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Abstract 
Producing efficient circuits from a high-level language 
such as Esterel remains a problem. Sparse state coding 
requires many more latches used than minimum and 
waste of reachable state space, while tight state 
encoding produces slow circuits due to the cost of 
encoding and decoding. 
  This paper presents an algorithm to generate small 
and fast circuitry for Esterel. There are three main 
parts of the algorithm: state assignment, hardware 
synthesis, and circuit optimization. The technique is 
based on Program Dependence Graph. It uses heuristic 
search in coding space, computes the cost and adjusts 
until finding a compromise point on latch/logic 
tradeoff. 
  The algorithm will be used to compile Esterel into 
small circuits that meet a timing constraint. 
 
1 Introduction 
Esterel is a high-level language designed for real-time 
systems. It supports high-level control constructs such 
as concurrent composition, preemption, and exceptions. 
This aspect makes Esterel a more challenging language 
to translate into circuitry, but also enable aggressive 
optimizations because the compiler is able to gain a 
better understanding of the program’s behavior. 

State assignment to Esterel is based on the Program 
Dependence Graph (PDG) of Esterel. Baxter and 
Bauer present it in their early paper. It is based on the 
concept of control flow, and preserves all information 
of an original Esterel program. Esterel supports 
implicit state machines through explicit and implicit 
pause statements that delay for a cycle, such as the 
await statement. States sustain and transfer only 
between these statements. So we assign states for each 
of them. Figure 1 gives an example for PDG. 

Heuristic search is used in the algorithm to find an 
efficient state coding. Three main kinds of coding are 
used in the searching space. First is Berry’s [1] one-hot 
encoding. It produces fast circuits while gives much 
redundant state space. Second is Edwards’s [2,4] 
group-hot-by-level encoding. It shares latches between 
those decision nodes whose parents are in the same 
level but not parallel. Third is some variant of the 
former two encodings. It shares latches between the 
decision nodes in some levels, but not for all levels 
where sharing is possible. In other levels, it still keeps 
one-hot encoding for the nodes. 

We use heuristic search in the state encoding space 
until we find a resolution with the fewest latches under 
the requirement, or until the search space is exhausted. 

We start from one-hot encoding. If it can’t meet the 
requirement given, we fail and return. Otherwise, we’ll 
try variant coding means to delete sharable latches. 
Every time after re-encoding, the cost of the circuit is 
re-evaluated. If it is higher than required, the new 
coding will be thrown away and the former code will 
be returned. Or we’ll repeat the process until we 
exhaust the searching space. Thus we find the most 
efficient coding that meets the cost requirement. 

The Esterel hardware synthesis is straightforward 
when the coding has been chosen. 

There are two parts of circuit optimization: 
combinational optimization and sequential 
optimization. This paper is concentrate on the 
sequential optimization. And in fact, the sequential 
optimization has been done at the stage of state 
encoding before generate real circuits. SIS, the 
standard public-domain optimizer, will be used to for 
the combinational optimization after generating 
circuits. 

 

abort 
[ 
 await A; await B 
|| 
 await C 
] 

when D; 
pause; 
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Figure 1 PDG for an example program 
 

2 Related Work 



The classic state assignment is based on Simple Finite 
State Machine. Hachtel and Somenzi [6] describe 
synthesis of finite state machines. It uses minimization 
of incomplete specified machines to get reduced 
reachable states. 

Villa and Sangiovanni-Vincentelli [7] present 
algorithms used in NOVA for optimal state assignment 
of FSMs. It is based on the state code adjacency 
concept but more efficient and flexible. NOVA 
represents constraint satisfaction as a graph-embedding 
problem. It uses heuristic search to resolve this 
problem. Its best strategy is “iohybrid_code”, which 
produces results with quality comparable to the results 
of the maximum adjacent method. Its core algorithm is 
“ihybrid_code”. The set of input constrains is 
partitioned into satisfied constrain set (SIC) and 
rejected constrain set (RIC) at the beginning. The 
algorithm first gives the coding with minimum length 
under the satisfied constrains. Then it increases the 
embedding cube to satisfy the RIC within the encoding 
space that is specified by the user. The iohybrid_code 
strategy takes similar steps as in ihybrid_code but also 
takes the output constrains into consider. Generally 
speaking, output constrains are in lower priority to 
input ones in this strategy. 
  Devadas, Ma, Newton, and Sangiovanni-Vincentelli 
[8] present a method called MUSTANG that is one of 
the earliest multi-level state assignment methods. It 
used the state code adjacency concept to reach the aim 
of maximizing the size and number of common cubes. 
It builds an attraction graph with weighted edges. An 
edge’s weight is increased if it links to the common 
fanout and fanin states. MUSTANG was used to help 
MIS logic synthesis system reducing the number of 
product terms or literals needed to implement the 
next-state and output functions. 
  Berry first outlined the translation of Esterel into 
circuitry in 1992 [1], refined later to cover 
reincarnation. It generates a sub-circuit for each 
statement, and registers only for unit-delay statements. 
So each leaf state is encoded by one-hot coding. In that 
case, encoding and decoding circuits are trivial. But it 
uses many latches and results reachable state space 
redundancy. Later, Sentovich, Toma and Berry [3,5] 
described the technique for reducing the number of 
latches. They rely on computing the reachable state set 
implicitly using BDDs, then re-synthesizing the circuit 
using this knowledge to remove sequential 
redundancies. The whole program is taken as one state 
machine. 

In the compiler we are building, more than one state 
machine are assigned in different level. It is necessary 
especially for parallel branches. We can share latches 
between sequential branches but need to avoid parallel 
ones. 
  Edwards [2] proposed three key means to advance 

Esterel hardware synthesis. First is the PDG. It takes a 
totally new structural translation to Esterel. Calculating 
control dependence in the graph, it removes the 
redundant circuit. That is much more efficient than 
removing by analyzing the circuit. 

Second is a better state encoding. The technique he 
proposes chooses states encoding at a high level, 
providing much greater flexibility and larger encoding 
space to choose from. 

Third is to use the don’t-care information in logic 
synthesis. It gives more flexibility to the 
implementation and helps to generate high-quality 
circuits. 
 
3 HDCompiler – From PDG to circuitry 
HDCompiler is a translator to turn PDG into optimal 
circuitry for Esterel program. It visited a PDG tree and 
recorded all the state and their values in a state table. 
The states were encoded with one of the encoding 
means. Then it translated the PDG into circuitry based 
on the coding. After that, comes the circuit 
optimization.  

To optimize the circuit, it deleted all the useless 
wires firstly– the wire no any other wire took it as a 
input. Secondly, it visited the PDG tree to find out 
shareable flip-flops and merge them. Thirdly, it found 
the slacks between gates by computing and adjusted 
the circuit with fewer slacks and optimal. 
  The main data structure of the hardware translator 
includes: 
class PDGNode { 
  int numb; 
  Vector parent_numb; 
  Vector brunch_val; 
  int property; 
  String val; 
  int wire_entry; 
} 
 
class PDGTree { 
  PDGNode node;  
      PDGTree[] children; 
} 
 
class State { 
//node# where the state decision made 
 int node_numb; 
//state number 
 int numb; 
//possible state values and their codes 
 StateCode[] state_codes;  
//wire entry for each state value given 
 int[] wire_entry;   
//wire# for each state value emitted 
 int[] wire_emit;    
} 



 
class StateCode { 
// to record the value assigned 
     int val; 
 // code after encoding 
     int[] code; 
// wire entry for each bit, i.e. each register 
 int[] wire_entry; 
} 
 
class Wire { 
      int numb; 
      Vector input_wires; 
  int gate_type; 
      int[] arrival_t; 
      int required_t; 
} 
 
3.1 State Encoding 
As we said previously, there are three main kinds of 
coding. First is one-hot encoding, second is binary and 
maximally sharing encoding (compact encoding). And 
the third is a combination of the first two. That is, 

Code-length = log2(Number of possible state values) 
HDCompiler realized the first two encoding. Due to 

time limit, it didn’t realize the third. It will be added to 
the encoding space and used as an adjustment later. 
With the one-hot encoding and compact encoding, it’s 
easy to be realized with combine them together in 
different levels. 
 
3.2 Turning State Machine into Circuitry 
To translate a PDG into circuitry, there are two main 
parts: combinational logic circuit translation, and 
sequential logic circuit translation, i.e. state machine 
translation. HDCompiler mainly concentrates on the 
second part Temporarily. 
  We assume the wires for the state-value-emit 
statements have been generated in the first part 
translation. HDCompiler grouped them and generated 
wires for each state value emitting, then saved the wire 
entries in the state table. But for the statement directly 
under a state decision node, the input wire entry was 
left unfilled. 
  For each state in the state table, decoding and 
encoding circuit was generated separately. To decode a 
state, we need to generate every bit’s value of a state 
value. A flip-flop was generated for each bit. The input 
wire for it was set as: 

bit[i] = OR( ∑ j Wires for state-value-emit 
statements for state_value[j] where bit[i] = 1 in the 
value code. 
  To encode a state, just follow its bit codes and the 
wire entry for every bit (i.e. the flip-flop output) stored 
in the state table. Notice that, to get a state machine 
running correctly, we also should AND each state 

machine’s output with the wire for the statement to 
start the state machine. We only considered the case 
where the state machine has only one start entry, since 
multi-entry for a state machine is illegal in PDG. 
  After generating the circuit for the state machine, we 
went back to fill the input of some wires. These wire 
were generated for the statements whose execution 
follows the state decision node’s result. 
 
3.3 Flip-Flops Sharing 
When there are more than one state machine in a 
circuit, some of them may share flip-flops. How to 
decide which of them can share flip-flops? We looked 
at every two state decision nodes – the entry of a state 
machine, if none of their exact common parents is 
parallel-fork node or their own, they can share 
flip-flops. Because it means the two state machines 
will never run simultaneously. 

Here we defined exact common parent for two 
nodes. If Node P is an exact common parent of two 
nodes X and Y, it must have two properties: 
1. P is a common parent of X, Y. 
2. Assume P has direct children C1, C2, …, Cn,  
Setx = {Ci} = {first node of a route from P to X} 
Sety = {Cj} = {first node of a route from P to Y} 

There must exist some element different between Setx 
and Sety. 

 
 
 
 
 
 
The exact common  
parents of S2 and S3 are:  
N1, N2. 
Since N1 is a parallel  
fork, S2 and S3 can’t  
share flip-flops. 

N0: Init 

N1: Parallel 
Fork 

N2:S1 

N2:S2 N3: A = 1

N4:S3

Figure 2 gives an example. 



 
Figure 2 Flip-Flops sharing 

 
  Temporarily, we only build the sets of two shareable 
state machines. In fact, these two-element sets can be 
merged to make bigger set. That means, three or more 
state machines can share flip-flops. For example, if 
machine A and B can share ffs, while A and C can 
share ffs either, we can conclude A, B and C can share 
ffs if only B and C can share ffs too. That will be 
helpful to choose which pairs to be shared in the 
program with many state machines. 
 
3.4 Slack Computing 
Slacks are computed for further optimization. In 
Esterel, it is assume all inputs are ready at the 
beginning of a circle. So we take the flip-flop as the 
start and end of a circuit circle module. 

Slack for a circuit module is provides an upper 
bound of its possible delay increase without violating 
the timing constrain. It is import for circuitry 
optimization because it represents the potential 
capability of obtaining area/power reduction.  

A well know procedure to compute slacks for a wire 
v is: 

arrival_t (v)=MAX u∈FI(v) (arrival_t(u))+delay(v) 
required_t (v)=MIN w∈FO(v) (required_t(u)-delay(w)) 
slack (v) = required_t (v) – arrival_t (v) 

  We looked at the routes between every two 
flip-flops. We chain a route forward to compute the 
arrival time of every wire on it, while backward to 
compute the required time. 
  Due to time limit, we only got the slack but haven’t 
used it to optimize the circuitry. 
 
4 Experiment Result 
Here we give an example for the test result. Figure 3 
shows the input PDG.  
  In the example, there are 7 state machines. We are 
going to compare the circuits for different coding, 
circuitry before and after optimization, and show the 
slack-computing result. 

Comparing the circuits for one-hot encoding before 
(Figure 4 right) and after optimizing (Figure 4 left), 4 
flip-flops are merged without increase the size of 
combinational logic part. 

Table 1 gives the comparing result between the 
circuits for one-hot encoding and group-by-level 
encoding (i.e. compact encoding), which are both 
optimized. We can see the combination logic part is 
slightly increased in compact coding circuit. But it has 
much more slacks, also more freedom on circuit 
optimization. 
 

 

 
Figure 3 PDG for test example 
 

 
Figure 4 One-hot-encoding circuit after/before 
optimization 
 



 
Figure 5 Compact-encoding circuit after optimization 
 

# Flip-flops Gates Wires Slacks 
One-hot 10 56 80 16 
Compact 6 85 59 22 
Table 1 comparing one-hot and compact encoding 
circuit 
 
5 Conclusions and Future Work 
The HDCompiler was built up a structure for the real 
Esterel hardware translator. It still needs further 
improvement. Instead of exact PDG, the input of the 
HDCompiler is a PDG metamorphose temporarily, 
which also include the state-machine-by-level 
information. 

Some questions need to be answered in the future 
work. How to choose state encoding means? How to 
optimize the circuit based on the slacks? And the 
program is still buggy. Such as, for the state-emit 
statements whose exact common parents include 
parallel fork node, they should be combined with AND 
gate instead of OR gate to get the state machine 
running correctly. 
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