
Compiling Esterel into Better Circuits
Jia Zeng

Abstract
Producing efficient circuits from a high-level language
such as Esterel remains a problem. Sparse state coding
requires many more latches used than minimum and
waste of reachable state space, while tight state
encoding produces slow circuits due to the cost of
encoding and decoding.
 This paper presents an algorithm to generate small
and fast circuitry for Esterel. There are three main
parts of the algorithm: state assignment, hardware
synthesis, and circuit optimization. The technique is
based on Program Dependence Graph. It uses heuristic
search in coding space, computes the cost and adjusts
until finding a compromise point on latch/logic
tradeoff.
 The algorithm will be used to compile Esterel into
small circuits that meet a timing constraint.

1 Introduction
Esterel is a high-level language designed for real-time
systems. It supports high-level control constructs such
as concurrent composition, preemption, and exceptions.
This aspect makes Esterel a more challenging language
to translate into circuitry, but also enable aggressive
optimizations because the compiler is able to gain a
better understanding of the program’s behavior.

State assignment to Esterel is based on the Program
Dependence Graph (PDG) of Esterel. Baxter and
Bauer present it in their early paper. It is based on the
concept of control flow, and preserves all information
of an original Esterel program. Esterel supports
implicit state machines through explicit and implicit
pause statements that delay for a cycle, such as the
await statement. States sustain and transfer only
between these statements. So we assign states for each
of them. Figure 1 gives an example for PDG.

Heuristic search is used in the algorithm to find an
efficient state coding. Three main kinds of coding are
used in the searching space. First is Berry’s [1] one-hot
encoding. It produces fast circuits while gives much
redundant state space. Second is Edwards’s [2,4]
group-hot-by-level encoding. It shares latches between
those decision nodes whose parents are in the same
level but not parallel. Third is some variant of the
former two encodings. It shares latches between the
decision nodes in some levels, but not for all levels
where sharing is possible. In other levels, it still keeps
one-hot encoding for the nodes.

We use heuristic search in the state encoding space
until we find a resolution with the fewest latches under
the requirement, or until the search space is exhausted.

We start from one-hot encoding. If it can’t meet the
requirement given, we fail and return. Otherwise, we’ll
try variant coding means to delete sharable latches.
Every time after re-encoding, the cost of the circuit is
re-evaluated. If it is higher than required, the new
coding will be thrown away and the former code will
be returned. Or we’ll repeat the process until we
exhaust the searching space. Thus we find the most
efficient coding that meets the cost requirement.

The Esterel hardware synthesis is straightforward
when the coding has been chosen.

There are two parts of circuit optimization:
combinational optimization and sequential
optimization. This paper is concentrate on the
sequential optimization. And in fact, the sequential
optimization has been done at the stage of state
encoding before generate real circuits. SIS, the
standard public-domain optimizer, will be used to for
the combinational optimization after generating
circuits.

abort
[
 await A; await B
||
 await C
]

when D;
pause;

S1

3

1 2

S1=3 S1=3D

S2 S3 S1=2
1

3 22 1

A B S2=3 C S3=2

S2=1 S2=2 S3=1 S3=2

S2=2 S2=3

Figure 1 PDG for an example program

2 Related Work

The classic state assignment is based on Simple Finite
State Machine. Hachtel and Somenzi [6] describe
synthesis of finite state machines. It uses minimization
of incomplete specified machines to get reduced
reachable states.

Villa and Sangiovanni-Vincentelli [7] present
algorithms used in NOVA for optimal state assignment
of FSMs. It is based on the state code adjacency
concept but more efficient and flexible. NOVA
represents constraint satisfaction as a graph-embedding
problem. It uses heuristic search to resolve this
problem. Its best strategy is “iohybrid_code”, which
produces results with quality comparable to the results
of the maximum adjacent method. Its core algorithm is
“ihybrid_code”. The set of input constrains is
partitioned into satisfied constrain set (SIC) and
rejected constrain set (RIC) at the beginning. The
algorithm first gives the coding with minimum length
under the satisfied constrains. Then it increases the
embedding cube to satisfy the RIC within the encoding
space that is specified by the user. The iohybrid_code
strategy takes similar steps as in ihybrid_code but also
takes the output constrains into consider. Generally
speaking, output constrains are in lower priority to
input ones in this strategy.
 Devadas, Ma, Newton, and Sangiovanni-Vincentelli
[8] present a method called MUSTANG that is one of
the earliest multi-level state assignment methods. It
used the state code adjacency concept to reach the aim
of maximizing the size and number of common cubes.
It builds an attraction graph with weighted edges. An
edge’s weight is increased if it links to the common
fanout and fanin states. MUSTANG was used to help
MIS logic synthesis system reducing the number of
product terms or literals needed to implement the
next-state and output functions.
 Berry first outlined the translation of Esterel into
circuitry in 1992 [1], refined later to cover
reincarnation. It generates a sub-circuit for each
statement, and registers only for unit-delay statements.
So each leaf state is encoded by one-hot coding. In that
case, encoding and decoding circuits are trivial. But it
uses many latches and results reachable state space
redundancy. Later, Sentovich, Toma and Berry [3,5]
described the technique for reducing the number of
latches. They rely on computing the reachable state set
implicitly using BDDs, then re-synthesizing the circuit
using this knowledge to remove sequential
redundancies. The whole program is taken as one state
machine.

In the compiler we are building, more than one state
machine are assigned in different level. It is necessary
especially for parallel branches. We can share latches
between sequential branches but need to avoid parallel
ones.
 Edwards [2] proposed three key means to advance

Esterel hardware synthesis. First is the PDG. It takes a
totally new structural translation to Esterel. Calculating
control dependence in the graph, it removes the
redundant circuit. That is much more efficient than
removing by analyzing the circuit.

Second is a better state encoding. The technique he
proposes chooses states encoding at a high level,
providing much greater flexibility and larger encoding
space to choose from.

Third is to use the don’t-care information in logic
synthesis. It gives more flexibility to the
implementation and helps to generate high-quality
circuits.

3 HDCompiler – From PDG to circuitry
HDCompiler is a translator to turn PDG into optimal
circuitry for Esterel program. It visited a PDG tree and
recorded all the state and their values in a state table.
The states were encoded with one of the encoding
means. Then it translated the PDG into circuitry based
on the coding. After that, comes the circuit
optimization.

To optimize the circuit, it deleted all the useless
wires firstly– the wire no any other wire took it as a
input. Secondly, it visited the PDG tree to find out
shareable flip-flops and merge them. Thirdly, it found
the slacks between gates by computing and adjusted
the circuit with fewer slacks and optimal.
 The main data structure of the hardware translator
includes:
class PDGNode {
 int numb;
 Vector parent_numb;
 Vector brunch_val;
 int property;
 String val;
 int wire_entry;
}

class PDGTree {
 PDGNode node;
 PDGTree[] children;
}

class State {
//node# where the state decision made
 int node_numb;
//state number
 int numb;
//possible state values and their codes
 StateCode[] state_codes;
//wire entry for each state value given
 int[] wire_entry;
//wire# for each state value emitted
 int[] wire_emit;
}

class StateCode {
// to record the value assigned
 int val;
 // code after encoding
 int[] code;
// wire entry for each bit, i.e. each register
 int[] wire_entry;
}

class Wire {
 int numb;
 Vector input_wires;
 int gate_type;
 int[] arrival_t;
 int required_t;
}

3.1 State Encoding
As we said previously, there are three main kinds of
coding. First is one-hot encoding, second is binary and
maximally sharing encoding (compact encoding). And
the third is a combination of the first two. That is,

Code-length = log2(Number of possible state values)
HDCompiler realized the first two encoding. Due to

time limit, it didn’t realize the third. It will be added to
the encoding space and used as an adjustment later.
With the one-hot encoding and compact encoding, it’s
easy to be realized with combine them together in
different levels.

3.2 Turning State Machine into Circuitry
To translate a PDG into circuitry, there are two main
parts: combinational logic circuit translation, and
sequential logic circuit translation, i.e. state machine
translation. HDCompiler mainly concentrates on the
second part Temporarily.
 We assume the wires for the state-value-emit
statements have been generated in the first part
translation. HDCompiler grouped them and generated
wires for each state value emitting, then saved the wire
entries in the state table. But for the statement directly
under a state decision node, the input wire entry was
left unfilled.
 For each state in the state table, decoding and
encoding circuit was generated separately. To decode a
state, we need to generate every bit’s value of a state
value. A flip-flop was generated for each bit. The input
wire for it was set as:

bit[i] = OR(∑ j Wires for state-value-emit
statements for state_value[j] where bit[i] = 1 in the
value code.
 To encode a state, just follow its bit codes and the
wire entry for every bit (i.e. the flip-flop output) stored
in the state table. Notice that, to get a state machine
running correctly, we also should AND each state

machine’s output with the wire for the statement to
start the state machine. We only considered the case
where the state machine has only one start entry, since
multi-entry for a state machine is illegal in PDG.
 After generating the circuit for the state machine, we
went back to fill the input of some wires. These wire
were generated for the statements whose execution
follows the state decision node’s result.

3.3 Flip-Flops Sharing
When there are more than one state machine in a
circuit, some of them may share flip-flops. How to
decide which of them can share flip-flops? We looked
at every two state decision nodes – the entry of a state
machine, if none of their exact common parents is
parallel-fork node or their own, they can share
flip-flops. Because it means the two state machines
will never run simultaneously.

Here we defined exact common parent for two
nodes. If Node P is an exact common parent of two
nodes X and Y, it must have two properties:
1. P is a common parent of X, Y.
2. Assume P has direct children C1, C2, …, Cn,
Setx = {Ci} = {first node of a route from P to X}
Sety = {Cj} = {first node of a route from P to Y}

There must exist some element different between Setx
and Sety.

The exact common
parents of S2 and S3 are:
N1, N2.
Since N1 is a parallel
fork, S2 and S3 can’t
share flip-flops.

N0: Init

N1: Parallel
Fork

N2:S1

N2:S2 N3: A = 1

N4:S3

Figure 2 gives an example.

Figure 2 Flip-Flops sharing

 Temporarily, we only build the sets of two shareable
state machines. In fact, these two-element sets can be
merged to make bigger set. That means, three or more
state machines can share flip-flops. For example, if
machine A and B can share ffs, while A and C can
share ffs either, we can conclude A, B and C can share
ffs if only B and C can share ffs too. That will be
helpful to choose which pairs to be shared in the
program with many state machines.

3.4 Slack Computing
Slacks are computed for further optimization. In
Esterel, it is assume all inputs are ready at the
beginning of a circle. So we take the flip-flop as the
start and end of a circuit circle module.

Slack for a circuit module is provides an upper
bound of its possible delay increase without violating
the timing constrain. It is import for circuitry
optimization because it represents the potential
capability of obtaining area/power reduction.

A well know procedure to compute slacks for a wire
v is:

arrival_t (v)=MAX u∈FI(v) (arrival_t(u))+delay(v)
required_t (v)=MIN w∈FO(v) (required_t(u)-delay(w))
slack (v) = required_t (v) – arrival_t (v)

 We looked at the routes between every two
flip-flops. We chain a route forward to compute the
arrival time of every wire on it, while backward to
compute the required time.
 Due to time limit, we only got the slack but haven’t
used it to optimize the circuitry.

4 Experiment Result
Here we give an example for the test result. Figure 3
shows the input PDG.
 In the example, there are 7 state machines. We are
going to compare the circuits for different coding,
circuitry before and after optimization, and show the
slack-computing result.

Comparing the circuits for one-hot encoding before
(Figure 4 right) and after optimizing (Figure 4 left), 4
flip-flops are merged without increase the size of
combinational logic part.

Table 1 gives the comparing result between the
circuits for one-hot encoding and group-by-level
encoding (i.e. compact encoding), which are both
optimized. We can see the combination logic part is
slightly increased in compact coding circuit. But it has
much more slacks, also more freedom on circuit
optimization.

Figure 3 PDG for test example

Figure 4 One-hot-encoding circuit after/before
optimization

Figure 5 Compact-encoding circuit after optimization

Flip-flops Gates Wires Slacks
One-hot 10 56 80 16
Compact 6 85 59 22
Table 1 comparing one-hot and compact encoding
circuit

5 Conclusions and Future Work
The HDCompiler was built up a structure for the real
Esterel hardware translator. It still needs further
improvement. Instead of exact PDG, the input of the
HDCompiler is a PDG metamorphose temporarily,
which also include the state-machine-by-level
information.

Some questions need to be answered in the future
work. How to choose state encoding means? How to
optimize the circuit based on the slacks? And the
program is still buggy. Such as, for the state-emit
statements whose exact common parents include
parallel fork node, they should be combined with AND
gate instead of OR gate to get the state machine
running correctly.

7 Bibliography
[1] Gerard Berry. Esterel on hardware. Philosophical
Transactions of the Royal Society of London. Series A,
339:87-103, April 1992. Issue 1652, Mechanized
Reasoning and Hardware Design.
[2] Stephen A. Edwards. High-level synthesis from the
synchronous language Esterel. In Proceedings of the
International Workshop of Logic and Synthesis
(IWLS). New Orleans, Louisiana, June 2002.

[3] Gerard Berry. Efficient latch optimization using
exclusive sets. In Proceedings of the 34th Design
Automation Conference, pages 8-11, Anaheim,
California, June 1997.
[4] Stephen A. Edwards. An Esterel compiler for large
control-dominated systems. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and
Systems 21(2), February 2002
[5] Ellen M. Sentovich, Horia Toma, Gerard Berry.
Latch optimization in circuits generated from
high-level descriptions. ICCAD'96, November 1996.
[6] Gary D. Hachtel, Fabio Somenzi. Logic Synthesis
and Verification Algorithms. Keluwer Academic
Publishers. 1996.
[7] Tiziano Villa, Alberto Sangiovanni-Vincentelli.
NOVA: State Assignment of Finite State Machines for
Optimal Two-Level Logic Implementations. In The
Proceedings of the 26th ACM/IEEE Design
Automation Conference, pages 327-332, June 1989.
[8] S. Devadas, B. Ma, R. Newton, and A.
Sangiovanni-Vincentelli. MUSTANG: State
Assignment of Finite State Machines Targeting
Multi-level Logic Implementations. IEEE Transactions
on -Computer-Aided Design, vol. 7, no. 12, December
1988.
[9] W. Baxter and H. R. Bauer, III. The program
dependence graph and vectorization. In Proceedings of
the Sixteenth Annual ACM SIGACT/SIGPLAN
Symposium on Principles of Programming Languages,
Austin, TX, 1989.
[10] Chunhong Chen, Xiaojian Yang and Majid
Sarrafzadeh. Potential Slack: An Effective Metric of
Combinational Circuit Performance. ICCAD, pages
198-201. IEEE, November 2000.

