
ARMSim:  Simulating Advanced RISC Machine Architecture 
 

Shuqiang Zhang 
Department of Computer Science 

Columbia University 
New York, NY 

sz184@columbia.edu 
 

 

 

Abstract 
This paper discusses the design and 

implementation of the ARMSim, a simulator 

implemented in the Java and C programming 

languages for the Advanced RISC Machine (ARM) 

processor.  The intended users of this tool are those 

individuals interested in learning computer 

architecture, particularly those with an interest in the 

Advanced RISC Machine processor family.   

ARMSim facilitates the learning of computer 

architecture by offering a hands on approach to those 

who have no access to the actual hardware.  The core 

of the simulator is implemented in C with and models 

a fetch-decode-execute paradigm; a Java GUI is 

included for portability.  The details of the ARM 

architecture, including registers, instruction set and 

implementation will be discussed in later sections. 

 A binary tree traversal algorithm is introduced to 

make the decoding part of the simulator more efficient.  

This increases the overall performance of the 

simulator. 

 

1. Introduction: 
This paper describes how to simulate an ARM 

processor using the C programming language.  In the 

course of this discussion, the reader is introduced to 

the details of the ARM processor architecture and 

discover how the hardware specifications are 

simulated in software using execution-driven 

simulation.  Execution driven simulation is also 

know as instruction-level simulation, register-cycle 

simulation or cycle-by-cycle simulation [Sykes 3].  

Instruction level simulation consists of fetch, decode 

and execution phases [Barbieri 4]. 

ARM processors were first designed and 

manufactured by Acorn Computer Group in the mid 

1980’s [funkysh 1].  Due to its high performance and 

power efficiency, ARM processors can be found on 

wide range of electronic devices, such as Sony 

Playstation, Nintendo Game Boy Advance and 

Compaq iPAQs.  The 32-bit microprocessor was 

designed using a RISC architecture with data 

processing operations occurring in registers instead of 

memory.  The processor has 16 visible 32 bit 

registers and a reduced instruction set that is 32-bits 

wide.  The details on the registers and instructions 

can be obtained from [ARM 2]. 

 

2. Related Works: 
This section discusses different types of simulators 

available today and their different approaches in 

design and implementation.  Most simulation tools 

can be classified as user level simulators: these 

simulate the execution of a process and emulate any 

system calls made on the target computer using the 

operating system of the host computer [Clarke 5].  

ARMSim is an example of this type of simulator; it 

executes ARM instructions on a host Pentium x86 

processor, but it will deviate from the conventional 

decoding method in an attempt to improve execution 

time.  KScalar Simulator [Moure 6], PPS suite 

[Gunther 7], CPU Sim3.1 [Skrien 8] and OAMulator 

[Menczer 9] are simulators best suited for educational 

purposes.  They show the basic ideas of computer 

organization with relatively few details and 

complexity.  They are specifically designed for 

students who have little or no background in computer 

architecture and who need a simple introduction 

mailto:sz1@columbia.edu


[Moure 6].  ARMSim also belongs in this category 

because it provides a concise and straightforward 

introduction to the ARM architecture.  On the other 

extreme of the spectrum is the SPARC V9 Complete 

Machine Simulator, one of the few well-know 

complete machine simulators developed to date.  

These simulate the target computer from the boot 

stage, including all codes executed by the PROM, the 

OS that is loaded by the PROM, and any processes 

subsequently created [Clarke 5].  Another approach 

to processor simulation can be seen in the Simx86 

simulator.  The Simx86 abandons the traditional 

simulator implementation approach of pre-decoding 

instructions and cross compilation.  Instead, Simx86 

favors an object oriented approach to improve 

extensibility of the simulator at the cost of increased 

execution time.  The Simx86 provides a 

straightforward way to build a simulator for a 

processor by allowing each component of the 

processor to be represented directly in the simulator 

by an object.  The simulator can easily be extended 

by adding new classes of instructions without the 

daunting task of constructing a new simulator [Shealy 

10].  ARMSim will retain the traditional approach 

for building simulators in favor of execution time. 

 

 

References: 
[1] funkysh, “Into my ARMs” 

www.phrack.org/show.php?p=58&a=10 

[2] ARM Architectural Reference Manual – Issue D, 

2000 Advanced RISC Machines LTD 

[3] D. A. Sykes, B.A. Malloy, The Design of an 

Efficient Simulator for the Pentium Pro Processor, 

In Proceedings of the 1996 Winter Simulation 

Conference, pp. 840-847, 1996.  

[4] I. Barbieri, M. Bariani, M. Raggio, A VLIW 

Architecture Simulator Innovative Approach for 

HW-SW Co-Design, 2000 IEEE international 

Conference on Multimedia and Expo, Vol. 3. 

pp1375-1378, 2000. 

[5] B. Clarke, A. Czezowski, P. Strazdins, 

Implementation Aspects of a SPARC V9 

Complete Machine Simulator, In Conferences in 

Research in Information Technology, Vol. 4. 

Australian Computer Society, pp. 23-32, 2001.  

[6] J. C. Moure, D. I. Rexachs, E. Luque, The KScalar 

Simulator, ACM Journal of Educational Resources 

in Computing, Vol. 2, No. 1, pp. 73-116 

March, 2002.  

[7] B. K. Gunther, Facilitating Learning in Advanced 

Computer Architecture through Appropriate 

Simulation, ACSC 23rd Australasian Computer 

Science Conference, 2000. pp. 104-112, 1999.  

[8] D. Skrien, CPU Sim3.1: A Tool for Simulating 

Computer Architectures for Computer 

Organization Classes, ACM Journal of 

Educational Resources in Computing, Vol. 1, No. 

4 , pp. 46-59, December, 2001. 

[9] F. Menczer, A. M. Segre, OAMulator: A Teaching 

Resource to Introduce Computer Architecture 

Concepts, Journal of Educational Resources in 

Computing, Vol. 1, No. 4, pp18-30, December, 

2001. 

[10] A. R. Shealy, B. A. Malloy, Simx86: An 

Extensible Simulator for the Intel 80x86 

Processor Family, In Proceedings of the 30th 

Annual Simulation Symposium, pp. 157-166, 

1997. 


