Parallel Port Device Drivers:
A Study in Driver Creation

Noel Vega
Languages for Embedded Systems Design, Fall, 2002

October 30, 2002

Abstract

If monitors, mice, keyboards, and other computer
peripherals could talk to any given computer di-
rectly, there would be no compatibility issues be-
tween hardware and operating systems. Unfortu-
nately, such a nirvana does not yet exist. As such,
computer users are left to deal with device drivers
- hard to decipher pieces of code designed to al-
low peripherals to “communicate” with the operat-
ing system and transfer direction to and from the
computer. The complexity of device drivers, how-
ever, makes it very difficult to begin a process of
automating their creation.

This paper looks into parallel port drivers in
Free-BSD and Windows NT, deciphering the code
to arrive at a generalized driver structure for the
two operating systems and, ultimately, a pair of
“pseudo” device drivers for the operating systems.
By clearly understanding the structure of a device
driver, it becomes a lot easier to attack the prob-
lem of automating its creation, which in turn will
make it easier for users to install hardware on any
machine.

1 Introduction

Computer science has been brought to the point
where computers are everywhere in society. Cer-
tainly, the hardware used to perform the various
tasks required of computers needs a means of com-
munication with the computer. This becomes a
great strain on hardware manufacturers, who are
charged with the task of writing drivers for their
hardware for each operating system (specifically,
for each wersion of each operating system) they
wish their hardware to be compatible with. Given
the difficulty of writing device drivers, this can of-
ten lead to complications with drivers; since a new

driver needs to be written for each device and for
each OS version, there are bound to be compli-
cations with drivers. In fact, Wang, Malik, and
Bergamaschi cite a Microsoft report regarding Win-
dows XP which “shows that 61% of XP crashes are
caused by driver problems.” [3, 1] Clearly, a bet-
ter understanding of device driver creation is called
for.

While there are plenty of device drivers avail-
able, there are surprisingly few papers regarding the
structure of a device driver. This paper aims to fill
this gap, describing driver structures in enough de-
tail to lend to the potential automation of their cre-
ation in the future. Such automation would clearly
reduce problems with driver creation, perhaps even
in an exponential fashion. At a bare minimum, it
is useful - and important - to make a clear under-
standing of device drivers and their operation avail-
able to potential driver writers, who may in turn aid
hardware manufacturers in creating drivers while
the automation process is created.

2 Related Work

A field such as device driver creation, which has
shown its purpose for a long time, has a rich his-
tory of related work. In hopes of furthering the
understanding of the structure of device drivers,
Viscarola and Mason offer a comprehensive man-
ual on writing device drivers for Windows NT for
“software engineers who have never written a device
driver...those who have written drivers on other
operating systems, and even. . . engineers who have
already written a few drivers on Windows NT.” [4,
1] Clearly, this is a problem even for the most sea-
soned driver programmer.

While a good deal of time is spent on writing
device drivers, there is a growing interest in re-
ducing the amount of time and energy spent writ-



Parallel Port Drivers

ing device drivers. This is best accomplished ei-
ther 1) through writing so-called “universal” de-
vice drivers, or 2) studying the possibility of driver
automation. An example of a “universal” device
driver is Thesycon’s Universal Parallel Port Driver
for Windows|2], which is designed to be precisely
that: a driver for parallel ports designed to work
for Windows N'T 4.0, Windows 2000, and Windows
XP. More interestingly, however, is the strive to
automate driver creation. The process described
by Wang, Malik, and Bergamaschi[3] aims to syn-
thesize a platform-independent device driver from
specified device behavior.

References

[1] Robert DeLine and Manuel Féhndrich. Enforc-
ing high-level protocols in low-level software. In
PLDI, Snowbird, Utah, 2001. ACM.

[2] G. Hildebrandt. Universal Parallel Port Driver
for Windows Reference Manual. Thesycon Sys-
tem Software & Consulting, Germany, March
2002.

[3] Sharad Malik Shaojie Wang and Reinaldo A.
Bergamaschi. Modeling and integration of pe-
ripheral devices in embedded systems. Techni-
cal report, Electrical Engineering Department,
Princeton University and IBM T.J. Watson Re-
search Center, 2002. Submitted to the Date
2003 conference, but not accepted as of yet.

[4] Peter G. Viscarola and W. Anthony Mason.
Windows NT Device Driver Development. New
Riders, 2001.

[5] Angel Yu. Custom windows nt 4.0 parallel port
device driver: A component of a network perfor-
mance measurement tool. Master’s thesis, Cal-
ifornia Polytechnic State University, 1998.

October 30, 2002

ii



