AJYN Programming L anguage:
PLT Final Report
Professor Stephen Edwards

Group JAYN:
Jared Kennedy
AnanyaDas
Yaniv Schiller
Neel Goyal

May 13, 2003

Table of Contents:

(O 1 10 o (8ot i [0 o PP PRPR 3
2. Language TULOMIEle it e e e e e e e e 5
3. LanguageManUal..........oooiiii i 10
A PrOJECE PlaN. e 17
5. ArchiteCtural DESIGN.o e e e e e 19

7. LESSONS LBAIMNEA. .. e et e e e e e e e e e e e e e e e e s 30

8. APPENAIX .ot e 32

I ntroduction:
AJYN Introduction and Overview

For the past few years, certain companies have dominated the marketing in graphic
animations. For years, Macromedia has been developing their Flash product, making
them the market leader in easily distributed movie animations.

Thesefiles are greatly complex and alow for al sorts of unique, easy to use animations.
However, due to the complexity of the design, we find that Flash files are hard to
develop. The Ajyn programming language will provide an easy to use Object-Oriented
interface to allow for quick, comprehensive development of complex graphic designs and
animations.

Object-Oriented Design:

It isimportant for our language to be object-oriented in application for ease of handling
various graphics functions. By declaring each graphics primitive as a separate object, be
it asquare or an ellipse, the user can keep track of a single object throughout the code and
transform or manipulate various graphics objects through the course of the program.
Furthermore, by using object-oriented design, it is possible to group many lesser objects
together to create a parent object composed of many primitives. For instance, if auser
wants to create a snowman object and move it around the screen, this can be done easily
by creating an object composed of three circle primitives and grouping them together
based on either their relative or absolute positions into one object. If the design was not
object-oriented, to move the snowman the user would need to keep track of the three
independent circles through using nested loops or create a polygon resembling the shape
of the snowman. Therefore, the main purpose of using object-oriented programming isto
make and manipulate grouped graphics objects with ease.

Positioning

Objects are positioned based on an x-y scale which places the origin at the upper left
corner of thewindow. Moving rightwards from this point increases the values on the x-
direction and moving downwards from this point increases the values on the y-direction.

AJYN Objects
- dlipse
- rectangle
- point
- line
- polygon

Animation techniques
- trandation
- rotation
- scaling

Additional AJYN Features
- Grouping — various objects may be grouped together to form a single unit.

- Hiding Objects — an object can be set as invisible for a specified number of
frames.

Animation:

With the continuing growth of the internet and computer graphics, the popularity of
animation is mounting. Computer animation can be found all over the world wide web,
in computer games, and in many of the everyday programs we use. Companies such as
Macromedia have created graphical programs which allow usersto create complex
animations. AJY N presents another approach to computer animation. The AJYN
programming language allows users to program animations.

One of the most valuable properties of AJY N isits easy to use animation techniques.
AJY N'’s object-oriented design can make complex animations relatively straightforward.
Animation technigues include translations, rotations, and size adjustments. We may use
one of these techniques alone. or we can combine techniques to perform more complex
animations.

Procedures

In order to create an animated AJY N program, we must first decide which of the three
animation techniques are necessary to employ. For example, suppose we wished to
create aFerriswheel. We would need to utilize the rotation technique. We begin by
creating an ellipse to create the actual Ferriswheel. We then use the rotation
transformation on our ellipse object. When using the rotation function, we are required to
specify three elements of data: 1) the number of degrees of rotation, 2) the start frame at
which the rotation should begin, 3) the stop frame at which the rotation should end.

Ouputting to .swf Files

In order to compile the actual animation file, AJY N uses an open source project knows as
Ming. Ming, whichislocated on Sourceforge, replaced Macromediain creating an open
source API for swf files. Ming, written in C, comes with extensions for Java, PHP, and
C++. The backed application of AJY N accepts a file containing the intermediate
representation and then uses Ming to compile the actual animation file.

L anguage Tutorial:

Writing an program in AJYN

AJYN is a very straightforward language with few commands to remember to create
complete and colorful animations. Before getting into the syntax of the language, lets go
over some basic things to remember while programming with AJYN. First, one begins a
program by declaring a program name, screen size and number of animation frames.
Then one declares the shape objects that are going to be used in the scene. Colors are
specified by declaring a new color and al shapes declared afterwards are displayed using
that color. Declaring groupings comes after declaring shapes. Once the elements of the
scene are setup, then one can transform them over a series of frames to create an
animation and hide objects for certain frames. Now that we have quickly covered the
flow of a program, letslook at the syntax of the language and see how we actually design
an animation in AJYN.

Starting a program:

We start a program using a declaration that gives the program a name, a screen size and a
total number of frames. Suppose we want to design a clock. We could name the
program Clock, give it a screen size of 500 pixels by 500 pixels and have a total frame
count of 2160 frames. The declaration would look like:

Program Clock = 500, 500, 2160;

Here we can aso see an important element of al declarations in AJYN. They al must
end in asemicolon (;).

Declaring shape objects with colors:

Now that we have instantiated a program, lets continue by declaring various objects with
different colors. There are five primitive shape objects that can be declared.
Furthermore, one can declare these to be of any color on the RGB scale. A color
declaration looks like:

ActiveColor =0, 0, 255;

This has just declared the color to be blue. Any object that is declared below this color
declaration will be blue, until an new color is declared. RGB values range from 0 to 255,
S0 one cannot declare a color with a negative value or greater than 255. Lets now make a
blue point with the point declaration and name the point Pointl. Lets place this point in
the center of the scene.

point Pointl = 250, 250;

Points just take an x coordinate and y coordinate as parameters. The coordinate system’s
originisin the scene' s upper left corner. At that point, the x, y coordinates are (0, 0).

Now, lets make our clock that we were designing. First we must declare the ellipse that
will serve as the clock itself. We declare this first so that it appears behind the hands.
Lets make the clock red.

ActiveColor = 255, 0, 0;
ellipse ClockBody = 250, 250, 200, 200;

The dlipseis centered at (250, 250) and has an radius in the x direction of 200 pixels and
a radius in the y direction of 200 pixels. Here is how one would declare a circle in
AJYN. Now we make the hands. Before we do so, we must realize that we wish to
rotate the hands around the center of the clock. The default method of rotation in AJYN
is done by rotation about the center of a shape object. Therefore, we declare two hour
hands and two minute hands going in the opposite directions. By coloring one of each
white, it is rendered invisible. These will be grouped together later. Here is how we
declare the clock’ s hands:

ActiveColor =0, 0, 0;
line L1 = 250, 250, 250, 150;

ActiveColor = 255, 255, 255;
line L2 = 250, 250, 250, 350;

In the declaration of L1, first we declare the first endpoint of the line, which is at (250,
250). The next two parameters are the other endpoint of the line, which in the case of L1
isat (250, 150). L1 isblack and we declare L2 to be white, so it is rendered invisible. It
is also begun from the same place but its other endpoint is 100 pixels in the opposite
direction asL1. Those were the hour hands, now lets do the minute hands:

ActiveColor =0, 0, 0;
line L3 = 250, 250, 250, 50;

ActiveColor = 255, 255, 255;
line L4 = 250, 250, 250, 450;

These hands extend to the rim of the outer ellipse. Next we'll group the visible and
invisible lines together to get a clock hand object centered at the center of the clock. This
clock example does not demonstrate how to declare shapes objects of rectangles and
polygons. An example of arectangleis:

rect R1 = 250, 250, 20, 30;

Thisis arectangle of the last chosen color (so if this code left off from declaring line L4,
the color would be white so the rectangle would be invisible). 1t's upper left corner is at
(250, 250) and the 20 corresponds to a width of 20 pixels and the 30 corresponds to a
height of 30 pixels. An example polygonis:

ActiveColor = 255, 0, O;
poly Polyl = 0, 0, 500, 0, 500, 500;

Polygons take a set of points, so the six parameters in the declaration above correspond to
three points. A lineis drawn connecting all the points, including a line that connects the
last declared point with the first. This code above draws a red triangle that starts in the
upper left corner of the screen, then goes to the upper right corner, then the lower right
corner and then connects the first and last points (so, it connects the upper left corner
with the lower right corner).

Grouping:

Groups are declared by giving the group a name and listing the shape objects that
are being grouped together. The last two parameters are the x and y coordinates where
the grouped objects are centered in the scene.

group hours=L1, L2, 250, 250;
group minutes = L3, L4, 250, 250;

Animating and transforming objects and groups:

There are three ways to transform and animate graphics objects in AJYN, namely
rotation, translation and scaling. For the clock example, we animate it by rotating the
grouped hands. Remember, the hands were grouped so that they could be rotated about
the center of the clock rather than the center of the clock’s hands. Transformations
follow the same framework. After declaring the type of transformation we wish to use,
we tell the program which object or group for which the transformation should be
applied. Next we apply the given transformation (which is different for al three) and
then we give the start frame and stop frame for which we want the transformation to
occur. So lets rotate the hands of the clock in the correct fashion.

rotate(minutes, 4320, 0, 2160);
rotate(hours, 360, 30, 2160);

Here we take the grouped object minutes and rotate it 4320° over al the frames of the
animation. If one recalls from the declaration of the program at the beginning of this
tutorial, we set the total number of frames to be 2160. In the rotation of the grouped
object hours, we rotate for the same number of frames. For hours, we rotate it 360° for
these frames. We got 4320 by taking 360 * 12. One could also program this expression
directly into the declaration of the rotation. For example:

rotate(minutes, (360 * 12), 0, 2160);
would also work. One must be sure to enclose this mathematical expression in

parentheses, however, or the compiler will generate an error. Although there is no place
in this clock example to trandate or scale an object, lets see how those transformations

work, using our polygon and rectangle from the shape declaration section. First lets
trandate the rectangle to the upper left corner of the screen:

translate(R1, 10, 15, 30, 60);

The trandation gives the rectangle new center x and y coordinates at 10 and 15
respectively. Also, this transformation takes place from frame 30 to frame 60 of the
animation. Now lets shrink the triangle:

scale(0.05, 60, 2160);

From frame 60 to the end of the animation, we shrink the triangle polygon to 1/20™ its
original size. There are two things to note in the scaling transformation. First, scaling to
a negative size isimpossible and will yield an error in compilation. Also, floating point
numbers between -1 and 1 must be declared with the O preceding the decimal point.
Calling scale with the first parameter of .5 instead of 0.5 will also yield an error in
compilation.

Hiding objects:

The last thing we can do is hide objects for a set number of frames. This is
declared similar to the declarations for other transformations. If we want to hide the red
triangle polygon for the entire animation (so to not ruin our pretty picture of the clock),
we can do so by using the following function:

setinvisible(Polyl, 0, 2160);

Hiding can be done over any set of frames. The O corresponds to the frame for which we
want to begin to hide the polygon and 2160 corresponds to the frame for which we wish
to render the polygon visible once again.

Commenting and code documentation:

It is always good style to add comments to code. This holds true for any graphics
animation where several elements may be placed in the scene and require keeping track
of. AJYN supports only single line comments that are denoted by ‘//’. Any text that
occurs in the file on a given line after // is discarded by the compiler. Comments can
appear anywhere in the source file except for the very last line.

Compiling asourcefilein AJYN
starting from the .g file with antlr in the ~/antlr/ directory and the java
filesand source.gnin ~/files/

export CLASSPATH=~/antlr/,

javaantlr.Tool AJYN99.g

export CLASSPATH=$CLASSPATH:~/filed;
javac * java

javaAJY N < source.gn
that will produce an x.ir

then run ./a.out and this aflash media (.swf) file

L anguage Reference Manual:

1. Introduction

For the past few years, certain companies have dominated the marketing in graphic
animations. For years, Macromedia has been developing their Flash product, making
them the market leader in easily distributed movie animations.

These files are greatly complex and alow for all sorts of unique, easy to use animations.
However, due to the complexity of the design, we find that Flash files are hard to
develop. The Ajyn programming language will provide an easy to use Object-Oriented
interface to allow for quick, comprehensive development of complex graphic designs and
animations.

2. Lexical conventions

Token types include identifiers, keywords, constants, function calls, types, and
separators.

All statements (with the exception of a group) end in a semi-colon (;).

2.1 Comments
Commentsin AJY N arerestricted to oneline. The characters// introduce a
comment.

2.2 Identifiers

Anidentifier is a sequence of letters and digits; the first character must be
alphabetic. The underscore counts as alphabetic. All characters are significant. Itis
good convention to start with alowercase letter.

2.3 Keywords
The following identifiers are reserved for keywords and cannot be used otherwise:
elipse rect
line point
group rotate
trandate scale
MAX Program
ActiveColor

2.4 Function calls
There are no user defined functions. AJY N allows for the use of the following
predefined functions. rotate, translate and scale.

2.5 Constants
There two constant typesin AJYN. They are asfollows:

2.5.1 Integer Constants
Aninteger constant is a sequence of digits, always expressed asadecimal. MAX
isareserved integer set at 65,536.

2.5.2 Floating Point Constants

10

A floating point number consists of an integer part and adecimal part. The
integer and decimal parts both consist of a sequence of digits, the decimal part is
proceeded by a‘.’. For instance, 12.0 isavalid floating point number while 12. is not.
One must also be careful to declare avalue such as 0.3 with the 0 before the decimal
point. Declaring avalue as.3 will give an error.

2.5.3 Negative Numbers

Thereis not direct support of negative numbersin AJYN. Thisreducesthe
possibility for errorsin programming. However, the user can specify a negative number
by using a mathematical expression that evaluates to a negative value. See section 5.1.

3. Objects and Types
There are five fundamental data objects within the AJY N language. These are points,
lines, rectangles, ellipses and polygons in addition to floating point and integer numbers.

Integers (int) are represented in 16-hit 2's complement notation.

Floating point numbers (float) are all single precision and use the IEEE 754 floating point
notation.

3.1 Shape Objects
The remaining primitivesin AJY N are data types containing identifier names and a set of
property variables.

3.1.1 Points

Points are declared by:

point identifier-name = param, param;
Parameters are integers. The first parameter is the value of the x position. The second
parameter is the value of the point’sy position.

3.1.2Lines

Lines are declared by:

line identifier-name = param, param, param, param;
Parameters are integers or references to integers. Thefirst two parametersarethex and y
coordinates of one endpoint of theline. The third and fourth parameters arethe x and y
coordinates of the line's other endpoint.

3.1.3 Rectangles

Rectangles are declared by:

rect identifier-name = param, param, param, param;
Parameters are integers and the first two can also be referencesto integers. Thefirst two
parameters are the x and y coordinates for the upper |eft corner of the rectangle. The
third parameter is the width of the rectangle and the fourth parameter is the height.

3.1.4 Ellipses
Ellipses are declared by:

11

ellipse identifier-name = param, param, param, param;

Parameters are integers and the first two parameters can also be references to
integers. Thefirst two parameters are the x and y coordinates for the center of the ellipse.
The third parameter is the radius in the x direction and the fourth isthe ellipse’ sradius in
they direction.

3.1.5 Polygons

Polygons are declared by:

poly identifier-name = param, param, ..., param, param;
Parameters are integers or referencesto integers. A polygon requires at |east three points
and therefore, at least six parameters, as every pair of parameters represent a point in the
polygon. A polygon declaration must contain an even number of parameters representing
point pairs. Thelast pair and first pair of points will be joined to form the closing line of
the polygon.

4. Expressions
An expression can be an instantiation or afunction call.

4.1 Instantiation
type identifier ‘=" parameter list
The parameter list is dependent on the type. (See above).

4.2 Function call

functionname ‘(* identifier ‘) parameter list ‘)
Possible function names are rotate, translate, and scale. The parameter list is dependent
on the function name.

5. Parameters and Passing by Value

All parameter passingin AJY N is pass-by-value. Objects are passed directly
rather than a reference to an object being passed, and modification of the object through
transformations modifies the properties of the object itself. All parameters can be of
either typeint or float.

5.1 Mathematical Expressions

When passing parameters, use of infix mathematical expressions are acceptable. For
example, (3 + 2) isan acceptable way to pass 5 as a parameter. Note that using negative
valuesin amathematical expression is not supported in AJY N, but if the user wishesto
declare a negative number, it can be done using a mathematical expression such as (0 - 3)
which evaluatesto -3.

6. Groups

A group is acollection of objectsthat are treated as one. The definition spans
severa lines. Before instantiating a group, it is necessary to declare all of the shapes that
will grouped together. These shapes can be any of the graphics primitives defined in
section 3 of this document. The identifiers of these objects are used to group them
together in the declaration of agroup. Knowing this, groups are declared by:

12

group identifier-name = identifier-of-objectl, identifier-of-object2, ..., identifier-
of-objectn, centerx, centery;

These last two parameters represents the center x and y coordinates of the group and can
be used to place the group in adesired location other than the one specified in the
declaration of the group’ s shapes.

7. Color

Colors can be set to RGB values. Thereis also an ActiveColor object that sets the color of
every object instantiated afterwards to that color. The default ActiveColor is black.

//A Blue Diagonal Line

ActiveColor=0,0, 255;

Line L1=0,0,50,50;

//A Red Diagonal Line

ActiveColor=255,0,0;

Line L2=0,50,50,0;

7.1 Invisibility with Colors

Any object declared after setting the color to white (RGB value of 255, 255, 255),
the object will be rendered invisiblein the scene. Thisfunction is useful in rotating
objects at points other than the center of the object. By making an invisible object, and
grouping it with avisible object, depending on the placement of the two objects relative
one another, the rotation can occur at some point other than the center of the visible
object.

8. Animation

Themainideain AJYN isto allow for objects to be easily animated. Thisis setup to
control the movement of specific graphics objects through frames. There are three
function calls with which an object can be animated. It can be trandated, rotated or
scaled. Theisalso another function call that renders an object invisible.

8.1 Frames

Animation is specified through a series of frames. Each frame lasts for a specific
amount of time before proceeding to the next. The progress of frame to frame gives the
appearance of an object moving through a space over aperiod of time. The start frameis
aways 0.

8.1.1 MAX frame

The reserved word MAX stores the maximum number of frames for the
animation, and for that reason, it contains the highest stopframe (see 8.2.2) that can be
specified.

8.2 Trandation

Trandations are specified by:
trandate(identifier, newx, newy, startframe, endframe);

13

This takes an object and moves it from its current location to newx and newy
incrementally from the startframe to the endframe.

8.2.1 newx and newy

These two values contain the new center x and y coordinates of the object being
trandated. Instead of specifying distances that the object is to be trandated, newx and
newy contain the destination of the object being trand ated.

8.2.2 startframe and stopframe

These frames contain the start and stop location in the animation for which the
given transformation occurs. The values for startframe and stopframe can also be
specified with mathematical infix expressions. These values also must be specified in all
other transformations.

8.3 Rotation

Rotations are specified by:

rotate(identifier, rotate-degrees, startframe, stopframe);
This function takes an object and rotates it according to rotate-degrees a specified
amount incrementally from startframe to stopframe (see 8.2.2).

8.3.1 rotate-degrees
Designating this with a positive value creates a clockwise rotation and a negative
value corresponds to a counterclockwise transformation.

8.4 Scale

Scaling an object is specified by:

scale(identifier, scale-size, startframe, stopframe);
This function will scale an object to its current size multiplied by the scale-size
incrementally from startframe to stopframe (see 8.2.2).

8.4.1 scale-size

This value must always be greater than zero. A negative scaling size will yield an
error because of itsimpossibility in 2D geometric transformations. Furthermore, if the
scaling sizeistoo large, then it will make an object that istoo large to fit within the
viewing area. The scale-size can aso be specified by means of a mathematical infix
expression.

8.5 Setting Invisibility

This function is specified by:

setinvisible(identifier, startframe, stopframe);
This function renders an object invisible in the scene from startframe to stopframe (see
8.2.2).

9. Defining a Program

Thefirst line written in AJY N initializes and names the program being defined. Its
format is as follows:

14

Program program-name = screen-width, screen-height, total-frames;

The program name can be any identifier (see 2.2). screen-width and screen-height
determine the size of the screen in pixels.

9.1 total-frames
The total number of frames for which animations can occur is defined in the
instantiation of aprogram. Thisvalue must be lessthan MAX (see 2.5.1).

10. Sample Program

/ kkhkkkkhkkkkkhkkhkkhkkk%x

/ITest Code for a Clock

//****************

//***
I/IPROGRAM INSTANTIATION

/ *k*

Program Clock = 500, 500, 2160;

/ *k*

/IOBJECT DECLARATIONS
//***

ActiveColor =0, 0, 255;

line L1 = 250, 250, 250, 150;

ActiveColor = 255, 255, 255;
line L2 = 250, 250, 250 350;

ActiveColor =0, 255, 0;
line L3 = 250, 250, 250, 50;

ActiveColor =255, 255, 255;
line L4 = 250, 250, 250, 450;

ActiveColor = 255, 0, O;
elipse E1 = 250, 250, 200, 200;

//***
//IGROUP DECLARATIONS

/ *k*

group hours=1L1, L2, 250, 250;
group minutes = L3, L4, 250, 250;

/ *k*

IIANIMATION AND TRANSFOMATION DECLARATIONS

15

/ *k*

rotate(minutes, 4230, 0, 2160);
rotate(hours, 360, 30, 2160);

/lend of program

16

Project Plan:

Development Process

We split up the work into front end, backend, documentation and testing. Front
end and backend were the largest jobs, but it was easiest for one person to tackle each of
those jobs. Documentation and testing required going back and forth between the front
end and backend people to ensure that both modules went together and to gather an
overall group understanding of what was happening. To allow for greater coverage, we
shared documentation and testing between two people. We had an intermediate file for
the front end to produce and the backend to use for outputting to swf. Therefore, front
end and backend could work independently. Furthermore, testing could be done on the
front end and backend independently as well.

Who did what?
Ananya Das - Documentation and Testing
Jared Kennedy - Documentation and Testing
Neel Goyal - Front End Development
Y aniv Schiller - Backend Development

Code Style and Convention for Developers

Working as ateam requires easily understandable code in order to conserve time
and energy that could be spent trying to figure out what a ssmple function does. Though
placement of curly braces and semi-colons are not entirely important, they should be
placed in a manner which allow for less confusion.

The Importance of Commenting

Commenting code is the best way to communicate with other programmers.
Since the frontend was done in Java and ANTLR, and the backend was donein C++,
determining what a function does can be complicated unless the code is well documented.
Block commenting or single line commenting seemed fine, as long as they explained
what was going on. Javadoc was not used since the team felt little need for it.

Naming Conventions

Naming variables used is often key in processing the code of a programmer. In
many instances, variables are already known to the team, such as the parameters passed
to objectsin their declarations. However, other instances may leave a programmer
wondering what the use of it isunlessit has an understandable identifier.

Project Timeline

Early February
- Project Topic Brainstorming & Selection

Mid-February
- Basic ideas about possible objects and transformations
- Rough ideas about language formatting and syntax
- Basicideasfor backend procedures (ie. generating flash files)

17

- Whitepaper composition

Mid-March
- Anaysisof syntax rules
-lexical conventions
-commenting
-identifiers
-declaring objects
-calling functions
-parameter passing and arguments
- Analysis of the object-oriented programming aspects
-types of objects
-types of functions
- Development of grammar

April
- Outline of front end
-completion of lexer
-completion of parser
-ideas about AST
- Outline of back end
-decision to use MING
-determining basic algorithm of back end

May
- Completion of frontend

-completion of AST (writing to an IR file)
- Completion of backend

-reading from the IR file

-generating the appropriate swf file

18

Architecture Design:

AJY N'’s compiler consists of many parts, several of which are common to all
compilers. The source file, which has extension .gjn, is read and scanned by alexer. The
lexer generates tokens, and creates an abstract syntax tree (AST) from them, provided no
errorsin scanning occur. The AST is converted to another type of tree, which is easy to
walk in order to generate a suitable intermediate representation. In thisinstance, after
error checking is done, the frontend creates afile called x.ir, which basically consists of a
series of numbers.

The Frontend

The frontend was created using ANTLR, which can be found at yww.antlr.org|
The primary components of any frontend are the lexer and parser, which are then used to
generate an AST. The common AST which ANTLR uses becomes trandated into the
AJY N tree, created using java data structures.

For visual aid, ablock diagram has been provided below.

Source AN Tree
Code

Lexer #.IR File
Parzer Backend
AMTLR AST S File

Block Diagram for AJYN Compiler

It isimportant to note that error checking occurs at the lexer and prior to the generation of
the x.ir filewhen the AJYN Treeis created from the ANTLR AST. Syntactic errors are
discovered when the source is being scanned, such as if a user inputs afloat or expression
when an integer is required or when amisspelling in afunction call occurs. If asyntactic
error isfound, the compiler stops, alerts the user, and no AST is generated.

Semantic checking occurs before writing the x.ir file in order to ensure a flawless
intermediate representation will be generated. Such errors include the use of unknown
identifiers or parameters that are not alowed in the language, such as a frame number
higher than MAX. Furthermore, alookup table has been implemented in the AJYN Tree

19

http://www.antlr.org/

to prevent the use of the same identifier twice for different objects. If asemantic error is
discovered, the compiler will not generate an intermediate representation file, and the
user will be notified.

Runtime Environment

Since the goal of the AJY N language is to generate a Macromedia Flash Format
file, which has the extension .swf. In order to view such files, one must have aFlash file
viewer. One may find this viewer at jyww.macromedia.com| However, many newer web
browsers, such as Internet Explorer 6 and Netscape come with the ability to play Flash
files, including the ones generated by the AJY N compiler.

TheBackend
The Backend Program was written in c++. It is a separate program from the front

end and is called only after the front end's completion. Furthermore, because it isonly
dependent on the IR, it can easily be ported to work with another front end application.
This program uses an swf API provided by ming. Ming, an open source project located
on Sourceforge, replaced Macromediain creating an open source API for swf files.

Ming, written in C, comes with extensions for Java, PHP and C++. AJY N usesthis
source to compile the actual animation file.

The basic structure of the backend application is easy to understand. In the beginning the
program reads in the data from the IR. The datais read into predefined classes that
represent the structure of each object. There are object classes for the shapes and the
groups, animation classes for the animations, and invisibility class for invisibility
definitions. Certain extrainformation is added to some classes. For example, the center of
all shapes and groups are calculated and stored with the shape.

After the datais read the backend proceeds to process the data. First it sets the width,
height and video length of the animation to the numbers specified by the user. Then it
adds all visible objects to the location of their respected positions. The objects are added
to the animation based on their center. Then, for each frame, each object's size and
position and visibility is recal culated and updated in the animation. One of the powers of
flash isthat if an object doesn't move then it doesn't get re-stored in the animation. We
take advantage of this and only sore the repositioned, animated objects. When the
getShape() function is called on a group, the program loops through every shape it
references and creates a new shape based with a center based in the middle of the group.

More specifics on architecture:

When displaying every shape, the shape class calls its getShape() function where a
SWFShape object (passed in by reference) is updated with the shape details. Another
version of such afunction was created to create the shape at a specified location. The
latter function is used to create groups. Without it all the objects in a group would be
lumped in the group. The SWFShape object is a class used in Ming to create a shape
object.

When displaying a circle, the shape object calls an elipse() function, where 8 curved

20

http://www.macromedia.com/

lines are created to for the ellipse. SWF files do not have methods of storing circles or
ellipses so it has to be done in curved edge segments.

Implementing Invisibility is not asimple feat either. One cannot just remove the object
from display and the reinsert it. Problems arise in terms of animation, the animation
would resumeits location and size where it |eft off. Thisis not desired results. To fix the
problem all that is done when an object isinvisibleis setting its scale to .00001, making
the shape too small for flash to display. When the frame comes for the shape to reappear,
the current scale is recal culated and the shape is shown, it the position and size where it
would have been had it not been set to invisible.

I ntermediate Representation Specifications

each object has an identifier_number

each object has a previously know number of paramters
then we follow each with color numbers

Each line can be one of the following:
section_id number_params params

OBJECTS SECTION:
type_id_number identifier_number number_of paramaters parameters colorR colorG
colorB

GROUPS SECTION:
group_id_number identifier_number number_of objectsidentifier_numbersx y

FUNCTION SECTION:
func_id_number obj_identifier_number number_of paramaters parameters

INVISIBILITY SECTION
obj_identifier_number start frame end_frame

section_id #parameters
program 01 3

objects 02 0

groups 03 0

funcs 04 0

visibs 05 0

EOF 09 0

types_id_number #parameters
point 11 2
line 12 4
rect 13 4

21

elipse 14 4
poly 15 N

group_id_number:

group 19
func_id_number
trandate 21
rotate 22
scale 23

id

4

3
3

#parameters

22

Test Plan:

With the completion of our front and back ends, we conducted a series of test procedures
in order to ensure the robustness of our programming language. We found that possible
errorsfell into one of 6 categories:

1- Spelling errors — these are errors caused by the user. Spelling errors included the
following types:
- spelling errorsin keywords
- spelling errors in user-defined words

2- Usage errors — these are errors caused by misuse of our programming language.
Usage errorsinclude the following types:
- incorrect number of arguments
- incorrect type of arguments
- using keywords as identifiers
- misusing =", *()’,*;", and*’
- commenting incorrectly

3- AJY N restriction errors — these are errors due to certain restrictions of our
programming language. The user may assume that the following actions are
allowed, but since our language does not handle them, they will cause errors:

- attempting to declare a group within another group
- attempting to perform atransformation on a single member of a group

4- Programmer errors —these are errors that would most likely be caused
unintentionally by the programmer

- attempting to use the same name for two different objects

- attempting to transform an object without calling it first

- attempting to perform an overlapping animation (ie. attempting to scale
the same object by .5 and .75 during overlapping frames)

- attempting to perform atransformation with the startframe greater than
the stopframe

- duplicating a point in the declaration of aline

5 Out of bound errors —these are errors caused by using numerical valuesthat are
out of therange of valid values. The following are possible out of bound errors:
- out of range [0, 255] for RGB values
- declaring a startframe a value that is less than zero
- declaring a startframe a value that is greater than MAX or greater than
the total number of frames of the program
- declaring scale-size as a negative value
- declaring radius or width/height as a negative value

6- Numerical errors —these are errors due to certain numerical formatting rules of

the AJY N language:
- using floats incorrectly:

23

- ex 1) 12.0 must be written as 12.0 and not 12.
- ex 2) .3 must be written as 0.3 and not .3

- negative numbers need O- in front
- ex 1) -3 must be written as 0-3 and not -3

Our testing procedure followed with these steps.

Step 1)

We first needed to determine how we would handle each type of error. We could 1) abort
the compilation and generate a compilation error or 2) allow the program to compile and
generate unexpected results. For example, since errors of Type 1 and Type 2 would not
allow for parseable code, we handled all of these types of errors by generating
compilation errors.

Step 2)

Since most of the errors of Type 3-6 would not be caught by our parser, these errors were
handled differently. Decisions had to be made as to how to handle these errors. Would
we format our language so that it generates compilation errorsif these types of errors
were encountered? Or should we allow the program to compile, and generate some
unexpected results in the swf file? These decisions were based on factors of simplicity
and efficiency. If too many changes were needed to be made to our language in order to
detect an error and generate a compilation error, then we decided to allow the error to
pass the compilation phase. If however, allowing one of these types of errors to pass the
compilation phase could be possibly detrimental to the entire program, we decided to
abort compilation and generate a compilation error.

Step 3)

We created several test programs. Each of the six test programs given below handle one
of the six errors discussed above. We ran each of these test programs and verified that
the correct actions were taken by our compiler.

Step 4)

Thefinal and perhaps most crucial step of our testing procedure was what we call the
“dummy test”. In this step we asked non-group members to write programs using AJY N.
By doing this we were able to see types of problems an average programmer might
encounter when using our language.

Additional testing was conducted on the java data structure, AJY NTreg, to
ensure that proper calls to the methods produced a perfect x.ir file.

Test Programs

Typel

/ITYPE 1 ERRORS

Program Stuff = 400, 400, 2160;

/[ActiveColor spelled incorrectly

24

ActiveColour =0, 0, 255;
linelinel = 100, 110, 150, 160;

ActiveColor =0, 255, 0;
elipse ellipsel= 170, 200, 10, 15;

/lellipsel spelled wrong
rotate(linel, 360, 30, 2160);
translate(elipsel, 250, 300, 0, 2160);

Type?2
/ITYPE 2 ERRORS
Program Stuff = 400, 400, 2160;

/lincorrect commenting
/comment

//Wrong number of arguments;
ActiveColor =0, 0, 255;
linelinel = 100, 110, 150;

ActiveColor =0, 255, 0;
elipse ellipsel= 170, 200, 10, 15;

/larguments mixed up
rotate(360, 30, 2160, linel);

/lusing keyword 'dllipse’ incorrectly
trandate(ellipse, 250, 300, 0, 2160);

/Imisuse of ()
ActiveColor =0, 255, 0;
elipse dlipse2 = (80, 80, 10, 10)

/Imisuse of =
ActiveColor =0, 255, 0;

trandate = (ellipsel, 400, 400, O, 1500);

Type 3
/Type 3
Program Stuff = 500, 500, 2160;

ActiveColor = 0,0, 255;
line L1 = 250, 250, 250, 150;

25

ActiveColor = 255, 0, O;
lineL2 = 30, 50, 180, 100;

group lines=L1, L2, 250, 250;
ActiveColor = 255, 0, 0;
line L3 =40, 60, 280, 100;

/[group lines within group linesagain
group linesagain = lines, L3, 60, 100;

[Itransforming single member of group
translate(L 1, 300, 250, 0, 2000);

Type4
[[Type 4
Program Stuff = 500, 500, 0, 2000;

ActiveColor =0, 0, 255;
lineL1 =25, 25, 100, 70;

//L1 used again
ActiveColor = 255, 0, O;
lineL1 =30, 30, 120, 80;

//L1 used again again
ellipse L1 = 150, 60, 30, 30;

//ellipsel never created
scale(ellipsel, .5, 0, 500);

/[Duplicating a point in aline declaration
ActiveColor =0, 255, 0;
line L2 = 150, 60, 150, 60;

/loverlap in animation
scale(L1, 0.5, 0, 500);
scale(L1, 0.8, 20, 450);

[[startframe greater than stopframe
scale(L1, 0.5, 500, 10);

Type S
[[Type 5
Program Stuff = 500, 500, 2000;

//out of bound for RGB range

26

ActiveColor =0, 0, 355;
lineL1 =25, 25, 100, 70;

//out of bound for the RGB range
ActiveColor = 255, 0-10, 0;
lineL1 =30, 30, 120, 80;

ActiveColor =0, 0, 255;
lineL2 =25, 25, 100, 70;

/Inegative values for height and width
ActiveColor =0, 255, 0;

rect R1 = 150, 100, -25, -30;

elipse dlipsel = 150, 60, 30, 30;

[Istart frame is negative
scale(ellipsel, 0.5, 0-10, 500);

//start frame is greater than max of program
scale(ellipsel, 0.5, 10, 3000);

[Istart frameis greater than MAX
scale(ellipsel, 0.5, 10, 40000);

//scale sizeis negative
scale(ellipsel, 0-2, 0, 500);
[Istartframe greater than stopframe
scale(L1, 0.5, 500, 10);

Type6

[[Type 6

Program Stuff = 500, 500, 2500;

ActiveColor =0, 0, 255;
rect rectl = 30, 20, 50, 60;

ActiveColor =0, 255, 0;
elipse ellipsel = 150, 220, 40, 20;

ActiveColor = 255, 0, 0;
linelinel = 200, 300, 260, 300;

/Imust be 2.0 instead of 12.

27

scale(rectl, 2., 0, 200);

/Imust be 0.3 instead of .3
scale(ellipsel, .3, 0, 200);

/Imust be 0-3 instead of -3
rotate(linel, -90, 0, 200);

Sample Clock Code and Corresponding I nter mediate Representation File

//****************

/ITest Code for a Clock

//****************

//***

[IPROGRAM INSTANTIATION

//***

Program Clock = 500, 500, 2160;
//01 3 500 500 2160

//***

/IOBJECT DECLARATIONS

/ * %%
/1020

ActiveColor =0, 0, 255;
line L1 = 250, 250, 250, 150;
/112 1 4 250 250 250 150 0 0 255

ActiveColor = 255, 255, 255;
line L2 = 250, 250, 250, 350;
1112 2 4 250 250 250 350 255 255 255

ActiveColor = 0, 255, 0;
line L3 = 250, 250, 250, 50;
/112342502502505002550

ActiveColor = 255, 255, 255;
line L4 = 250, 250, 250, 450;
1112 4 4 250 250 250 450 255 255 255

ActiveColor = 255, 0, O;
ellipse E1 = 250, 250, 200, 200;
/114 04 250 250 200 20025500

//***
//IGROUP DECLARATIONS

28

J]***
/030

group hours= L1, L2, 250, 250;
//19 10 2 1 2 250 250

group minutes = L3, L4, 250, 250;
//19 112 34 250 250

//***
IIANIMATION AND TRANSFOMATION DECLARATIONS

/ *k*

11040

rotate(minutes, 4320, 0, 2160);
1122 11 3 4320 0 2160

rotate(hours, 360, 30, 2160);
/122 10 3 360 30 2160

Intermediate Representation File:
1 3 500 500 2160

20

12 0 4 250.0 250.0 250.0 150.0 0 O 255

12 1 4 250.0 250.0 250.0 350.0 255 255 255
12 2 4 250.0 250.0 250.0 50.0 0 255 O

12 3 4 250.0 250.0 250.0 450.0 255 255 255
14 4 4 250.0 250.0 200.0 200.0 255 0 O

30

19 52 01 250.0 250.0

19 6 2 2 3 250.0 250.0

4 0

22 6 3 4320.0 0 2160

22 5 3 360.0 30 2160

50

90

29

L essons L ear ned:

Yaniv Schiller

The project was fun. | learned the importance of group agreement. It was needed
to get anything done. Also, working backwards isn't so bad. Having modular code let's
you increase productivity.

Jared Kennedy

| learned many new things from the PLT project that are applicable to my
computer science education and my life as a whole. This was the first large project in
which | was required to work with a group of people for a whole semester. At first we
had to feel one another out to see if we were compatible group mates, but once the
uncertainty wore off, we were able to get right to work. | found that by being upfront
with people, they weren’t going to be put off if it meant that everything got done (and got
done right). Now that | have covered the life lesson, lets look at some of the things |
learned about that apply to computer science. This project alowed for a complete
understanding of what actually goes into the design of a computer language. The picture
covers not only the aspects of testing a coding that go into the language, but also the nuts
and bolts behind the language and compilation process. | worked primarily on
documentation and testing this project, but was very attentive and curious to understand
what was happening in all parts of the development process. In terms of testing, | learned
that it is not easy to come up with all the possible errors that alanguage can generate. The
scope of our language is highly limited, but that did not keep from making error checking
along and difficult (and at times very draining) process. From learning what goes into
building the front end, by parsing a grammar and building an AST, to watching how to
convert from an intermediate file to a backend finished product, | am much wiser in the
ways of language development than | ever could have been had | not taken part of a
project on this scale.

Neel Goyal

Communication between team members is key - an idea situation would
be one where everyone knows what's happening with the project at al times. | also
learned that | should have started this project earlier. Procrastination requires making
sacrifices.

Ananya Das

| played arolein the front end and in debugging. From the front end aspect, |
learned that the structure behind any program is much more complicated than it may
appear. Our language, for example, despite its simplicity, entailed a complex Abstract
Synatx Tree consisting of several layers of various nodes. In helping to create thistree, |
learned about ways to make the construction of these types of trees more efficient.
During the debugging phase, we tried to think of all the possible errors that could occur.
The most important thing | learned from this phase was that no matter how sure you are
that you’' ve covered every possibility, you more than likely have not. The best way to
approach this problem is to pretend that you are an average person using a programming
language that is very unfamiliar to you. Thisway, you encounter many errors that would

30

initially not occur to you. Another good way to approach this problem is to have non-
group memberstest out the language. By doing this, you can actually see how an average
person would use the language.

31

Appendix:
Front End files- Neel Goyal and Ananya Das

/IAJY N.java
/[Author: Neel Goyal

import java.io.*;

import antlr.CommonAST;

import antlr.collections. AST;

import antlr. DUmpAST Visitor;
import antlr.RecognitionException;
import antlr. TokenStreamException,;

/lInvokes the ANTLR generated lexer, parser, and walker on the
/linput stream

classAJYN {
public static void main(String[] args) {
try {

AJY NLexer lexer = new AJY NLexer(new Datal nputStream(System.in));
lexer.setFilename(" <stdin>");
AJY NParser parser = new AJY NParser(lexer);
parser.setFilename(" <stdin>");
/I Parse the input file
parser file();

/Icheck if parser errors occured
if (parser.errors)

System.out.printn("Errors - compilation stopped");
System.exit(1);

}
AJY NWaker w = new AJY NWalker();

[Iwill stop if errors occur while walking
w.file((CommonAST) parser.getAST());

catch(TokenStreamException €) {
System.err.printin("exception: "+e);

catch(RecognitionException €) {
System.err.printin(" exception: "+e);
}

32

/[Author: Neel Goyal
/lJavafilesthat ANTLR generates are not included
/IAJYN99.9

{
import java.util.*;
import javalang.*;

}

/ILexer class
class AJY NLexer extends Lexer;

options { k=2;
charVocabulary = \3'..\377' | \u1000"..\u1fff"; }

[Iwhitespace
WS: ("' |\ | \n' {newline();} | \r' { newlineg();})+
{ $setType(Token.SKIP); } ;
/linteger or float
INT
options { paraphrase="anumber"; }
:(0..'9)+
(
(0'..'9)+{ $setType(NUM); }
)?
protected LETTER: ('a..'2) | (A'.."Z");

ID options{ paraphrase="an identifier"; }
:LETTER (LETTER|'0..'9'|'_)*;

COMMENT: "“/I" (~(\n'| \r'))* (\n' { newline();}| \r' { newline();}) { $setType(Token.SKIP); };

COMMA options { paraphrase="acomma’; }

DOT : ',
PLUS: '+
STAR: *";

DIV: ',

LB:'{"

33

RB: '}

SEMI: %"

/Iparser
class AJY NParser extends Parser;

options { buildAST = true; }

tokens{
NUM;
}

{

boolean errors = false;
//If an error occurs, the value is set to true, and compilation stops

}

/Imathematical expression - sum/subtraction are lowest precedence

expr: prod ((PLUS" | SUB”) prod)*;

exception catch[RecognitionException ex] { System.out.printin(ex); errors = true; }
catch[TokenStreamException ex] { System.out.printin(ex); errors = true; }

prod: atom ((STAR” | DIV”) atom)*;

num : INT |"MAX"! { #num = #([INT, "65536"]); };
exception catch] RecognitionException ex] { System.out.println(ex); errors = true; }
catch[TokenStreamException ex] { System.out.printin(ex); errors = true; }

atom: num | LP! expr RP! | NUM | SUB” atom;

exception catch[RecognitionException ex] { System.out.printin(ex);
System.out.printIn(" Expressions must start with non-negative number");
System.out.printIn("Floats must be in the form #.4#..."); errors = true; }
catch[TokenStreamException ex] { System.out.printin(ex);
System.out.printIn(" Expressions must start with non-negative number");
System.out.printIn("Floats must be in the form #.4..."); errors = true; }
/lend mathematical expressions and number definitions

/ISome functions used in AJYN. See syntax / tutoria for further details
funct: "rotate"” LP! ID COMMA! expr COMMA! num COMMA! num RP!
| "trandate"~ LP! ID COMMA! expr COMMA! expr COMMA! num COMMA! num RP!
| "scale'r LP! ID COMMA! expr COMMA! hum COMMA! num RP!
| "ActiveColor'” EQ! INT COMMA! INT COMMA! INT
| "setinvisible"” LP! ID COMMA! num COMMA! num RP!

exception catch[RecognitionException ex] { System.out.printin(ex); errors = true; }
catch[TokenStreamException ex] { System.out.printin(ex); errors = true; }

/[Thefirst line of an AJYN program must be of type init2.
init2: "Program"~ ID! EQ! hum COMMA! num COMMA! num

exception catch] RecognitionException ex] { System.out.println(ex); errors = true; }
catch[TokenStreamException ex] { System.out.printin(ex); errors = true; }

//declarations of objects

dec

:"ellipse™™ ID EQ! expr COMMA! expr COMMA! expr COMMA! expr
| "rect"” ID EQ! expr COMMA! expr COMMA! expr COMMA! expr

| "poly"™ ID EQ! expr COMMAL! expr (COMMA! expr COMMA! expr)+
| "point"™ ID EQ! expr COMMAL! expr

| "line"~ 1D EQ! expr COMMA! expr COMMA! expr COMMA! expr

| "group"~ ID EQ! (ID COMMAI!)+ expr COMMA! expr

exception catch[RecognitionException ex] { System.out.printin(ex); errors = true; }
catch[TokenStreamException ex] { System.out.printin(ex); errors = true; }

/lan AJY N file structure - oneinit2 line followed by a series of
/[functs or decs (statement)
file
:init2 SEMI! (statement SEMI!)+ EOF!;
exception catch] RecognitionException ex] { System.out.println(ex); errors = true; }
catch[TokenStreamException ex] { System.out.printin(ex); errors = true; }

/la statement is either a declaration or function
statement
: dec | funct;

/IThe tree walker
class AJY NWalker extends TreeParser;

/[The java code used in order to create and manipulate the AJYN Tree
//data structure

{
java.util.Vector words; //lookup table for identifiers

/linitialization and declarations needed for scoping issues
/InumLits refers to the number of literals defined in the
[finit() function below

AJY NTreetr,

boolean prog = falsg;

boolean error = false;

intr=0;

intb=0;

intg=0;

int count = 0; //number of objects declared
int numLits=7;

int lastFrame = 0;

/[Searches for a string in the words vector
boolean containsK ey(String s)
{ boolean result = false;
for (int i=0; i<words.size(); i++)
{ i{f (s.equals((String) words.elementAt(i)))

result = true;

35

}

return result;

}

[Ireturns the object identifier number which is the current value

/lof count when the object is added. numLits offsetsit in order

/lto make it 99 and since 7 other objects are added to the words vector.
/lthe index of the word is returned

int get(String s)
{
inta=-92

for (int i=0; i<words.size(); i++)

{
if (s.equals((String) words.elementAt(i)))
{

a=i;
}

return a;
}

/[adds keywords to the words vector and initializes the
/IAJY NTree - called when Program ident = paramsis read, which
/Ishould be thefirst line

void init()

{
Stringw = "MAX";
words = new java.util.Vector();
words.addElement(w); w ="line";
words.addElement(w); w = "ellipse";
words.addElement(w); w = "poly";
words.addElement(w); w = "point";
words.addElement(w); w = "rect";
words.addElement(w); w = "group”;
words.addElement(w);
tr = new AJYNTree();

[Ithe expression walker - all expressions return type float
expr returns [float r2]
{

float a, b2;

r2=0;

#(PLUS a=expr b2=expr) {r2=a+b2;}

[#(STAR a=expr b2=expr) {r2=a*b2;}

[#(SUB a=expr b2=expr) {r2=a-b2;}

#(DIV a=expr b2=expr) {if (b2 !=0) { r2=a/b2; } else{ System.out.printin("error div by 0"); } }

36

[#(LP a=expr) {r2=a;}
i:INT { r2 = (float) Integer.parselnt(i.getText());}
[F:NUM { r2 = (float) Float.parseFloat(f.getText());}

[lthe integer type parameter used for frames and sizes
/IMAX isaconstant = 65536
num returns [int i]

{
i=0;

J:INT { i = Integer.parselnt(j.getText()); }
[2"MAX" { i = 65536; }

/lthe rules for creating instances of objects or using functions

[ffirgt, the walker checks to see if the init2 statement has been

/Ideclared. if it has, the boolean prog == true. When each object

/lis declared, the first thing checked for is arepeat in the identifier
/Isecondly, the values of parameters that must be above O are checked.
[lany error found will cause error to be true and no x.ir file will be written.

statement returns [int state]

{

float p1, p2, p3, p4, p5, p6;
state = 0;
int o1, 02, 03, 04;

if (!prog)
{

System.out.printin("ERROR! Program was not defined first!");
System.exit(1);

#("dllipse" s:ID pl=expr p2=expr p3=expr p4=expr

{
if (!containsKey(#s.getText()))

if (p3 <=0 p4 <=0)
{

System.out.printIn("Error - can not have negative or 0 value lengths");
System.out.printin("for ellipse "+#s.getText()); error = true;

}

words.addElement(#s.getText());

tr.addObject(new Ellipse(count, p1, p2, p3, p4, 1, g, b));
count++;

}

else
{ System.out.printin("ERROR - "+#s.getText()+" aready an identifier"); error = true;}
)

| #("line" s2:1D pl=expr p2=expr p3=expr p4=expr

37

/ISystem.out.printin("line");
if (‘containsKey(s2.getText()))
{
words.addElement(#s2.getText());
tr.addObject(new Line(count, p1, p2, p3, p4, r, g, b));
count++;
}
else
{ System.out.printin("ERROR - "+#s2.getText()+" aready an identifier"); error = true; }
1y

| #("rect” s3:1D pl=expr p2=expr p3=expr pd=expr
{

/[System.out.printin("rect");

if (IcontainsKey(#s3.getText()))

{

words.addElement(#s3.getText());
tr.addObject(new Rect(count, p1, p2, p3, p4, 1, g, b));
count++;
}
else
{ System.out.printin("ERROR - "+#s3.getText()+" aready an identifier"); error = true; }
)

| #("poly" s4:1D

{
java.util.Vector v = new java.util.Vector();
int n=-1,
if (IcontainsKey(#s4.getText()))

words.addElement(#s4.getText());
n = count;
count++;
}
else
{ System.out.printin("ERROR - "+#s4.getText()+" already an identifier"); error = true; }
}//end after s4:1D

pl=expr p2=expr { v.add(new Float(pl)); v.add(new Float(p2)); }
(p3=expr p4=expr {v.add(new Float(p3)); v.add(new Float(p4));})+
{

if (n!=-1)
{
tr.addObject(new Poly(n, v, r, g, b));
}) }
|{#("poi nt" s5:1D pl=expr p2=expr

/[System.out.printIn("point");
if (IcontainsKey(#s5.getText()))
{

38

)

words.addElement(#s5.getText());
tr.addObject(new Point(count, p1, p2, r, g, b));
count++;

}

else
{System.out.printin("ERROR - "+#s5.getText()+" already an identifier"); error = true;}

/IGroups can not group other groups properly

| #("group" s6:1D

{

}

/[System.out.printin("group");
Groups gr = new Groups();

int nl=-1;

if (IcontainsKey(#s6.getText()))

words.addElement(#s6.getText());

nl = count;
count++;
/[System.out.printin(""+n1+"..\n");
}
else

{ System.out.printin("ERROR - "+#s6.getText()+" already an identifier"); error = true;}

/[Here the identifiers to be added to the group are checked to make sure they exist, are not
/Igroups, and have no transforms attached to them already.

(y:ID

{

error = true;

intind =-99;
if (n1!=-1)
{
gr.setiD(nl);

ind = get(#y.getText()) - numLits;
/[System.out.printin("Made it here");

"+#y.getText()+" entersagroup.");

if (ind ==-99)
{
System.out.printIn("ERROR - no object with ident "+#y.getText()+"");
}
else
{
/ISystem.out.printin("ind = "+ind+" and n1 = "+n1+"");
if (ind!=nl)
if (tr.hasTransform(ind))
{
System.out.printin(" Transforms will be ignored since
}

if (tr.inVis(ind))
{

System.out.printin("Invisibility will be ignored since

"+#y.getText()+" entersagroup.");

39

}
if (tr.isG(ind))
{

gr.addElement(ind);

}
else
{
System.out.printIn(* Can not group agroup to a
group!"); error = true;
}
gr.addElement(ind);
/ISystem.out.printin(*added element w/ ind "+ind);
}
else
{
System.out.printin("ERROR - can not group same group to
group"); error = true;
}
}
}
})+ pl=expr p2=expr
{
if (n1!=-1)
gr.setPos(pl, p2);
tr.addGroup(gr);

/[System.out.printin("added gr");
1y

/lfunctions ook for valid identifiers, check the frames, and see if the stop frame
/lexceeds MAX or the Programs last frame

| #("rotate" s7:1D pl=expr 01=num 02=num
{
/[System.out.printIn("rotate");
int ind = get(#s7.getText()) - numLits;

if (ind==-99)
{
System.out.printin("ERROR - no object with ident " +#s7.getText()+""); error =
true;
}
ese
{

/[System.out.printIn("Ind = "+ind);
if (tr.inGroup(ind))
{

System.out.printin(" Transforms will be ignored since
"+#s7.getText()+" isinagroup.");
if(tr.overlap(22, ind, 01, 02))

System.out.printin("ERROR - Rotation overlap on "+#s7.getText());
error = true;

40

if (0l<o02)

if (02 > 65536)

{
System.out.printIn(* Stop frame for Rotating

"+#s7.getText()+" reset to MAX");
02 = 65536;

if (01 > lastFrame || 02 > lastFrame)
{

System.out.printIn("Error - frame animation can not
exceed number of framesin Program");

error = true;

}
tr.addTrans(new Rotate(ind, pl, 01, 02));

}
else
{
System.out.printn("Error rotating "+#s7.getText()+" - start
frame must be smaller than stop”);
error = true;
}

D

[#("scale" s8:1D pl=expr 01=num 02=num
{
/[System.out.printIn(" Scale");
int ind = get(#s8.getText()) - numLits;

if (ind ==-99)

{ System.out.printin("ERROR - no object with ident "+#s8.getText()+""); error =
true;

}

else

{

if (tr.inGroup(ind))
{
System.out.printin(" Transforms will be ignored since
"+#s8.getText()+" isin agroup.");
if (tr.overlap(23, ind, 01, 02))

System.out.printin("ERROR - Scale overlap on "+#s8.getText()); error
= true;

if (01 <02)

if (02 > 65536)
{

41

System.out.printIn(" Stop frame for Scaling
"+#s8.getText()+" reset to MAX");

02 = 65536;

if (01 > lastFrame || 02 > lastFrame)
{

System.out.printIn("Error - frame animation can not
exceed number of framesin Program");

error = true;

}
tr.addTrans(new Scale(ind, p1, 01, 02));

}
else
{
System.out.printIn(*Error scaling "+#s3.getText()+" - start
frame must be smaller than stop");
error = true;
}
}
}
)
[#("trandate" s9:1D pl=expr p2=expr 01=num 02=num
{

/[System.out.printin(" Trandate");
int ind = get(#s9.getText()) - numLits;

if (ind ==-99)

{ System.out.printin("ERROR - no object with ident "+#s9.getText()+""); error =
true;

}

else

{

if (tr.inGroup(ind))
{
System.out.printin(" Transforms will be ignored since
"+#59.getText()+" isin agroup.");
if (tr.overlap(21, ind, 01, 02))
System.out.printin("ERROR - Trandlate overlap on "+#s9.getText());
error = true; }
if (0l<o02)
if (02 > 65536)

{
System.out.printIn(" Stop frame for Trandating

"+#9.getText()+" reset to MAX");
02 = 65536;

if (01 > lastFrame || 02 > lastFrame)
{

42

System.out.printIn("Error - frame animation can not
exceed number of framesin Program");
error = true;

}
tr.addTrans(new Trandate(ind, p1, p2, 01, 02));

}
ese
{
System.out.printIn("Error trandating " +#s9.getText()+" - start
frame must be smaller than stop");
error = true;
}

D

[Ithe only issue with ActiveColor is that values must range from O - 255
/this fixes anything out of bounds automatically

(" ActiveColor" alNT b2:INT c:INT

{
/[System.out.printIn(" Changing color");
int d = Integer.parselnt(a.getText());
int e = Integer.parselnt(b2.getText());
int f = Integer.parsel nt(c.getText());

if (d > 255)
d = 255;

if (e>255)
e=255;

if (f > 255)
f = 255;

if (d<0)
d=0;

if (e<0)
e=0;

if (f<0)
f=0;

r=d;g=¢ b=f;
1y

[#("setinvisible" s10:ID ol=num 02=num
{
/[System.out.printin(" Setting invis');
int ind = get(#s10.getText()) - numLits;
if (ind==-99)
{
System.out.printin("ERROR - no object with ident "+#s10.getText()+""); error =
true;

43

if (tr.inGroup(ind))
{

System.out.printin("Invisibility will be ignored since

"+#s10.getText()+" isin agroup.");
}

if (0l <o02)

if (02 > 65536)
{

System.out.printIn(" Stop frame for Invisibility on

"+#s10.getText()+" reset to MAX");

02 = 65536;

if (01 > lastFrame || 02 > lastFrame)
{

System.out.printIn("Error - frame animation can not exceed

number of framesin Program™);

f

error = true;

}
tr.addVis(new VisNodes(ind, 01, 02));

}
else
{
System.out.printn("Error setting " +#s10.getText()+" Invisible - start
rame must be less than stop");
error = true;
}

)

/[Here the program is declared
/w3 is the total number of frames
/Iwlw2 =x and y size respectively

{

}

nit2 returns [int state?]

state? = 0;
intwl, w2, w3;
: #("Program" wl=num w2=num w3=num
{
if (!prog)
{
init();

lastFrame = w3;
tr.createPNode(w1, w2, w3);
prog = true;
/[System.out.printIn("init tree");

System.out.printin("ERROR! Program already defined!"); error = true;

)

[/[This creates the x.ir file by calling the writeTol R method
//defined in the AJY NTree class. The method isonly called if there
/lare no errorsin the semantics.
file{int ble; }
: ble=init2 (ble=statement)+

if (error)
{
System.out.println("'******xxxx1).
/[System.out.printIn(tr.toString());
tr.writeTol R();

}
else{ System.out.printIn("Errors found - aborting"); System.exit(1); }

?

45

/[Authors; Neel Goyal and Ananya Das
import java.io.*;

/[The big tree that will output the x.ir file

/[Holds anode for the init statement, a node for all the objects,
/lanode for al the groups, a node for all the transforms, and a
/Inode for the visibility

public class AJY NTree
{

PNode p;

ONode o;

GNode g;

TNodet;

VNode v;

/IFile to write to
File IR = new File("x.ir");

public AJYNTree()

{
0 = new ONode();
t = new TNode();
g = new GNode();
v = new VNode();
}

/[Creates a PNode which holds the size of the x and y dimensions,
//and total frames.

void createPNode(int sx, int sy, int f)
{

}

/IReturns the boolean called from the GNode isG - seesif an object is
[lactually a group

p = new PNode(sx, sy, f);

boolean isG(int a)

{
}

/[Adds aline, ellipse, poly, rect or point
/[All classes above extend the Objects class

return g.isG(a);

void addObject(Objects a)

o.addElement(a);
}

/IAdds atrandate, scale, or rotate Transform
/IAll transforms extend the Transforms class

void addTrans(Transforms a)

46

{
}

/[Adds a Groups node to the tree

t.addElement(a);

void addGroup(Groups a)

g.addElement(a);
}

/[Adds a VisNodes to the tree
void addVis(VisNodes @)

v.addElement(a);
}

/IChecks to seeif atransformation overlaps another of the same type
//on the same object.

boolean overlap(int a, int b, int ¢, int d)

{
}

/IChecks to seeif an object has a transformation associated with it

return t.overlap(a, b, c, d);

boolean hasTransform(int &)

{
return t.hasTrans(a);

}

/IChecks to seeif an Object isin a Group

boolean inGroup(int a)

{
}

/IChecks to seeif an Object has a visibility hode associated with it

return g.inG(a);

boolean inVis(int @)

{
}

/[Prints out the X.ir file string

return v.inV(a);

public String toString()
{
String r = p.toString();
r += o.toString();
r+= g.toString();
r +=t.toString();
r += v.toString();

47

r+="90\n"

returnr;

}

/[CallstoString to writethe IR

public void writeTol R()
{

String line = toString();

try

{
FileWriter fw = new FileWriter(IR);

BufferedWriter bw = new BufferedWriter (fw);
PrintWriter outFile = new PrintWriter (bw);

outFile.print (ling); //prints line to file
outFile.close(); //closes file

}

/Icatches FileNotFoundException when printing to file
catch (FileNotFoundException exception)

{

System.out.printin("Thefile" + IR + " was not found.");

}

/[catches | OException when printing to file
catch (1OException exception)

{
System.out.printIn(exception);

}

48

/[Author: Ananya Das

/[Basic Objects definition of an Ellipse. Each hasax,y center and a
/Iradiusin the x dir and aradiusin they dir. paramsl-4 represent those
[lrespectively.

/[For the x.ir, each type Objects needs an ID number and an RGB value
/[They also need atype to specify the type of Object

public class Ellipse extends Objects
{
public double paraml, param?2, param3, param4;
public int type id_num = 14;
publicintid_num;
public int num_params = 4;
public int colorR, colorG, colorB;

/[Create an Ellipse

public Ellipse(int iNum, double p1, double p2, double p3, double p4, int cR, int cG, int cB)
{

id_ num=iNum,

paraml = p1,

param2 = p2;

param3 = p3;

param4 = p4;

colorR =cR;

colorG = cG;

colorB = cB;

}
/[Print out a string as per the x.ir

public String toString()
{

param2 +" " + param3+"" + param4 +" " + colorR + " " +colorG + " " + colorB+"\n";

String result ="" +type id_ num+"" +id hum+"" + num_params+" " + paraml +"

return result;

49

"y

/[Author: Neel Goyal
import java.util.*;
/[Basic Node that holds all the Groups Nodes

public class GNode extends MNode

{
public GNode()

{
sectionlD = 3;
v = new java.util.Vector();

}

/IAdds a Groups node to the vector
void addElement(Groups g)

v.add(g);
}

/[Prints the section 3 0 and then the Groups Node string

public String toString()

{
Stringr ="30\n";
for (inti =0;i <v.size(); i++)
{
Groups g = (Groups) v.elementAt(i);
r += g.toString();
}
returnr;
}

/IMethod that checks to see if an object with id number ais actualy
/lagroup - groups can not be grouped

boolean isG(int a)

{
boolean is = falsg;
for (inti=0; i < v.size(); i++)
{
Groups g = (Groups) v.elementAt(i);
if (gidn==2a)
is=true
}
returnis;
}

/IChecks to seeif an object isactually in agroup. Used when atransform
/lis declared on an object that may be in a group

boolean inG(int a)

boolean in = falsg;

50

for (inti=0; i <v.size(); i++)

{
Groups g = (Groups) v.elementAt(i);
in=g.inGr(a);

}

returnin;

51

/[Author: Neel Goyal
import java.util.*;

/IA node that holds information regarding a specific group declared
/[Each has an id number, the number of objects in the group, and a
[Istarting x,y position. They also have aVector for holding
//Object ID numbers

public class Groups

{
int idn, numo;
float startx, starty;

Vector v;

/[Constructor for initializing the Vector, but not the actual group
public Groups()
{ idn = -95;

v = new Vector();

}

/lInitializes the group

public Groups(int id, float sx, float sy)

{

idn=id;

startx = sx;

starty = sy;

numo = 0;

v = new Vector();
}

/lInitializes a group with a specific ID

public Groups(int id)

{
idn=id;
v = new Vector();
numo = 0;

}

/[Setsthe ID of agroup - used when Group() constructor is called

void setID(int id)
{

}

/[Sets the initial position of a group

idn=id;

void setPos(float sx, float sy)
{

startx = sx;

52

Starty = sy;
}

/IChecks to seeif object aexistsin this particular group

boolean inGr(int a)

{
boolean contains = false;
for (inti =0;i <v.sze(); i++)
{
Integer k = (Integer) v.elementAt(i);
if (k.intValue() == a)
{
contains = true;
}
}
return contains;
}

/IAdds an object with id number i to the group

void addElement(int i)

{
nuMo++;
Integer j = new Integer(i);
v.add(j);

}

/[Prints out a string as per the x.ir

public String toString()
{

String r ="19 "+idn+" "+numo+" ";

for (inti =0;i <v.size(); i++)

{
Integer k = (Integer) v.elementAt(i);
int g = k.intValue();

[4= ||||+g+|| "

}

r+= ""+§al’tX+" "+§arty+"\n";

returnr;

53

/[Author: Ananya Das

/[The Line Node which inherits properties of Objects Nodes

/[Each Line has 4 parameters, which are x1,y1,x2,y2, respectively -
/Ithe lineis drawn from (x1,y1) to (x2, y2)

/[For the x.ir, each type Objects needs an ID number and an RGB value
/[They also need atype to specify the type of Object

public class Line extends Objects
{
public double paraml, param?2, param3, param4;
public int type id_num = 12;
publicintid_num;
public int num_params = 4;
public int colorR, colorG, colorB;

/IConstructor for the line

public Line(int iNum, double p1, double p2, double p3, double p4, int cR, int cG, int cB)
{

id_ num=iNum,

paraml = p1,

param2 = p2;

param3 = p3;

param4 = p4;

colorR =cR;

colorG = cG;

colorB = cB;

}
/[String formatted for the ir file.

public String toString()
{

String result ="" +type id_ num+"" +id num+"" + num_params+" " + paraml +" "

param2 +" " + param3+"" + param4 +" " + colorR + " " +colorG + " " + colorB+"\n";

return result;

/[Author: Neel Goyal
import java.util.*;
/IThe base class for the Nodes that make up an AJY NTree
/[Each will have an ID and a Vector. The constructor is left
[lempty
public class MNode
{
int sectionlD;
Vector v,

public MNode()
{

}

55

/[Author: Ananya Das

//Base class for Objects types

//Used so Objects typed can be put in the vector held in the
/IONode - since all Objectswill have their own unique toString
/it works well.

public class Objects

public Objects()
{

}
}

56

/[Author: Neel Goyal
import java.util.*;

/[The class that holds the vector of type Objects
/1t aso prints the 2 section defined in the ir spec

public class ONode extends MNode

{

Iconstructor

public ONode()

{ sectionlD = 2;

v = new Vector();

}

/[adds an Objects type to the vetor
void addElement(Objects o)
i v.add(o);

/lgenerates a string as per their spec

public String toString()

{
String r = ""+sectionID+" O\n";
for (inti =0; i <v.sze(); i++)
{
Objects n = (Objects) v.elementAt(i);
r += n.toString();
}
returnr;
}
}

57

/[Author: Neel Goyal

/[Holds information regarding the program's instantiation
/1t holds the number of frames and the dimensions of the
/Iwindow

public class PNode extends MNode
{

int sizex, sizey, frames;

public PNode(int x, int y, int f)

.
Sizex = X;
szey =y,
frames=f;

}

/[Prints the section as per the ir spec

public String toString()
{

String r ="1 3 "+sizex+" "+sizey+" "+frames+"\n";
returnr;

58

/[Author: Ananya Das

//Objects definition for a Point. Paramsl-2 represent the x,y position
/lof the point, respectively.

/[For the x.ir, each type Objects needs an ID number and an RGB value
/[They also need atype to specify the type of Object

public class Point extends Objects

{
public double paraml, param2;
public int type id_num = 11;
publicintid_num;
public int num_params = 2;
public int colorR, colorG, colorB;

public Point(int iNum, double p1, double p2, int cR, int cG, int cB)
{

id_ num=iNum;

paraml = p1;

param2 = p2;

colorR = cR;

colorG = ¢G;

colorB = cB;

}
[/[Print a string as per the x.ir spec
public String toString()

{
String result =
param2 +" " + colorR +

+type_id num+"" +id_num+ +paraml +" " +

"" +colorG + " " + colorB+"\n";

+ num_params +

return result;

59

/[Author: Ananya Das
import java.util.*;

//Objects defintion for a Polygon with user defined number of points
/IParameters for the points are passed in the form of avector that is
/Ichecked in the parser (it must have an even number of elements)

/[For the x.ir, each type Objects needs an ID number and an RGB value
/[They also need atype to specify the type of Object

public class Poly extends Objects

{
public Vector params = new Vector(); //a polygon must have at least 3 pts

/l(x and y coords so 6 params)
public int type id_num = 15;
publicintid_num;
public int num_params;
public int colorR, colorG, colorB;

public Poly(int iNum, Vector p, int cR, int cG, int cB)
{ id_num = iNum;

params = p;

num_params = params.size();

colorR =cR;

colorG = cG;
colorB = cB;

}

/[Prints the string as per the x.ir spec

public String toString()

{
Stringr="" +type id num+"" +id num+"" + num_params+"";
for (inti =0;i < params.size(); i++)
Float k = (Float) params.elementAt(i);
float g = k.floatValue();
r+=""+g+"";
}
r+=""+colorR+"" +colorG+" " + colorB+"\n";
returnr;
}

60

/[Author: AnanyaDas

/[Basic class for holding rectangles. Paramsl-4 represent the upper left
/[corner x,y position, and the width and height, respectively.

/[For the x.ir, each type Objects needs an ID number and an RGB value
/[They also need atype to specify the type of Object

public class Rect extends Objects

{

public double paraml, param?2, param3, param4;
public int type id_num = 13;

publicintid_num;

public int num_params = 4;

public int colorR, colorG, colorB;

/[Create arectangle

public Rect(int iNum, double p1, double p2, double p3, double p4, int cR, int cG, int cB)
{

id_ num=iNum,

paraml = p1;

param2 = p2;

param3 = p3;

param4 = p4;

colorR =cR;

colorG = ¢G;

colorB = cB;

}
/[Print out rectangle as per x.ir spec

public String toString()
{

String result ="" +type id_ num+"" +id hum+"" + num_params+" " + paraml +"

param2 +" " + param3+"" + param4 +" " + colorR + " " +colorG + " " + colorB+"\n";

return result;

61

"y

/[Author: Neel Goyal

/[Transforms definition for a Rotation. Each rotation

/Ihas a number of degrees that it rotates an object by.

[/[For the x.ir, each type Transforms needs a type to specify the
[Itype of Transform, and an object or group id number to know what
/it istransforming

public class Rotate extends Transforms

{
float degs;

/[constructor

public Rotate(int obj, float d, int startf, int stopf)

{
super(obj, startf, stopf);
degs=d;
numParams = 3,
type = 22;
}

/IGenerates string as per ir spec
public String toString()
{

String g ="22 "+object+" 3 "+degs+" "+start+" "+stop+"\n";
return g;

62

/[Author: Neel Goyal

/[Transforms definition of Scale. Each scale has afactor that

/lan object is scaled by.

[/[For the x.ir, each type Transforms needs a type to specify the
[Itype of Transform, and an object or group id number to know what
/it istransforming

public class Scale extends Transforms

{
double factor;
public Scale(int obj, double d, int startf, int stopf)
{
super(obj, startf, stopf);
factor = d;
numParams = 3;
type = 23;
}
/IGenerates a string as per ir spec
public String toString()
{
String g = "23 "+object+" 3 "+factor+" "+start+" "+stop+"\n";
return g;
}
}

63

/[Author: Neel Goyal
import java.util.*;
/IThe Node that holds all the Transforms Nodes.

public class TNode extends MNode

{
public TNode()
{
sectionlD = 4;
v = new Vector();
}

/ladds a Transforms Node to the group
void addElement(Transforms o)

v.add(o);
}

/IChecks to see if an object with ID Number ask has a Transform associated
/Iwith it - used when an object enters a group.

boolean hasTrans(int ask)

{
boolean has = falsg;
for (inti=0; i < v.size(); i++)
{
Transforms n = (Transforms) v.elementAt(i);
if (n.object == ask)
has = true;
}
}
return has,
}

/[Function used to see if atransform of the same type overlapsin frame
[[animation

public boolean overlap(int transtype, int id_num, int start, int stop)
{
boolean result = falsg;
for(inti=0; i < v.size(); i++)
{
Transforms n = (Transforms) v.elementAt(i);
if (n.type == transtype & & n.object ==id_num)
{
if (stop <= n.stop && stop >= n.start)
result = true;
if (start >= n.start & & start <= n.stop)
result = true;
if (start <= n.start && stop >= n.stop)
result = true;

if (start >= n.start && stop <= n.stop)

result = true;
if (start == n.stop & & n.start < stop)
result = false;
if (start < n.stop && stop == n.start)
result = true;
}
}
return result;

}

/IRefersto section 4 0 inthe..ir - prints 4 0 and then every transform
/INode's toString.

public String toString()

{
String r = ""+sectionID+" O\n";
for (inti =0;i <v.sze(); i++)
{
Transforms n = (Transforms) v.elementAt(i);
r += n.toString();
}
returnr;
}

65

/[Author: Neel Goyal

/[Base class for holding information about a Transforms
/[Each Transforms has an object that it's transforming,
/laframe range, and the number of parametersit passes
/Ito the x.ir

public class Transforms

{
public int type, object;
public int numParams;
public int start, stop;
/lconstructors
public Transforms(int obyj, int startf, int stopf)
{
object = obj;
start = startf;
stop = stopf;
}
public Transforms()
{
}
}

66

/[Author: Neel Goyal

/[Transforms definition for a Translation

/[Each trand ation takes an X,y coordinate (newx, newy) that it must
/Ireach in the frame range, specified by start and stop

[[For the x.ir, each type Transforms needs a type to specify the
[Itype of Transform, and an object or group id number to know what
/it istransforming

public class Trandate extends Transforms

{
float newx, newy;

public Translate(int obj, float dx, float dy, int startf, int stopf)
{

[Isuper(obj, startf, stopf);

start = startf;

stop = stopf;

object = obj;

newx = dx;
newy = dy;
numParams = 4;
type = 21;

}

/[Prints out the tranglation as per X.ir spec

public String toString()

{
String g ="21 "+object+" 4 "+newx+" "+newy+" "+start+
return g;

67

" "+stop+"\n";

/[Author: Neel Goyal

/INode that holds information about a visibility transform
/leach holds the objects id number, and a frame range for the
/lobject to be invisible

public class VisNodes

{
int obj, start, stop;

/lcreate avisnode

public VisNodes(int o, int s, int p)
{
obj =o;
start=s;
stop = p;
}
/lprint out as per X.ir spec
public String toString()
{

String r ="30 "+obj+" "+start+" "+stop+"\n";
returnr;

68

/[Author Nedl Goyal
import java.util.*;
/[Classfile for the Node that contains Visibility Nodes

public class VNode extends MNode

{
public VNode()
{
v = new java.util.Vector();
sectionlD =5;
}

/IAdd anew VisNodes
void addElement(VisNodes vis)

v.add(vis);
}
/IChecks to seeif an object with ID number held in the value of a
/Ihas avisibility transform associated with it. Used when an object
/lis added to agroup.

boolean inV(int a)

{ boolean in = falseg;
for (inti = 0; i<v.size(); i++)
{ VisNodes m = (VisNodes) v.elementAt(i);
if (m.obj == a)
{ |
in=true;
}
}
returnin;
}

/[Prints section 5 O for the ir file, followed by the VisNodes strings

public String toString()

{
String r = ""+sectionID+" O\n";
for (inti =0;i <v.size(); i++)
{
VisNodes m = (VisNodes) v.elementAt(i);
r += m.toString();
}
returnr;
}

69

Backend .cpp file- Written by Yaniv Schiller
#pragma warning (disable:4786)

/*
AJYN Backend

each object has an identifier_number
each object has a previously know number of paramters
then we follow each with color numbers

Each line can be one of the following:
section_id number_params params

OBJECTS SECTION:
type_id_number identifier_number number_of paramaters parameters colorR colorG colorB

GROUPS SECTION:
group_id_number identifier_number number_of objectsidentifier_numbersx y

FUNCTION SECTION:
func_id_number obj_identifier_number number_of paramaters parameters

INVISIBILITY SECTION
obj_identifier_number start frame end_frame

section _id #parameters
program 01 3
objects 02 0

groups 03 0
funcs 04 0
visibs 05 0
EOF 09 0

types id_number #parameters
point 11 2

line 12 4

rect 13 4

elipse 14 4

poly 15 N

group_id_number:

group 19

func_id_number id #parameters
trandlate 21 4

rotate 22 3

scale 23 3

*/

#include<iostream>
#include<fstream>
#include<vector>

70

#include<map>
#include<cmath>
#include<string>
#include <stdio.h>
#include "mingpp.h"

using namespace std;

congt unsigned short LINEW = 10;
class object{ // groupstoo

public:

int type;//point 11,line 12,rect 13,ellipse 14,poly 15

int toDisplay, isVisible;

long idenNumber;

float centerx;

float centery;

float initx;

float inity;

float initscale;

float initrot;

vector<float> params; //first two usually x and y position

union {
struct {//length (thanks shira) for rect
float tIx,tly;
float width,height;
}rect;
struct {//elipse
float x;
float y;
}radius;
struct {//line
float x1,y1;
float x2,y2;
float length;
Hine;
} extras,;
struct{
int R,G,B;
} color;
void getShape(SWFShape *);
void getShape(SWFShape * sfloat offsetx, float offsety);

cI'a$ funcs{

public:

int type; //translate 21,rotate 22,scale 23
long idenNumber;
int startframe,endframe;

union{
struct {
float x,y;
} newpos;
float rotateDegrees;
float scaleSize;
} details;

71

|3
classvisib{
public:
long idenNumber;
int startframe,endframe;

1

class Programy

public:
float width, height;
long frames,

1

int nActiveObjects;

vector<object> vObj;

map<int,int> mObj;//which position in the vecotr isthisID is
vector<funcs> vFn;

vector<visib> vVis;

ifstream fin("x.ir");
void ellipse(SWFShape * shape, float cx, float cy, float rx, float ry);

int main(){
nActiveObjects=0;
long rowType;
int state=0, numParams;
int error=0;
Program theP;
while(state!=9)// for(int i=0;i<5;i++)

{
fin>>rowType;
/[cout<<"READ this number: "<<rowType<<end! ;

switch(rowType)
case 1://program 01 3
if (state==0){
state=1;
fin>>numParams>>theP.width>>theP.height>>theP.frames;
}
ese
error=1,
break;
case 2://objects 02 0
if (state>=1){
state=2;
1 int tmp=fin.peek();
I if(tmp!="n")
fin>>numParams;
}
ese
error=1;
break;

case 3://groupé 03 0

72

I
1

)
I

1

if(state>=1){

State=3;
int tmp=fin.peek();
if(tmp!="n")
fin>>numParams;
}
else
error=1;
break;
case 4://funcs 04 0
if (state>=1){
state=4,
int tmp=fin.peek();
if(tmp!="\n")
fin>>numParams;
}
else
error=1;
break;
case 5://visibs 05 0
if(state>=1){
state=5;
int tmp=fin.peek();
if(tmp!="n")
fin>>numParams;
}
else
error=1;
break;
case 9:
state=9;
break;

/Itype_id_number identifier_number number_of paramaters parameters

colorR colorG colorB
case 11://point 11 2

if(state==2)

{
/ladd the obect...
object x; int nump;
x.type=11,
x.toDisplay=1;

fin>>x.idenNumber>>nump;

X.params.resize(nump);

for(int i=0;i<nump;i++)
fin>>x.paramd|i];

fin>>x.color.R>>x.color.G>>x.color.B;
X.initx=x.centerx=x.paramg| 0] ;//first paramter is x
X.inity=x.centery=x.params[1];//second paramter isy

X.initscale=1;
X.initrot=0;
vObj.push_back(x);
nActiveObjectst+;
mObj[x.idenNumber]=vObj.siz&()-1;
}
else

error=1,

73

break;
case 12://line 12 4

if (state==2)

{
//add the obect...
object x; int nump;
x.type=12;
x.toDisplay=1;

fin>>x.idenNumber>>nump;

X.params.resize(nump);

for(int i=0;i<nump;i++)
fin>>x.paramd|i];

I if(fin.peek()!="\n"
fin>>x.color.R>>x.color.G>>x.color.B;

I else

1 x.color.R=x.color.G=x.color.B=0;

1

cout<<"COLOR:"<<x.color.R<<\t'<<x.color.G<<"\t'<<x.color.B<<end|l;;
x.extras.linex1=x.paramg[0];//first paramter is x1
x.extras.line.yl=x.params[1];//second paramter isy1
x.extras.linex2=x.paramg[2]; //third paramter is x2
x.extras.line.y2=x.paramg 3];//fourthparamter is y2

float dx=(x.extras.linex2-x.extras.line.x1) ,dy=(x.extras.line.y2-
x.extras.lineyl);

X.initx=x.centerx=x.extras.line.x1+(dx)/2;

X.inity=x.centery=x.extras.line.y1+(dy)/2;

x.extras.line.length=sgrt(dx* dx-+dy* dy);

X.initscale=1,

X.initrot=0;

vObj.push_back(x);
nActiveObjectst+;
mObj[x.idenNumber]=vObj.size()-1;

}

else
error=1;

break;

case 13://rect 13 4

if (state==2)

{
/ladd the obect...
object x; int nump;
X.type=13;
x.toDisplay=1;

fin>>x.idenNumber>>nump;

X.params.resize(nump);

for(int i=0;i<nump;i++)
fin>>x.paramd[i];

1 if (fin.peek()!="\n")
fin>>x.color.R>>x.color.G>>x.color.B;

1 else

1/ x.color.R=x.color.G=x.color.B=0;

1

cout<<"COLOR:"<<x.color.R<<\t'<<x.color.G<<'\t'<<x.color.B<<endl;;

74

x.extras.rect.tix=x.paramg[0] ;//first paramter istop left x
x.extras.rect.tly=x.paramg| 1] ;//second paramter istop left y
x.extras.rect.width =x.paramg[2]; //third paramter is width
x.extras.rect.height=x.paramg[3] ;//fourthparamter is height
/[calculate center
X.initx=x.centerx=x.extras.rect.tIx+(x.extras.rect.width)/2;
X.inity=x.centery=x.extras.rect.tly+(x.extras.rect.height)/2;

X.initscale=1,
X.initrot=0;
vObj.push_back(x);
nActiveObjectst+;
mObj[x.idenNumber]=vObj.size()-1;

}

else
error=1,

break;

case 14://dlipse 14 4

if (state==2)

{
/ladd the obect...
object x; int nump;
xX.type=14,
x.toDisplay=1;

fin>>x.idenNumber>>nump;
/[cout<<"nump: "<<nump<<end!;
X.params.resize(nump);
for(int i=0;i<nump;i++)
fin>>x.paramg[i];

1 if(fin.peek()!="\n")

1 {

I cout<<"here; "<<fin.peek()<<endl;
fin>>x.color.R>>x.color.G>>x.color.B;

I

cout<<"COLOR:"<<x.color.R<<\t'<<x.color.G<<\t'<<x.color.B<<endl;;
/lreturn O;

1 }
1 else
1 x.color.R=x.color.G=x.color.B=0;

X.initx=x.centerx =x.params[0];//first paramter is center x
X.inity=x.centery=x.params[1];//second paramter is center y
x.extras.radius.x =x.paramg[2]; //third paramter is radi sousx
x.extras.radius.y =x.paramg[3];//fourthparamter is radiusy
X.initscale=1;

X.initrot=0;

vObj.push_back(x);
nActiveObjectst+;
mObj[x.idenNumber]=vObj.size()-1;

}
else
error=1;
break;
case 15://poly 15 N
if(state==2)

75

/ladd the obect...
object x; int nump;
x.type=15;
x.toDisplay=1;
fin>>x.idenNumber>>nump;
X.params.resize(nump);
inti;
for(i=0;i<nump;i++)
fin>>x.paramd|i];
1 if(fin.peek()!="\n")
fin>>x.color.R>>x.color.G>>x.color.B;
1 else
1l x.color.R=x.color.G=x.color.B=0;

/[calculate center: Average
x.centerx=x.centery=0;
for(i=0;i<nump/2;i++){
X.centerx+=x.params[2*i];//even param locations are x
positions
X.centery+=x.params[2*i+1];//even param locations are x
positions
}
X.initx=x.centerx/=(nump/2);
X.inity=x.centery/=(nump/2);
X.initscale=1;
X.initrot=0;

vObj.push_back(x);
nActiveObjectst+;
mObj[x.idenNumber]=vObj.siz&()-1;

}

else
error=1,

break;

case 19://group 19

if (state==3)

{
/ladd the obect...
object x; int nump;
x.type=19;
x.toDisplay=1;

fin>>x.idenNumber>>nump;
X.params.resize(nump);
inti;
for(i=0;i<nump;i++)
fin>>x.paramd[i];
fin>>X.initx>>x.inity;
/1 cout<<x.idenNumber<<''<<x.initx<<''<<x.inity<<' '<<nump<<end!;
/[calculate center: Average
x.centerx=x.centery=0;
for(i=0;i<nump;i++){//average all the centerxs...
vObj[mObj[(int)x.paramg[i]]].toDisplay=0; //don't display
items used in agroup
nActiveObjects--;

76

x.centerx+=vObj[mObj[(int)x.paramg[i]]] .centerx ;//get each
objects centerx

x.centery+=vObj[mObj[(int)x.paramgi]]].centery; //get each
objects centery

}

x.centerx/=(nump);
x.centery/=(nump);
X.initscale=1;
X.initrot=0;

vObj.push_back(x);

nActiveObjectst+;
mObj[x.idenNumber]=vObj.size()-1;
/1 cout<<"Me: "<<mObj[x.idenNumber]<<endl;
}
ese
error=1;
break;
case 21://trandate 21 4
if (state==4)
/ladd the obect...
funcs x; int nump;
X.type =21,

fin>>x.idenNumber>>nump;

fin>>x.details.newpos.x>>x.detail s.newpos.y>>x.startframe>>x.endframe;
I if(vObj[mObj[x.idenNumber]].type==13)
{

cout<<"corecting rectangle shift";
X.details.newpos.x+=vObj[mObj[x.idenNumber]].extras.rect.width/2;

X.detail s.newpos.y+=vObj[mObj[x.idenNumber]].extras.rect.height/2;

*/
vFn.push_back(x);
}
else
error=1,
break;
case 22://rotate 22 3
if (state==4)
{
/ladd the obect...
funcs x; int nump;
X.type =22;
fin>>x.idenNumber>>nump;
fin>>x.details.rotateDegrees>>x.startframe>>x.endframe;//read in the 3
params
X.details.rotateDegrees=-1;
vFn.push_back(x);
}
else

error=1,

77

break;

case 23://scale 23 3
if (state==4)
{
//add the obect...
funcs x; int nump;
X.type =23;

fin>>x.idenNumber>>nump;
fin>>x.detail s.scal eSize>>x.startframe>>x.endframe;//read in the 3

params
vFn.push_back(x);
}
else
error=1,
break;
case 30://Invisibility
if (state==5)
{
/ladd the obect...
visib x;
fin>>x.idenNumber;
fin>>x.startframe>>x.endframe;//read in the 2 other params
vVis.push_back(x);
}
else
error=1,
break;
default:
cerr<<"ERROR parsing this number"<<rowType<<end! ;
}
1 cout<<"parsed this number: "<<rowType<<end! ;
if(error>0)
cerr<<"error number: "<<error<<"; dtate: "<<state<<end|;
}
[Istart playing!
/*
2)
in the mean time... do the ming code
*/
vector<SWFShape *> vShapes;

vector<SWFDisplayltem *> vDisp;
map<int,int> mObj2Disp;//which position in the Object vecotr corresponds to which position in
the Display Vector

Ming_init();
SWFMovie *m = new SWFMovie();
I cout<<"Ming_init();\nSWFMovie *m = new SWFMovie();\n";
m->setFrames(theP.frames);
I cout<<"m->setFrames(" <<theP.frames<<");\n";

78

m->setDimension(theP.width , theP.height);
1 cout<<"m->setDimension("<<theP.width<<" , "<<theP.height<<");\n";

/lput in the shapes

/lcout<<"numObjects: "<<nActiveObjects<<endl;

inti;

for(i=0;i<vObj.size();i++){

if(vObj[i].toDisplay==1){//if not part of group
/lcout<<"showing object "<<i<<endl;
SWFShape *s = new SWFShape();
1 cout<<"SWFShape *s = new SWFShape();\n";

VvObj[i].getShape(s);
vShapes.push_back(s);
vObj[i].isVisible=1;
SWFDisplayltem * tDI;
tDI=m->add(vShapes] vShapes.size()-1]);
tDI->moveT o(vObj[i].initx,vObj[i].inity);
tDI->rotateTo(vObj[i].initrot);
tDI->scaleTo(vObj[i].initscale);
vDisp.push_back(tDl);
mObj2Disp[i]=vDisp.size()-1;

}
llelse
/1 cout<<"skipping object "<<i<<end!;

/*

--for each frame

--if linvisibile

----tempMatrix=0

----for each animation

----- update tempMatrix (based on animation, current frame #, and initial pos)
----add to frames vector using tempMatrix

*/

/[all teh objects are already in the array
intj,k;
for(i=0;i<theP.frames+1 ;i++){
/ltake care of invisibilites...
for(j=0;j<vVis.size();j++}{
if(vid[j].startframe==i){
I cout<<"removing "<<vVig[j].idenNumber<<'
'<<mObj[vVid]j].idenNumber]<<mObj2Disp[mObj[vViq]j].idenNumber]]<<" at frame "<<i<<endl;

k=mObj[vVidj].idenNumber];
vObj[K].isVisible=0;
vDisp[mObj 2Disp[K]]->sca eTo((float).000001);

}

if(vWid[j].endframe==i){
k=mObj[vVidj].idenNumber];

I cout<<"adding "<<vVig[j].idenNumber<<" at frame "<<i<<endl;

vObj[K].isVisible=1,;
vDisp[mObj 2Disp[K]]->scaleTo(1);
/Nlook for last scale, otherwise use 1
int maxEf=0;//maximum endfram before hitting me
for(int 0=0;0<vFn.size();0++){

79

if(vFn[o] .type==23& & vFn[o].idenNumber==vVig[j].idenNumber& & vFn[o] .endframe<=i& & vFn
[o].endframe>maxEf){
maxEf=vFn[o].endframe;
vDisp[mObj 2Disp[K]]-
>scaleTo(vFn[o] .details.scaleSize);
I cout<<"Setting scale to:
"<<vFn[o].details.scaleSize<<end!;

}
}
/ltake care of animatrions
for(j=0;j<vFn.size();j++){
if(i==vFn[j].endframe){ //set the new initial scale, pos, rot...
k=mObj[vFn[j].idenNumber];
switch(vFn[j].type){
case 21://trandlate
vObj[K].initx=vFn[j].detail s.newpos.x;
vObj[K].inity=vFn[j].details.newpos.y;
I cout<<"setting pos: "<<j<<" "<<vFn[j].details.newpos.x<<"
"<<vFn[j].details.newpos.y<<endl;

break;
case 22://Rptate
vObj[K].initrot=vFn[j].detail s.rotateDegrees;
1 cout<<"setting ROT: "<<j<<"
"<<vFn[j].detail s.rotateDegrees<<end|;
break;
case 23://Scale
vObj[K].initscale=vFn[j].detail s.scaleSize;
1 cout<<"setting SCALE: "<<j<<" "<<vFn[j].details.scaleSize
<<endl;
break;
}
if (i<vFn[j].endframe& & i>=vFn[j].startframe){
float newx, newy,newrot,newscale;
k=mObj[vFn[j].idenNumber];
if(i==vFn[j].startframe){
switch(vFn[j].type){
case 21://trandlate
I cout<<"reaing init pos. "<<j<<" "<<vObj[K].initx<<"
"<<vObj[K].inity<<end!;
break;
case 22:
1 cout<<"reaing ROT: "<<j<<" "<<vObj[K].initrot
<<endl;
break;
case 23:
I cout<<"reaing SCALE: "<<j<<" "<<vObj[K].initscale
<<endl;
break;
}
}
I cout<<"k: "<<k;

int deltaFrames=(vFn[j].endframe-vFn[j].startframe);

80

float perc=(float)(i-vFn[j].startframe+1)/(fl oat)del taFrames;
switch(vFn[j].type){
case 21://trandate
newx=vObj[K].initx+perc* (vFn[j].detail s.newpos.x-
vObj[K].initx);
newy=vODbj[K].inity+perc* (vFn[j].details.newpos.y-
vObj[K].inity);
vDisp[mObj 2Disp[k]]->moveT o(newx,newy);
vObj[K].centerx=newx;
vObj[K].centery=newy;
break;
case 22://Rptate
newrot=vObj[Kk].initrot+perc* (vFn[j].detail s.rotateDegrees-
vObj[K].initrot);
1 cout<<"to rot;"<<vFn[j].detail s.rotateDegrees<<"*"<<perc<<"=new
rot: "<<newrot<<endl;
vDisp[mObj 2Disp[K]]->rotateT o(newrot);
break;
case 23://Scale
if(vObj[K].isVisible){
newscale=vObj[k].initscale
+perc* (vFn[j].detail s.scaleSize -vObj[k] .initscale);

1 cout<<"to rot;"<<vFn[j].details.scaleSize
<<"*"<<perc<<"=new scale: "<<newscae<<endl;
vDisp[mObj 2Disp[k]]->scaleTo(newscale);
}
break;
}
}
}
m->nextFrame();
}
m->save("x.swf");
return O;
}
void object::getShape(SWFShape * s){
inti;
s->setLing(LINEW,this->color.R,this->color.G,this->color.B);
I cout<<"s->setLineg(LINEW," <<this->color.R<<","<<this->color.G<<","<<this->color.B<<");\n";
switch(this->type){ /Ipoint 11,line 12,rect 13,ellipse 14,poly 15
case 11://point
s->movePenTo(0 ,0);
s->drawlLine(1,0);
break;
case 12://line
s->movePenTo((this->extras.line.x1-this->initx),(this->extras.line.yl-this->inity));
s->drawLineTo((this->extras.line.x2-this->initx),(this->extras.line.y2-this->inity));
I cout<<"Line Details "<<this->extras.linex1<<''<<this->extras.line.yl<<''<<this-
>extras.linex2<<' '<<this->extras.liney2
I <<''<<this->initx <<' '<<this->inity<<end!;
break;
case 13://rect

81

1 cout<<"RECT Details "<<this->extras.rect.tix<<' '<<this->extras.rect.tly<<' '<<this-
>extras.rect.width<<' '<<this->extras.rect.height
1 <<''<<this>initx <<''<<this->inity<<end!;
/Is->movePenT o(this->extras.rect.tlx,this->extras.rect.tly);
s->movePenTo(0,0);
s->movePen(-1*this->extras.rect.width/2,-1*this->extras.rect.height/2);
s->drawL ine(this->extras.rect.width,0);
s->drawLine(0,this->extras.rect.height);
s->drawLine((this->extras.rect.width)*-1,0);
s->drawLine(0, (this->extras.rect.height)*-1);
break;
case 14://ellipse
ellipse(s,0,0,this->extras.radius.x,this->extras.radius.y);
break;
case 15://polygon
s->movePenT o(this->paramg] 0] -this->initx,this->paramg] 1]-this->inity);
for(i=1;i<this->params.size()/2;i++){
s->drawLin€eT o(this->paramg] 2*i]-this->initx,this->paramg] 2*i+1] -this->inity);

s->drawL ineT o(this->paramg] 0]-this->initx,this->paramg] 1] -this->inity);
break;
case 19:
/how to draw a group object???
for(i=0;i<this->params.size();i++){ //average all the centerxs...
if (! (vObj[mObj[(int)this->paramg[i]]].col or.R==255& & vObj[mObj[(int)this-
>paramg[i]]].color.G==255& & vObj[mObj[(int)this->paramg]i]]].col or. B==255))
vObj[mObj[(int)this->paramg]i]]].getShape(s,this->centerx,this-

>centery);
}
break;
} }
void object::getShape(SWFShape * s,float offsetx, float offsety){
inti;
s->setLing(LINEW,this->color.R,this->color.G,this->color.B);
switch(this->type){ /Ipoint 11,line 12,rect 13,ellipse 14,poly 15
case 11://point
s->movePenTo(this->initx -offsetx ,this->inity -offsety);
s->drawlLine(1,0);
break;
case 12://line
s->movePenTo((this->extras.line.x1-offsetx),(this->extras.line.yl-offsetx));
s->drawLineTo((this->extras.line.x2-offsetx),(this->extras.line.y2-offsety));
break;
case 13://rect

s->movePenTo(this->extras.rect.tIx-offsetx+this->extras.rect.width/2 ,this-
>extras.rect.tly-offsety+this->extras.rect.height/2);
s->movePen(-1*this->extras.rect.width/2,-1* this->extras.rect.height/2);
s->drawLine(this->extras.rect.width,0);
s->drawLine(0,this->extras.rect.height);
s->drawLine((this->extras.rect.width)*-1,0);
s->drawLine(0, (this->extras.rect.height)*-1);
break;
case 14://ellipse
ellipse(s,this->initx-offsetx ,this->inity-offsety,this->extras.radius.x,this-
>extras.radius.y);

82

break;
case 15://polygon
s->movePenTo(this->paramg| 0]-offsetx, this->paramg| 1]-offsety);
for(i=1;i<this->params.size()/2;i++){
s->drawLineTo(this->paramg] 2*i]-offsetx,this->paramg[2*i+1] -of fsety);

s->drawL ineT o(this->paramg| 0]-offsetx,this->paramg[1] -offsety);
break;

case 19:
/how to draw a group object???

for(i=0;i<this->params.size();i++){ //average all the centerxs...
vObj[mObj[(int)this->paramg|i]]].getShape(s,this->centerx,this->centery);

}
break;
}
}
void ellipse(SWFShape * shape, float cx, float cy, float rx, float ry){
I cout<<"CX:"<<ex<<"CY:"<<cy<<"RX:"<<rx<<"RY:"<<ry<<endl;

const float Pl=(float)3.1415926535897932384626433832795;
float sa=0,ea=2*PlI;

/I float cx=100,cy=100;

1 float rx=20,ry=50;

float sweep = ea-s3;
/I determine number of segments, 8 at most
int nSegs = (int)(1+floor(7* (sweep/(2* P1))));
/I find angle of each segment
float subangle = (sweep)/nSegs,
float angle = s3;
/Ibegin arc:
shape->movePenTo(cx + rx*cos(angle), cy+ ry*sin(angle));
1 cout<<"shape->movePenTo("<<cx + rx*cos(angle)<<" , "<<cy+ ry*sin(angle)<<");\n";
for(int i =0;i<nSegs;i++){
angle += subangle/2;
float controlx = cx + rx * cos(angle) / cos(subangle/2);
float controly = cy + ry * sin(angle) / cos(subangle/2);
angle += subangle/2;
float anchorx = cx + rx * cos(angle);
float anchory = cy + ry * sin(angle);
shape->drawCurveT o(controlx, contraly, anchorx, anchory);

/1 cout<<"shape->drawCurveT o("<<controlx<<","<<controly<<", "<<anchorx<<",
"<<anchory<<");\n";

}
}

83

	PLT Final Report
	AJYN Introduction and Overview
	Object-Oriented Design:
	Positioning
	Additional AJYN Features
	Animation:
	Ouputting to .swf Files

	Writing an program in AJYN
	Compiling a source file in AJYN
	Development Process
	Who did what?
	Project Timeline
	Architecture Design:
	The Backend
	The Backend Program was written in c++. It is a separate program from the front end and is called only after the front end's completion. Furthermore, because it is only dependent on the IR, it can easily be ported to work with another front end applicati
	Intermediate Representation Specifications
	Test Programs
	Type 2
	Type 3
	Jared Kennedy
	Neel Goyal
	Ananya Das

	Front End files - Neel Goyal and Ananya Das
	Backend .cpp file - Written by Yaniv Schiller

