null;
 }
 else
 {
 System.out.println("Matrix:");
 BroomMatrix.printVariable(a);
 System.out.println("Has "+a.m+" rows (numbered 0 to "+(a.m-1)+").
"+ b+" is out of that range.");
 e("getRow: Argument out of bounds of matrix");
 return null;
 }
 }
 }

 /**
 * returns a specified column of a matrix
 *
 * @param a source matrix
 * @param b1 Column Coord
 */

 public static BroomMatrix getCol(BroomMatrix a, float b1)
 {
 int b=BroomMatrix.round(b1);

 if (b<a.n && !(b<0))
 {
 BroomMatrix dup=BroomMatrix.copy(a);
 float temp[][]=new float[dup.m][1];
 for (int i=0; i<dup.m; i++)
 temp[i][0]=dup.matrix[i][b];
 return new BroomMatrix(temp);
 }
 else
 {

 if (b<0)
 {
 e("getCol: arguement cannot be less than zero. Column "+b+" was
requested");
 return null;
 }
 else
 {
 System.out.println("Matrix:");
 BroomMatrix.printVariable(a);
 System.out.println("Has "+a.n+" columns (numbered 0 to "+(a.n-
1)+"). "+ b+" is out of that range.");
 e("getCol: Argument out of bounds of matrix");
 return null;
 }
 }

 }

 /**
 * swaps rows of input matrix and returns the modified version of the matrix
 *

 89

 * @param a source matrix
 * @param b1 first row to swap
 * @param c1 second row to swap
 */

 public static BroomMatrix rowSwap(BroomMatrix a, float b1, float c1)
 {
 int b=BroomMatrix.round(b1);
 int c=BroomMatrix.round(c1);
 if (b<a.m && c<a.m && b>=0 && c>=0)
 {
 BroomMatrix dup=BroomMatrix.copy(a);

 float temp[][]=dup.matrix;

 float tempRow[]=temp[b];
 temp[b]=temp[c];
 temp[c]=tempRow;
 return new BroomMatrix(temp);
 }
 else
 {
 {
 if(b<0 || c<0)
 {

 if(b1<0)
 {
 System.out.println("Row 1 for swap operation= "+b);
 }

 if(c1<0)
 {
 System.out.println("Row 2 for swap operation= "+c);
 }
 System.out.println("Row indexes cannot be below zero");
 }

 if(b>=a.m)
 {
 System.out.println("First Requested row ("+b+") is out of
range. Height range is 0 to "+(a.m-1));
 }
 if(c>=a.m)
 {
 System.out.println("Second Requested row ("+c+") is out of
range. Height range is 0 to "+(a.m-1));
 }

 }

 e("rowSwap: row swap out of range");
 return null;
 }

 }

 /**
 * swaps columns of input matrix and returns the modified version of the matrix
 *
 * @param a source matrix
 * @param b1 first column to swap
 * @param c1 second column to swap
 */
 public static BroomMatrix colSwap(BroomMatrix a,float b1, float c1)
 {
 int b=BroomMatrix.round(b1);
 int c=BroomMatrix.round(c1);
 if (b<a.n && c<a.n)

 90

 {

 BroomMatrix dup=BroomMatrix.copy(a);
 float temp[][]=dup.matrix;
 float tempCol[]=new float[dup.m];

 for (int i=0;i<a.m;i++)
 tempCol[i]=dup.matrix[i][b];

 for (int i=0;i<a.m;i++)
 temp[i][b]=dup.matrix[i][c];

 for (int i=0;i<a.m;i++)
 temp[i][c]=tempCol[i];
 return new BroomMatrix(temp);}
 else

 {
 {
 if(b<0 || c<0)
 {

 if(b1<0)
 {
 System.out.println("Column 1 for swap operation= "+b);
 }

 if(c1<0)
 {
 System.out.println("Column 2 for swap operation= "+c);
 }
 System.out.println("Column indexes cannot be below zero");
 }

 if(b>=a.n)
 {
 System.out.println("First Requested Column ("+b+") is out of
range. Width range is 0 to "+(a.n-1));
 }
 if(c>=a.n)
 {
 System.out.println("Second Requested Column ("+c+") is out of
range. Width range is 0 to "+(a.n-1));
 }

 }

 e("rowSwap: Column swap out of range");
 return null;
 }

 }

 /**
 * adds two input matrices and returns the matrix sum
 *
 * @param a first matrix
 * @param b second matrix
 */
 public static BroomMatrix add(BroomMatrix a, BroomMatrix b)
 {
 if(a.m==b.m && a.n==b.n)
 {
 float temp[][]=new float[a.m][a.n];
 for (int i=0;i<a.m;i++)
 {
 for (int j=0;j<a.n;j++)
 temp[i][j]=b.matrix[i][j]+a.matrix[i][j];

 91

 }
 return new BroomMatrix(temp);
 }
 else
 {

 e("add: matrix sizes dont match\nMatrix A is an "+a.m+" by
"+a.n+"matrix,\nMatrix B is an "+b.m+" by "+b.n+"matrix");

 return null;
 }
 }

 /**
 * subtracts two input matrices and returns the matrix difference
 *
 * @param a first matrix
 * @param b second matrix
 */

 public static BroomMatrix subtract(BroomMatrix a, BroomMatrix b)
 {
 if(a.m==b.m && a.n==b.n)
 {
 float temp[][]=new float[a.m][a.n];
 for (int i=0;i<a.m;i++)
 {
 for (int j=0;j<a.n;j++)
 temp[i][j]=b.matrix[i][j]-a.matrix[i][j];
 }
 return new BroomMatrix(temp);
 }
 else
 {

 e("subtract: matrix sizes dont match\nMatrix A is an "+a.m+" by
"+a.n+"matrix,\nMatrix B is an "+b.m+" by "+b.n+"matrix");

 return null;
 }
 }

 /**
 * compares two floats and returns true or false on equality
 *
 * @param a first float
 * @param b second float
 *
 */
 public static boolean equals(float a,float b)
 {
 if ((new Float(a)).equals(new Float(b)))
 return true;
 else return false;

 }

 /**
 * compares two matrices and returns true or false, based on a comparison of each
element in the matrices
 *
 * @param a first matrix
 * @param b second matrix
 *
 */
 public static boolean equals(BroomMatrix a,BroomMatrix b)
 {

 92

 if(a.m==b.m && a.n==b.n)
 {
 boolean result=true;

 LOOP1: for (int i=0;i<a.m;i++)
 LOOP2: for (int j=0;j<a.n;j++)
 if (!BroomMatrix.equals(a.matrix[i][j],b.matrix[i][j]))
 {
 result=false;
 break LOOP1;
 }
 return result;
 }
 else
 {

 return false;
 }
 }

 /**
 * compares two floats and returns true or false on inequality
 *
 * @param a first float
 * @param b second float
 *
 */
 public static boolean notEquals(float a,float b)
 {
 if ((new Float(a)).equals(new Float(b)))
 return false;
 else return true;

 }

 /**
 * compares two matrices and returns true or false, based on a comparison of each
element in the matrices for inequality
 *
 * @param a first matrix
 * @param b second matrix
 *
 */
 public static boolean notEquals(BroomMatrix a,BroomMatrix b)
 {

 if(a.m==b.m && a.n==b.n)
 {
 boolean result=true;

 LOOP1: for (int i=0;i<a.m;i++)
 LOOP2: for (int j=0;j<a.n;j++)
 if (!BroomMatrix.equals(a.matrix[i][j],b.matrix[i][j]))
 {
 result=false;
 break LOOP1;
 }
 return (!result);
 }

 else return true;

 }

 /**
 * subtracts two floats and returns difference
 *

 93

 * @param a first float
 * @param b second float
 *
 */
 public static float subtract(float a,float b)
 {
 return a-b;
 }

 /**
 * adds two floats and returns sum
 *
 * @param a first float
 * @param b second float
 *
 */
 public static float add(float a,float b)
 {
 return a+b;
 }

 /**
 * multiplies two floats and returns the product
 *
 * @param a first float
 * @param b second float
 *
 */
 public static float multiply(float a,float b)
 {
 return a*b;
 }

 /**
 * multiplies a matrix by a scalar and returns the product
 *
 * @param a matrix
 * @param b scalar
 *
 */
 public static BroomMatrix multiply(BroomMatrix a, float b)
 {
 float temp[][]=new float[a.m][a.n];
 for (int i=0;i<a.m;i++)
 {
 for (int j=0;j<a.n;j++)
 temp[i][j]=b*a.matrix[i][j];
 }
 return new BroomMatrix(temp);

 }

 /**
 * multiplies a scalar by a matrix and returns the product
 *
 * @param a scalar
 * @param b matrix
 *
 */
 public static BroomMatrix multiply(float b, BroomMatrix a)
 {
 float temp[][]=new float[a.m][a.n];
 for (int i=0;i<a.m;i++)
 {
 for (int j=0;j<a.n;j++)

 94

 temp[i][j]=b*a.matrix[i][j];
 }
 return new BroomMatrix(temp);

 }

 /**
 * multiplies a matrix by a matrix and returns the product
 * order matters
 *
 * @param a matrix 1
 * @param b matrix 2
 *
 */

 public static BroomMatrix multiply(BroomMatrix a, BroomMatrix b)
 {

 if(a.n==b.m)
 {
 BroomMatrix dup1=BroomMatrix.copy(a);
 BroomMatrix dup2=BroomMatrix.copy(b);

 float result[][]=new float[dup1.m][dup2.n];

 for (int i=0;i<dup1.m;i++)

 for (int j=0;j<dup2.n;j++)
 {
 result[i][j]=0;
 for (int k=0;k<a.m;k++)
 result[i][j]+=dup1.matrix[i][k]*dup2.matrix[k][j];
 }

 return new BroomMatrix(result);
 }

 else
 {
 e("MatrixMultiplication: matrix sizes dont match\nMatrix A is an "+a.m+"
by "+a.n+"matrix,\nMatrix B is an "+b.m+" by "+b.n+"matrix.\nFor Matrix Multiplication
A*B, Width of A must match height of B");
 return null;
 }

 }

 /**
 *
 * prints a matrix object
 *
 * @param a matrix to print
 *
 */
 public static void printVariable(BroomMatrix a)
 {

 if (a!=null)
 {
 //System.out.println(a.m +" m rows, "+a.n+"n cols");
 System.out.println("");
 for (int i=0;i<a.m;i++)
 {
 for (int j=0;j<a.n;j++)

 95

 System.out.print(a.matrix[i][j]+" ");
 System.out.println();
 }
 }
 }

 /**
 *
 * prints a float
 *
 * @param a float to print
 *
 */
 public static void printVariable(float a)
 {
 System.out.print(""+a+" ");
 }

 /**
 *
 * returns the rank of a matrix
 *
 * @param a matrix to evaluate
 *
 */

 public static int rank(BroomMatrix a)
 {
 BroomMatrix dup=BroomMatrix.copy(a);
 int lastP=-1;
 int rankNum=0;

 for (int i=0;i<a.m;i++) //for each row.
 {
 boolean found=false;
 for(int j=lastP+1;j<a.n;j++) //move to right on this row, from last known
pivot
 {
 if (!found)
 {
 for (int q=i+1;q<a.m;q++)

if(Math.abs(dup.matrix[i][j])<Math.abs(dup.matrix[q][j]))
 dup=BroomMatrix.rowSwap(dup,i,q);
 //rows swapped

 if (dup.matrix[i][j]!=0)//found pivot
 {
 found=true;
 rankNum++;
 lastP=j;
 float pivot=dup.matrix[i][j];

 for (int w=i+1;w<a.m;w++)//for each lower row, to
subtract
 {
 float m=dup.matrix[w][j]/pivot;
 for (int e=0;e<a.n;e++)
 dup.matrix[w][e]=dup.matrix[w][e]-
m*dup.matrix[i][e];

 }

 }

 else //no pivot

 96

 {}
 }
 }
 }
 return rankNum;

 }

 /**
 *
 * sets the specified entry of a matrix to the specified value, and returns the
modified matrix.
 *
 * @param a matrix
 * @param b value to set
 * @param m1 M coord
 * @param n1 N coord
 *
 */

 public static BroomMatrix setElement(BroomMatrix a, float b, float m1, float n1)
 {
 int m=BroomMatrix.round(m1);
 int n=BroomMatrix.round(n1);

 if (m<a.m && n<a.n && m>=0 && n>=0)
 {
 BroomMatrix dup1=BroomMatrix.copy(a);
 dup1.matrix[m][n]=b;
 return dup1;
 }
 else
 {
 if(m<0 || n<0)
 {

 if(m<0)
 {
 System.out.println("M= "+m);
 }

 if(n<0)
 {
 System.out.println("N= "+n);
 }
 System.out.println("Matrix coordinates cannot be below zero");
 }

 if(m>=a.m)
 {
 System.out.println("Requested M coordinate ("+m+") is out of range.
Height range is 0 to "+(a.m-1));
 }
 if(n>=a.n)
 {
 System.out.println("Requested N coordinate ("+n+") is out of range.
Width range is 0 to "+(a.n-1));
 }

 e("setElement: Element requested out of matrix range");
 return null;
 }

 }

 /**
 *
 * sets the specified row of a matrix to the specified row vector, and returns the
modified matrix.
 *

 97

 * @param a matrix
 * @param b row
 * @param pos1 M coord to set
 *
 */
 public static BroomMatrix setRow(BroomMatrix a, BroomMatrix b , float pos1)
 {
 int pos=BroomMatrix.round(pos1);

 if (pos<a.m && pos>=0 && b.m==1 && b.n==a.n)
 {
 BroomMatrix dup1=BroomMatrix.copy(a);
 for (int i=0;i<a.n;i++)
 {
 dup1.matrix[pos][i]=b.matrix[0][i];

 }
 return dup1;
 }
 else
 {
 if (pos<0)
 System.out.println("Row index ("+pos+") is less than 0");
 if (pos>=a.m)
 System.out.println("Row index ("+pos+") is out of range. Matrix
height range is 0 to "+(a.m-1));
 if (b.m!=1)
 System.out.println("Matrix being used for setRow is not of height 1
(height = "+b.m +")");
 if (b.n!=a.n)
 System.out.println("Row being used for setRow does not match width of
matrix");

 e("setRow: error");
 return null;
 }
 }

 /**
 *
 * sets the specified column of a matrix to the specified column vector, and returns
the modified matrix.
 *
 * @param a matrix
 * @param b column vector
 * @param pos1 N coord to set
 *
 */

 public static BroomMatrix setCol(BroomMatrix a, BroomMatrix b , float pos1)
 {
 int pos=BroomMatrix.round(pos1);
 if (pos<a.n && b.n==1 && pos>=0 && b.m==a.m)
 {
 BroomMatrix dup1=BroomMatrix.copy(a);
 for (int i=0;i<a.m;i++)
 {
 dup1.matrix[i][pos]=b.matrix[i][0];

 }

 return dup1;
 }
 else
 {

 98

 if (pos<0)
 System.out.println("Column index ("+pos+") is less than 0");
 if (pos>=a.n)
 System.out.println("Column index ("+pos+") is out of range. Matrix
width range is 0 to "+(a.n-1));
 if (b.n!=1)
 System.out.println("Matrix being used for setCol is not of width 1
(width = "+b.m +")");
 if (b.m!=a.m)
 System.out.println("Matrix being used for setCol does not match height
of matrix");

 e("setCol: error");
 return null;
 }

 }

 /**
 *
 * adds the specified row to end of the matrix, and returns the modified matrix.
 *
 * @param a matrix
 * @param b row vector
 *
 */

 public static BroomMatrix addRow(BroomMatrix a, BroomMatrix b)
 {
 if (a.n==b.n && b.m==1)
 {
 BroomMatrix dup1=BroomMatrix.copy(a);
 BroomMatrix dup2=BroomMatrix.copy(b);
 return insertRow(dup1,dup2, (float)dup1.m);
 }

 else
 {
 if (a.n!=b.n)
 System.out.println("addRow: Matrix and Row being added must be the
same width.\nMatrix width="+a.n+", row width=+"+b.n);
 if (b.m==1)
 System.out.println("addRow: row being added must have height 1, Row
height="+b.m);
 e("addRow:Error");
 return null;
 }

 }

 /**
 *
 * adds the specified column to the right of the matrix, and returns the modified
matrix.
 *
 * @param a matrix
 * @param b row vector
 *
 */
 public static BroomMatrix addCol(BroomMatrix a, BroomMatrix b)
 {
 if (a.m==b.m && b.n==1)
 {
 BroomMatrix dup1=BroomMatrix.copy(a);
 BroomMatrix dup2=BroomMatrix.copy(b);
 return insertCol(dup1,dup2, (float)dup1.n);
 }

 else
 {

 99

 if (a.m!=b.m)
 System.out.println("addCol: Matrix and Column being added must be the
same height.\nMatrix height="+a.m+", column height=+"+b.m);
 if (b.n==1)
 System.out.println("addCol: col being added must have width 1, column
width="+b.n);
 e("addCol:Error");
 return null;
 }
 }

 /**
 *
 * adds the specified row(s) into the matrix at the specified loccation, shifting the
row in that position and all rows below it, down - returns modified matrix.
 *
 * @param a matrix
 * @param b row(s)
 * @param pos1 location to insert
 *
 */

 public static BroomMatrix insertRow(BroomMatrix a, BroomMatrix b, float pos1)
 {

 int pos=BroomMatrix.round(pos1);

 if (b.n==a.n)
 {
 float temp[][]=new float[a.m+b.m][a.n];

 for (int i=0;i<pos;i++)
 for (int j=0;j<a.n;j++)
 {

 temp[i][j]=a.matrix[i][j];

 }

 for (int i=0;i<b.m;i++)
 for (int j=0;j<a.n;j++)
 {
 temp[i+pos][j]=b.matrix[i][j];

 }

 for (int i=pos;i<a.m;i++)
 for (int j=0;j<a.n;j++)
 {
 temp[i+b.m][j]=a.matrix[i][j];

 }
 return (new BroomMatrix(temp));
 }
 else
 {
 e("row widths do not match");
 return null;
 }

 }

 /**
 *

 100

 * adds the specified columns(s) into the matrix at the specified loccation, shifting
the column in that position and all columns to the right of it, to the right - returns
modified matrix.
 *
 * @param a matrix
 * @param b column(s)
 * @param pos1 location to insert
 *
 */
 public static BroomMatrix insertCol(BroomMatrix a, BroomMatrix b, float pos1)
 {
 int pos=BroomMatrix.round(pos1);

 if (a.m==b.m)
 {
 float temp[][]=new float[a.m][a.n+b.n];

 for (int i=0;i<pos;i++)
 for (int j=0;j<a.m;j++)
 {

 temp[j][i]=a.matrix[j][i];

 }

 for (int i=0;i<b.n;i++)
 for (int j=0;j<b.m;j++)
 {

 temp[j][i+pos]=b.matrix[j][i];

 }

 for (int i=pos;i<a.n;i++)
 for (int j=0;j<a.m;j++)
 {

 temp[j][i+b.n]=a.matrix[j][i];

 }

 return (new BroomMatrix(temp));
 }

 else {e("col widths do not match");
 return null;}

 }

 /**
 *
 * removes the specified row from the input matrix and returns modified matrix.
 * (shifts rows up)
 *
 * @param a matrix
 * @param pos1 position to delete
 *
 */
 public static BroomMatrix deleteRow(BroomMatrix a, float pos1)
 {
 int pos=BroomMatrix.round(pos1);

 101

 if (pos<a.m && pos>=0)
 {
 //System.out.println("delete begin");

 float temp[][]=new float[a.m-1][a.n];

 BroomMatrix tempRes=new BroomMatrix(temp);
 BroomMatrix q=null;
 for (int i=0;i<pos;i++)
 {
 tempRes=BroomMatrix.setRow(tempRes,BroomMatrix.getRow(a,i),i);
 }

 for (int i=pos+1;i<a.m;i++)
 {
 tempRes=BroomMatrix.setRow(tempRes,BroomMatrix.getRow(a,i),i-1);

 }

 //System.out.println("delete end ");
 return tempRes;
 }
 else
 {
 if (pos<0)
 {
 System.out.println("Row index ("+pos+") cannot be below zero");
 }
 if (pos>=a.m)
 {
 System.out.println("Row index ("+pos+") out of range. valid Range
is 0 to "+(a.m-1));
 }

 e("deleteRow: row index out of range");
 return null;
 }

 }

 /**
 *
 * removes the specified column from the input matrix and returns modified matrix.
 * (shifts rows left)
 *
 * @param a matrix
 * @param pos1 position to delete
 *
 */
 public static BroomMatrix deleteCol(BroomMatrix a, float pos1)
 {
 int pos=BroomMatrix.round(pos1);
 if (pos<a.n && pos>=0)
 {
 System.out.println("delete begin");

 float temp[][]=new float[a.m][a.n-1];

 BroomMatrix tempRes=new BroomMatrix(temp);

 102

 for (int i=0;i<pos;i++)
 {
 tempRes=BroomMatrix.setCol(tempRes,BroomMatrix.getCol(a,i),i);
 }

 for (int i=pos+1;i<a.n;i++)
 {
 tempRes=BroomMatrix.setCol(tempRes,BroomMatrix.getCol(a,i),i-1);
 }

 System.out.println("delete end ");
 return tempRes;
 }
 else
 {
 if (pos<0){System.out.println("Col index ("+pos+") cannot be below
zero");}
 if (pos>=a.n){System.out.println("Column index ("+pos+") out of range.
valid Range is 0 to "+(a.n-1));}

 e("deleteCol: Column index out of range");
 return null;
 }

 }

 /**
 *
 * appends second matrix to right of first, and returns the concatenation
 *
 * @param a matrix 1
 * @param b matrix 2
 *
 */
 public static BroomMatrix appendLR(BroomMatrix a, BroomMatrix b)
 {
 if (a.m==b.m)
 {
 BroomMatrix dup1=BroomMatrix.copy(a);
 BroomMatrix dup2=BroomMatrix.copy(b);
 return insertCol(dup1,dup2, dup1.n);
 }
 else
 {
 e("appendLR:matrix heights dont match.\n Matrix A height="+a.m+", Matrix b
height="+b.m);
 return null;
 }
 }

 /**
 *
 * appends second matrix to bottom of first, and returns the concatenation
 *
 * @param a matrix 1
 * @param b matrix 2
 *
 */
 public static BroomMatrix appendUD(BroomMatrix a, BroomMatrix b)
 {
 if (a.n==b.n)
 {

 103

 BroomMatrix dup1=BroomMatrix.copy(a);
 BroomMatrix dup2=BroomMatrix.copy(b);
 return insertRow(dup1,dup2, dup1.m);
 }
 else
 {
 e("appendUD:matrix widths dont match.\n Matrix A width="+a.n+", Matrix b
width="+b.n);
 return null;
 }
 }

 public static void e(String s) {

 System.out.println(s);
 System.exit(1);

 }

 public static int round(float a)
 {
 int q=(int)a;
 if (a-q<.5)
 return q;
 else return q+1;

 }

}

--

total revisions: 12; selected revisions: 12
description:
added basic error messages,
changed args to floats for user input
(this was modified from start.java to remove the test main method)

revision 1.12
date: 2003/05/12 18:26:41; author: mjw133; state: Exp; lines: +0 -53
Remoed some testing code that was comment out in the file.

revision 1.11
date: 2003/05/12 14:05:34; author: gg; state: Exp; lines: +1 -1
fixed setelment error check

revision 1.10
date: 2003/05/11 06:44:18; author: gg; state: Exp; lines: +1382 -1030
javaDoc'ed

revision 1.9
date: 2003/05/09 19:00:29; author: gg; state: Exp; lines: +56 -21
more error messages.
,

revision 1.8
date: 2003/05/09 18:29:36; author: gg; state: Exp; lines: +163 -33
more error stuff.

revision 1.7
date: 2003/05/09 17:29:34; author: gg; state: Exp; lines: +151 -61
added more robust error messages

revision 1.6
date: 2003/05/05 01:44:27; author: gg; state: Exp; lines: +2 -2
add constraint on setRow/Col.

 104

revision 1.5
date: 2003/05/05 01:30:40; author: gg; state: Exp; lines: +22 -5
added matrix subtraction

revision 1.4
date: 2003/05/05 01:24:53; author: gg; state: Exp; lines: +1 -1
fixed colSwap parameters (ints--> floats)

revision 1.3
date: 2003/05/04 23:46:14; author: gg; state: Exp; lines: +12 -0
add newMatrix function (zero matrix).

revision 1.2
date: 2003/05/02 20:40:04; author: gg; state: Exp; lines: +51 -75
fixed append UD compare and removed creatio.

revision 1.1
date: 2003/05/02 20:27:07; author: gg; state: Exp;
Initial revision
===

--

And now for the test cases:

--

HelloWorld

//
// A simple program to test if the parser can handle
// a really simple case.
//
// Author: Michael Weiss
//
//

start()

 print("Hello World!");

endstart

--

ControlMadness

// A Test Case program
//
// has nested control flow variables
// for testing control flow parameters
//
// Author: Michael Weiss
//

define function Void runForAWhile()

 Number x,y,z;

 x = 0;
 z = 0;

 while (x < 10)

 for (y = 0; y < 10; y=y+1;)

 105

 z = z+1;
 endfor

 x = x + 1;

 endwhile

 print("working program should print 100");
 z.print();

endfunction

start()
 runForAWhile();
endstart

--

ExperimentBroom

// ExperimentBroom
//
// Author: Michael Weiss
//
// A test suite program.
// This is a very simple program written to
// test the case of a programmer trying to figure out what all
// of the different built-in functions in broom do, by plugging in hard-coded
// values.
//
// He just wants to see if the output compares to what he expects
//
// The purpose of this is to test all of the semantic checking
// on the builtin functions to make sure that it does not throw
// errors when it shouldn't
//

start()
 Number rn;
 Matrix rm;

 rm = [1,2;3,4;];
 rm.print();

 rm = inv([1,2;3,4;]);
 print("inv:");
 rm.print();

 rn = det([1,2;3,4;]);
 print("det:");
 rn.print();

 rm = trans([1,2;3,4;]);
 print("trans:");
 rm.print();

 rn = rank([1,2;3,4;]);
 print("rank:");
 rn.print();

 rn = numRows([1,2;3,4;]);
 print("numrows");
 rn.print();

 rn = numCols ([1,2;3,4;]);
 print("numcols");
 rn.print();

 rm = gauss([1,2;3,4;], [1;0;]);
 print("gauss");

 106

 rm.print();

 rm = getRow([1,2;3,4;], 0);
 rm = getRow([1,2;3,4;], 1);

 rm = getCol([1,2;3,4;], 0);
 rm = getCol([1,2;3,4;], 1);

 print("col 1");
 rm.print();

 rm = appendLR([1,2;3,4;], [1,2;3,4;]);
 print("appendLR: ");
 rm.print();

 rm = appendUD([1,2;3,4;], [1,2;3,4;]);

 print("appendUD: ");
 rm.print();

 rm = deleteRow([1,2;3,4;], 1);
 rm = deleteRow([1,2;3,4;], 0);

 rm = deleteCol([1,2;3,4;], 0);
 rm = deleteCol([1,2;3,4;], 1);

 print("del col 2");
 rm.print();

 //programmer: is scalar multiplication allowed?
 // let's try it!!!

 rm = [1,2;3,4;] * 2;
 print("times 2");
 rm.print();

 rn = getElement([1,2;3,4;], 0, 0);
 rn = getElement([1,2;3,4;], 1, 1);

 print("expect 4:");
 rn.print();

 rm = rowSwap([1,2;3,4;], 0, 1);
 print("rowswap: ");
 rm.print();

 rm = colSwap([1,2;3,4;], 0, 1);
 print("colswap: ");
 rm.print();

 rm = setRow([1,2;3,4;], [8,8;], 0);

 print("set top row to 8,8");
 rm.print();

 rm = setCol([1,2;3,4;], [8;8;], 0);

 print("set left column to 8,8");
 rm.print();

 rm = setElement([1,2;3,4;], 0, 0, 0);
 print("set upper-left element to 0: ");
 rm.print();

 print("that is all.");

endstart

--

Gauss

 107

// A simple program to test the functionality
// of Gaussian elimination
//
// by Michael Weiss
//

global Matrix A,b;

A = [1, 2;
 3, 5;];

b = [6;7;];

start()

 Matrix Ans;

 Ans = gauss(A,b);

 //print results
 print("results of gaussian elimination:");

 Ans.print();

endstart

--

ALU

// slu square factorization with no row exchanges
//
// some slu function is code translation from Linear Algebra, by Gilbert Strang
//
//
// all other code and code translation is by: Michael Weiss
//
// supplementary functions: Michael Weiss
//
// a rigorous test case for our language.
//

global Matrix X;
global Number iterations, tol;
global Number TRUE, FALSE;

X = [1, 1, 0, 0;
 1, 2, 1, 0;
 0, 1, 2, 1;
 0, 0, 1, 1;];

TRUE = 1;
FALSE = 0;

tol = 1.0e-6;

//returns the absolute value of number
define function Number absol(Number x)

 if (x > 0) then
 return x;
 else
 return (x * -1);
 endif

endfunction

//returns TRUE if matrix A is square and 0 if it is not

 108

define function Number isSquare(Matrix A)

 Number m,n;

 m = numRows(A);
 n = numCols(A);

 if (m == n) then
 return TRUE;
 else
 return FALSE;
 endif

endfunction

define function Matrix copy(Matrix A)
 return A;
endfunction

// returns an empty matrix of the same size C
define function Matrix newEmptyMatrix (Matrix C)

 Matrix R;
 Number i,k;

 R = copy(C);

 for (i=0; i < numRows(R) ; i=i+1;)
 for (k=0; k < numCols(R); k=k+1;)
 R = setElement(R,0,i,k);
 endfor
 endfor

 return R;

endfunction

// this function assumes that A is a square matrix or
// it will die.
define function Matrix makeIdentity (Matrix A)

 Number i,j,n;

 n = numRows(A);

 for (i=0; i<n; i=i+1;)
 for (j=0; j<n; j=j+1;)

 if (i == j) then
 A = setElement(A,1,i,j);
 else
 A = setElement(A,0,i,j);
 endif

 endfor
 endfor

 return A;

endfunction

define function Matrix slu(Matrix A)

 //define all local variables
 Matrix P, LU;
 Number i,j,k,r;
 Number n;
 Number maxRow;

 P = newEmptyMatrix(A);

 109

 //convert P into an identity matrix
 P = makeIdentity(P);
 //this is the permutation matrix

 //LU contains the lower and upper factorization of the matrix
 //but it begins as an empty matrix
 LU = newMatrix(numRows(A) ,numCols(A));

 // die if A is not square
 if (! (isSquare(A)==TRUE)) then
 print ("error matrix A on slu must be square!");
 return A;
 endif

 n = numRows(A);
 //print("number of rows below"); n.print(); print("");

 for (k=0;k<n;k=k+1;)

 //choose the largest number in row k or below.
 //exchange its row with k.
 maxRow = k;
 for (r=k+1;r<n;r=r+1;)

 if (absol(getElement(A,r,k)) > (absol(getElement(A,maxRow,k))))
then
 maxRow = r;
 endif

 endfor

 if (maxRow != k) then

 A = rowSwap(A,k,maxRow);
 LU = rowSwap(LU,k,maxRow);
 P = rowSwap(P,k,maxRow);

 endif

 for (i=k+1;i<n;i=i+1;)

 LU = setElement(LU, getElement(A,i,k)/getElement(A,k,k) ,i,k);

 for (j=k+1;j<n;j=j+1;)

 A = setElement(A, getElement(A,i,j) -
getElement(LU,i,k)*getElement(A,k,j) ,i,j);

 endfor

 endfor

 for (j=k;j<n;j=j+1;)

 LU = setElement(LU, getElement(A,k,j), k,j);

 endfor

 endfor

 return LU;

endfunction

start()

 Matrix LU;
 Matrix L, U;
 Matrix W;

 110

 Number i,j;

 print("performing factorization on this matrix: ");
 X.print();
 print("\n\n");

 LU = slu(X);

 print("The result of the factorization: \n\n");

 print("LU:");

 LU.print();

 L = newMatrix(numRows(LU),numCols(LU));
 U = copy(L);

 //get the L part of the matrix
 for (i=0; i<numRows(LU); i=i+1;)
 for (j=0; j<numRows(LU); j=j+1;)

 //if you are looking at the lower half of the matrix
 if (i > j) then
 L = setElement(L,getElement(LU,i,j),i,j);
 endif

 if (i < j || i == j) then
 U = setElement(U,getElement(LU,i,j),i,j);
 endif

 if (i==j) then
 L = setElement(L,1,i,j);
 endif

 endfor
 endfor

 print("L:");
 L.print();

 print("U:");
 U.print();

 print("L * U, returns the original matrix:");

 W = L * U;

 W.print();

endstart

--

Identity

//
// Here's a useful function that computes the idenity
// matrix for a bunch of functions
//
define function Matrix I(Number m, Number n)

 Number j,k;
 Matrix Id, TempColumn;

 Id = [1;];
 //first build Id into a column of hieght m
 for (j=0; j<(m-1) ; j=j+1;)
 Id = appendUD(Id, [0;]);
 endfor

 111

 // now Id is a column of height m
 Id.print(); //for debugging

 //builds the matrix is a difficult fashion
 for (k=0; k<n-1; k=k+1;)
 TempColumn = [0;];
 //build up another column
 for (j=0; j<(m-1) ; j=j+1;)
 if (j == k) then
 TempColumn = appendUD(TempColumn, [1;]);
 else
 TempColumn = appendUD(TempColumn, [0;]);
 endif
 endfor

 Id = appendLR(Id, TempColumn);
 endfor

 //Identity matrix has been constructed
 Id.print();

 return Id;

endfunction

start()

 Matrix I1, I2, I3, I4,I8;

 //go through and declare each one of them
 I1 = I(1,1);
 I1.print();

 I2 = I(2,2);
 I2.print();

 I3 = I(3,3);
 I3.print();

 I4 = I(4,4);
 I4.print();

 I8 = I(8,8);
 I8.print();

 print("done");

endstart

==

Statistics

// test case by Michael Weiss
//
// this program computes the statistics
// which are stored in a matrix
//

global Matrix data1,data2;

data1 = [1,2,3;
 4,5,6;
 7,8,9;];

data2 = [0,1,0;
 1,0,1;
 1,1,1;];

define function Number findAverage(Matrix d)

 112

 Number i,j;
 Number m,n,avg,sum,num;

 m = 1; n = 1;
 m = numRows(d);
 n = numCols(d);

 num = m*n;

 sum = 0;

 for (i=0; i<m; i=i+1;)
 for (j=0; j<n; j=j+1;)
 sum = sum + getElement(d,i,j);
 endfor
 endfor

 avg = sum / num;

 return avg;

endfunction

start()

 Number a,b;

 a = findAverage(data1);

 print("average:");
 a.print();
 print("");

endstart

--

RESULTS TO TESTING THE FILES (By Michael Weiss) (Examples of developing a broom program)

2 Examples of programs in BROOM

--
ALU program -- working example of broom progam (ALU.broom)
--

ALU.broom -- development phase of the sample program along with output from the
compiler:

[mjw133@aluminor plt-project]$ java BCC /proj/test_cases/ALU.broom
/proj/test_cases/ALU.broom
line 81:39: expecting SEMI, found ')'
line 83:25: expecting RPAREN, found 'if'
line 83:30: unexpected token: i
line 83:35: unexpected token: j
line 85:25: expecting "endfor", found 'else'
line 87:25: expecting "endfunction", found 'endif'
line 130:27: expecting SEMI, found ')'
line 134:15: expecting RPAREN, found 'maxRow'
line 134:24: unexpected token: k
line 138:33: expecting "then", found 'maxRow'
line 138:42: unexpected token: r
line 139:25: expecting "endfor", found 'endif'
line 141:15: expecting "endfunction", found 'endfor'
BroomProgram did not compile; the following errors were detected:
* Error in start() : reference to undefined function slu
* Error in start() : right side of an assignment is invalid.
 No value detected. Make sure functions return value and are operational.
* Error in start() : reference to undefined function slu
* Error in start() : right side of an assignment is invalid.
 No value detected. Make sure functions return value and are operational.

 113

after the initial compilation:

java BCC /proj/test_cases/ALU.broom
/proj/test_cases/ALU.broom
BroomProgram did not compile; the following errors were detected:
* Error in slu : function call with incorrect number of arguments.
 makeIdentity expected 1, but got 2.
* Error in slu : reference to undefined function selElement
* Error in slu : right side of an assignment is invalid.
 No value detected. Make sure functions return value and are operational.

java BCC /proj/test_cases/ALU.broom
/proj/test_cases/ALU.broom
BroomProgram did not compile; the following errors were detected:
* Error in start() : trying to print undefined variable L
* Error in start() : trying to print undefined variable U
* Error in start() : reference to undefiend variable L
* Error in start() : reference to undefiend variable U
* Error in start() : right side of an assignment is invalid.
 No value detected. Make sure functions return value and are operational.

[mjw133@aluminor plt-project]$ java BCC /proj/test_cases/ALU.broom
/proj/test_cases/ALU.broom
[mjw133@aluminor plt-project]$ javac ALU.java
[mjw133@aluminor plt-project]$ java ALU
performing factorization on this matrix:

1.0 1.0 0.0 0.0
1.0 2.0 1.0 0.0
0.0 1.0 2.0 1.0
0.0 0.0 1.0 1.0

The result of the factorization:

LU:

1.0 1.0 0.0 0.0
1.0 1.0 1.0 0.0
0.0 1.0 1.0 1.0
0.0 0.0 1.0 0.0
L:

1.0 0.0 0.0 0.0
1.0 1.0 0.0 0.0
0.0 1.0 1.0 0.0
0.0 0.0 1.0 1.0
U:

1.0 1.0 0.0 0.0
0.0 1.0 1.0 0.0
0.0 0.0 1.0 1.0
0.0 0.0 0.0 0.0
L * U, returns the original matrix:

1.0 1.0 0.0 0.0
1.0 2.0 1.0 0.0
0.0 1.0 2.0 1.0
0.0 0.0 1.0 1.0
[mjw133@aluminor plt-project]$

--
Statistics -- Average Finder (Stat2.broom)

 114

--

java BCC /proj/test_cases/Stat2.broom
/proj/test_cases/Stat2.broom

[mjw133@aluminor plt-project]$ javac Statistics.java
[mjw133@aluminor plt-project]$ java Statistics
average:
5.0
[mjw133@aluminor plt-project]$

--
ControlMadness -- tests some control loop implementations (ControlMadness.broom)
--

java BCC /proj/test_cases/ControlMadness.broom
/proj/test_cases/ControlMadness.broom
[mjw133@aluminor plt-project]$ javac ControlMadness.java
[mjw133@aluminor plt-project]$ java ControlMadness
working program should print 100
100.0 [mjw133@aluminor plt-project]$

--
Gauss - development and test case (Gauss.broom)
--

Before corrections were made, a runtime error occured, which allowed
for easy debugging:

java BCC /proj/test_cases/Gauss.broom
/proj/test_cases/Gauss.broom
[mjw133@aluminor plt-project]$ javac Gauss.java
[mjw133@aluminor plt-project]$ java Gauss
B vector (second parameter) to gaussian elimination must be an M x 1 matrix.

6.0 7.0
is not M x 1, it has 2 columns.
The height (M) of the B vector must equal the height (M)of the (A) input matrix.
Here, (A) has 2 rows, but (B) has 1 rows.

[mjw133@aluminor plt-project]$

After correcting the error:

java Gauss
results of gaussian elimination:

-16.000004
11.000002
[mjw133@aluminor plt-project]$

--
ExperimentBroom.broom
--
java BCC /proj/test_cases/ExperimentBroom.broom
/proj/test_cases/ExperimentBroom.broom
[mjw133@aluminor plt-project]$ javac ExperimentBroom.java
[mjw133@aluminor plt-project]$ java ExperimentBroom

1.0 2.0
3.0 4.0
inv:

-2.0000002 1.0000001
1.5000001 -0.50000006
det:
-2.0 trans:

1.0 3.0
2.0 4.0

 115

rank:
2.0 numrows
2.0 numcols
2.0 gauss

-2.0000002
1.5000001
col 1

2.0
4.0
appendLR:

1.0 2.0 1.0 2.0
3.0 4.0 3.0 4.0
appendUD:

1.0 2.0
3.0 4.0
1.0 2.0
3.0 4.0
delete begin
delete end
delete begin
delete end
del col 2

1.0
3.0
times 2

2.0 4.0
6.0 8.0
expect 4:
4.0 rowswap:

3.0 4.0
1.0 2.0
colswap:

2.0 1.0
4.0 3.0
set top row to 8,8

8.0 8.0
3.0 4.0
set left column to 8,8

8.0 2.0
8.0 4.0
set upper-left element to 0:

0.0 2.0
3.0 4.0
that is all.
[mjw133@aluminor plt-project]$

--
HelloWorld example program (HelloWorld.broom)
--

java BCC /proj/test_cases/HelloWorld.broom
/proj/test_cases/HelloWorld.broom
[mjw133@aluminor plt-project]$ javac HelloWorld.java
[mjw133@aluminor plt-project]$ java HelloWorld
Hello World!
[mjw133@aluminor plt-project]$

--
IncrementalOperations (early testing phase) (MatrixFun.broom)

 116

--

[mjw133@aluminor plt-project]$ java BCC /proj/test_cases/MatrixFun.broom
/proj/test_cases/MatrixFun.broom
[mjw133@aluminor plt-project]$ javac IncrementalOperations.java
[mjw133@aluminor plt-project]$ java IncrementalOperations
if this program is working, it should print 2....
2.0

a is square, returning determinant.

if this program is working, it should print 8...
8.0 a is not square, returning 0
if this program is working, it should print 0
0.0

about the increment the matrix:

1.0 1.0
1.0 1.0
 each element by:
5.0

 Matrix after incrementing:

6.0 6.0
6.0 6.0
if this program is working, it should print a matrix of
 all 6's that is 2x2

6.0 6.0
6.0 6.0
[mjw133@aluminor plt-project]$

--
The following are test cases for error our programs error detection
Designed by Brian Pellegrini
--

logicalOpps

// Test for logical operator errors
// Author Brian Pellegrini

// This is supposed to make sure that error checking for
//use of logical operators works...it is supposed to fail
// MUA HAHAHHAHAHHAH

global Matrix A,B;

A= [1, 0; 0, 1;];
B= [0, 1; 1, 0;];

start()
 Number test;
 test = 0;

 if (A > B) then
 print (" > checker didn't work");
 endif

 if (A < B) then
 print (" < checker didn't work");
 endif

 117

 if (A == test) then
 print (" LOGEQ type checker didn't work");
 endif

 if (A != test) then
 print (" LOGNEQ type checker didn't work");
 endif
endstart

--
Results for logicalOpps.broom test:

BroomProgram did not compile; the following errors were detected:
* Error in start() : '>' operator cannot be applied to matrices.
* Error in start() : '<' operator cannot be applied to matrices.

* Error in start() : mismatched types on '==' logical expression.

* Error in start() : mismatched types on '!=' logical expression.
--

noaryOp

// Test for noary operations checks
// Author Brian Pellegrini

// This is supposed to make sure that error checking for
//noary operations works. it checks
//DET, RANK, NUMROWS, NUMCOLS, INV, TRANS
// It checks the type checking and the number
// of arguments checking.

// it is supposed to fail
// MUA HAHAHHAHAHHAH

global Matrix A,B;

A= [1, 0; 0, 1;];

//didn't catch the type mismatch errors
start()
 Number q;

 B = det(q);
 q = trans(A);
 B = rank();

endstart

--

Results for noary opperations test

line 26:18: unexpected token:)
line 26:19: expecting RPAREN, found ';'
line 30:1: unexpected token: null
line 30:1: unexpected token: null
line 30:1: expecting SEMI, found 'null'
line 30:1: expecting "endstart", found 'null'
<AST>: expecting START, found '<ASTNULL>'
<AST>: expecting START, found '<ASTNULL>'
<AST>: expecting START, found '<ASTNULL>'

--
NOTE FROM THE AUTHOR OF STATIC CHECKER: This program did not show static
errors because it is syntactically incorrect.
--

 118

reservedWord

// Test for reserved word error checking
// Author Brian Pellegrini

// This is supposed to make sure that error checking for
//use of reserved words works...it is supposed to fail
// MUA HAHAHHAHAHHAH

global Matrix throws;

define function Void implements ()
 print ("didn't work");
endfunction

start()
 Number Matrix;

 Number = implements();
endstart

--
Results for reserved word test:

BroomProgram did not compile; the following errors were detected:
* Error in *global declaration* : The word throws is a reserved java keyword.
* Error in *global declaration* : The word implements is a reserved java keyword.
* Error in implements : The word implements is a reserved java keyword.
* Error in start() : The word implements is a reserved java keyword.

--

returnNonVoid

// Test for returning a value in a void
//function
// Author Brian Pellegrini

// This is supposed to make sure that error checking for
//trying to return a value for a void function
//...it is supposed to fail
// MUA HAHAHHAHAHHAH

global Matrix A,B;

A= [1, 0; 0, 1;];
B= [0, 1; 0 , 2;];

define function Void myFunction ()
 Number test = 0;
 return test;
endfunction

start()
 Number test1;
 test1 = myFunction;
endstart

--

These are the results for the test of a void function
trying to return a value:

BroomProgram did not compile; the following errors were detected:
* Error in myFunction : reference to undefiend variable test
* Error in myFunction : return statement in function of 'Void' return

 119

type.
 Please remove the return statement or give function return type.
* Error in start() : right side of an assignment is invalid.
 No value detected. Make sure functions return value and are
operational

--

setRowCol

// Test for row swap, col swap, and element
// Author Brian Pellegrini

// This is supposed to make sure that error checking for
//assignment of row and column values works
//values works...it is supposed to fail
// MUA HAHAHHAHAHHAH

global Matrix A,B,C;

A= [1, 0; 0, 1;];
B= [0, 1; 0 , 2;];
C= [1, 1; 1, 1;];

//didn't catch the type mismatch errors
start()
 Number myEl;

 A = rowSwap (A, 5, 8);
 B = colSwap (A, B, 6);
 myEl = getElement(A, B, 12);
 C = rowSwap (A, 1, 1, 1);

endstart

--

Results for row and column swap test:

BroomProgram did not compile; the following errors were detected:
* Error in start() : on param 2, colSwap requires MATRIX, NUMBER, NUMBER as arguments.
* Error in start() : on param 2, getElement requires MATRIX, NUMBER, NUMBER as arguments.

--

runTimeTest

// Run Time errors
// Author Brian Pellegrini

// This is supposed to make sure that error checking for
//run-time errors works...it is supposed to fail
// MUA HAHAHHAHAHHAH

global Matrix A,B;

A= [1, 0; 0, 1; 2,0;];
B= [0, 1; 1, 0;];

start()
 //row number is out of bounds
 //should cause a run time error
 A = setElement(A, 5, 1, 10);

 120

endstart

--

Results of run time test for out of bounds error:

Requested N coordinate (10) is out of range. Width range is 0 to 1
setElement: Element requested out of matrix range

--

runTimeTest2

// Run Time errors
// Author Brian Pellegrini

// This is supposed to make sure that error checking for
//run-time errors works...it is supposed to fail
// MUA HAHAHHAHAHHAH

global Matrix A,B;

A= [1, 0; 0, 1; 2,0;];
B= [0, 1; 1, 0;];

start()
 //matrices have different heights
 //should cause a run time error
 A = gauss(A, B);

endstart

--

Run-time test for improperly formatted matrices:

Input matrix (first parameter) to gaussian elimination must be square
B vector (second parameter) to gaussian elimination must be an M x 1 matrix.

0.0 1.0
1.0 0.0
is not M x 1, it has 2 columns.
The height (M) of the B vector must equal the height (M)of the (A) input matrix.
Here, (A) has 3 rows, but (B) has 2 rows.

--

--

setRowCol

// Test for set row and set cols errors
// Author Brian Pellegrini

// This is supposed to make sure that error checking for
//assignment of row and column values works
//values works...it is supposed to fail
// MUA HAHAHHAHAHHAH

global Matrix A,B;

A= [1, 0; 0, 1;];
B= [0, 1;0 , 2;];

 121

start()
 A = setRow (A, 5, [1, 2;]);
 A = setCol (5, B, 2);
 B = setRow (A, [1, 2, 3;], 1);
endstart

--

Results for setRow and setCol:

BroomProgram did not compile; the following errors were detected:
* Error in start() : on param 2, setRow requires MATRIX, MATRIX, NUMBER as arguments.
* Error in start() : on param 3, setRow requires MATRIX, MATRIX, NUMBER as arguments.
* Error in start() : on param 1, setCol requires MATRIX, MATRIX, NUMBER as arguments.

--

unaryOp

// Test for unary operations checks
// Author Brian Pellegrini

// This is supposed to make sure that error checking for
//unary operations works. it checks
// AppendLR, AppendUD ROW, COL, Addrow, AddCol
//Deleterow, deleteCOl, and gauss.it is supposed to fail
// MUA HAHAHHAHAHHAH

global Matrix A,B,C, D, E, s, t;

A= [1, 0; 0, 1;];
B= [0, 1; 0 , 2;];
C= [1, 1; 1, 1;];
s = [1, 2;1, 2;];
t = [2, 4;2, 4;3, 3;];

//didn't catch the type mismatch errors
start()
 Number myEl;

 A = appendLR (A, 5);
 B = appendUD (A, 6);

 D = getRow(A, B);
 D = getCol(A);
 D= getRow(A, 10);
 D = getCol(B, 10);

 E = gauss(A);
 E = gauss(A, s);
 E = gauss(A, t);

 A = deleteRow(A, B);
 B = deleteCol(B);
 A = addRow(A, 5);
 B = addCol(B, 1);

endstart

--

Results for unary operations class:

line 29:21: expecting COMMA, found ')'
line 33:20: expecting COMMA, found ')'

 122

line 38:24: expecting COMMA, found ')'
<AST>: unexpected end of subtree
<AST>: unexpected end of subtree
<AST>: unexpected end of subtree
BroomProgram did not compile; the following errors were detected:
* Error in start() : appendLR requires MATRIX as second argument.
* Error in start() : appendUD requires MATRIX as second argument.
* Error in start() : row requires NUMBER as second argument.
* Error in start() : right side of an assignment is invalid.
 No value detected. Make sure functions return value and are operational.
* Error in start() : right side of an assignment is invalid.
 No value detected. Make sure functions return value and are operational.
* Error in start() : deleteRow col requires NUMBER as second argument.
* Error in start() : right side of an assignment is invalid.
 No value detected. Make sure functions return value and are operational.
* Error in start() : addRow requires MATRIX as second argument.
* Error in start() : addCol requires MATRIX as second argument.

--

wrongNumColls

// Test for number of columns errors
// Author Brian Pellegrini

// This is supposed to make sure that error checking for
//assignment of matrix values works...it is supposed to fail
// MUA HAHAHHAHAHHAH

global Matrix A,B;

A= [1, 0, 1; 0, 1;];
B= [0, 1; 1, 0 , 2;];

start()
 print ("If this printed checker didn't work");
endstart

--

Results for test of wrong number of columns test:

BroomProgram did not compile; the following errors were detected:
* Error in *global declaration* : invalid matrix specification.
 Expected a row with 3 elements, but got 2
* Error in *global declaration* : invalid matrix specification.
 Expected a row with 2 elements, but got 3

--

Other error built-in error checking not listed is missing return types.

 123

