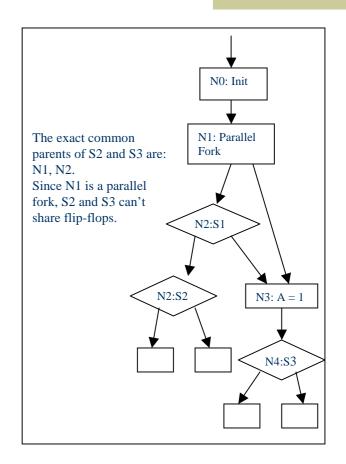
HDCompiler

-Translate Esterel -From PDG to Optimal Circuit Jia Zeng

What's the Aim

- Optimal Circuitry
 - Approaches: PDG, State Machine
 - Procedures:
 - Encoding;
 - Circuit Translation;
 - Optimization;

What we did


- State Encoding
 - One-hot, Compact, Combining
- Turning State Machine into Circuitry
 - Encoding State (i.e. decoding bits)
 - bit[i] = OR(j Wires for state-value-emit statements for state_value[j] where bit[i] = 1 in the value code)
 - Decoding State
 - AND (State machine's entry, State value decoded)

What we did (cont)

- Flip-flops Sharing
 - Qualification:

(Exact Common Parent

- ! = Parallel Fork)
- For all shareable State Machines, Which should be chosen?

What we did (cont)

- Slack Computing
 - Why compute slacks
 - An upper bound of possible delay increase without violating the timing constrain
 - Represent of the potential capability of obtaining area/power reduction
 - How to compute
 - $arrival_t(v)=MAX_{u} (arrival_t(u))+delay(v)$
 - $required_t(v)=MIN_{w-FO(v)}(required_t(u)-delay(w))$
 - $slack(v) = required_t(v) arrival_t(v)$

How well we did

- Circuits comparing before/after optimizing
 - see web page:http://www.cs.columbia.edu/~jia/testrecord/
- Circuits comparing between different encoding means:

	Flip-flops	Gates	Wires	Slacks
One-hot	10	56	80	16
Compact	6	59	85	22

Future Work

- Just a structure for real hardware translator, much more future work:
 - Choose state encoding means
 - Optimize based on slacks
 - Take real PDG input
 - Catch bugs