
An Esterel Virtual Machine (EVM)

Aruchunan Vaseekaran, Tamara Blain
Dept. of Computer Science

Columbia University, New York, NY
av62@columbia.edu ansaar@speakeasy.net

October 29, 2002

Abstract

Esterel is a synchronous, imperative language designed to
specify deterministic control systems. However compilers and
run time environments for Esterel are not available on low cost
microprocessors and microcontrollers. We address this short-
coming by designing and implementing an Esterel Virtual Ma-
chine and compiler that will operate on a variety of low foot-
print target platforms. We will demonstrate the feasibility of
this approach by implementing ab EVM for the Lego Mind-
storms Platform - a Programmable Robot Construction Kit
based on the Hitachi H8 microcontroller. We will compare the
efficiency of this approach to the traditional approach of gen-
erating native code. We will show that it requires less memory
at the cost of execution speed.

1 Introduction

The Esterel programming language [1] is an imperative con-
trol flow language which includes semantics for concurrency
and preemption based on a synchronous global clock. Esterel
programs are deterministic and its semantics can be formally
defined. As such Esterel is highly suitable for building deter-
ministic control systems. Unfortunately, Esterel is not widely
available on many low cost embedded controllers.

A method of making programs highly portable is to com-
pile then for an abstract virtual machine and then build virtual
machine interpreters for all platforms on which the programs
are to run. Programs written for the Esterel programming lan-
guage can also be made highly portable in this manner at the
cost of execution speed.

In this project we will design an Esterel Virtual Machine
(EVM) and modify an existing compiler to generate code for
it. The EVM will be a small C program. It will have instruc-
tions for signal handling, multiple threads of execution and
context switching between threads.

We will then use the EVM to run an Esterel program on a
microcontroller platform. The platform we will target is the
LEGO Mindstorms Robot construction kit [5]. This brain of
this kit is called the RX brick and is based on a Hitachi H8
microcontroller with 36 of externel RAM and 16K of on-chip
ROM 1. This will demonstrate a real Esterel application based
on an EVM approach.

1http://graphics.stanford.edu/ kekoa/rcx/#Hardware

Finally we will contrast the approach of generating EVM
code to that of generating native machine code. We expect to
find that the EVM approach is less efficient by 2 orders of
magnitude in terms of execution speed, but that it is much more
efficient in terms of total memory footprint.

The remainder of this paper consists of the following sec-
tions: Related Work, Design of the EVM, Compiler for the
EVM, An EVM Application, Comparing the EVM Approach,
and Conclusions and Future Work.

2 Related Work

The approach of compiling languages for virtual machines is
not new. It was used at least as far back as the 1970’s in Pascal
Compilers [6]. The USCD Pascal Compiler generated code for
an abstract machine called the P-Code Machine. The P-Code
machine was stack based and supported a global heap. It un-
derstood the primitive types supported by Pascal such as inte-
gers and sets. It had no support for concurrency or locking.

A more recent example of the use of virtual machines is the
Java Virtual Machine [8] (JVM). THe JVM was designed for
use in networked environments to ensure the secure platform
independant delivery of programs accross a variety of com-
puters and devices. All Java programs are compiled into Java
Byte code instructions for the Java Virtual Machine. At run-
time, the Byte code instructions are executed by the virtual
machine. This process is sometimes optimized using a Just-In-
Time (JIT) compiler, which will compile the Byte codes into
native instructions at run-time.

The JVM is stack based like the P-Code machine but also
supports higher level abstractions such as multiple threads of
execution, object creation, object de-allocation and monitors
for protecting critical sections of code.

The Common Intermediate Layer (CIL) [7] in Microsoft’s
.NET environment is another example of a virtual machine.
All languages in the .NET environment are compiled into CIL
code. Like Java byte codes, CIL supports high level object ab-
stractions. The fact that all languages are compiled into CIL,
means that modules written in different languages can interop-
erate in the same program.

A very different example of a virtual machine is VMWARE
2, which is used to simulate real hardware on real-platform.
This software enables one to run multiple virtual machines

2http://www.vmware.com

1



on a single real machine instance. So a x86 machine running
VMWARE can have running within it a virtual x86 machine
running Windows NT and another virtual x86 machine run-
ning SUN Solaris. This type of virtual machine reduces hard-
ware costs and server room real-estate at the expense of per-
formance.

Many different compilation strategies exist for Esterel. The
original approach by Berry [2] was to compile programs into
a single finite state machine. This method produces very fast
code but suffers from state-space explosion as the program size
increases. An improved approach also due to Berry mapped
the Esterel program into a network of logic gates and then gen-
erated code that simulated the network. This hardware simu-
lation approach scaled very well with program size but gen-
erated much slower code than the single finite state machine
approach.

The EC compiler by Edwards [3, 4], transforms the program
into a concurrent control-flow graph. This graph is then ana-
lyzed and transformed into a set of individual program threads
which are statically scheduled. We prefer to visualize this as a
set of finite state machines which are statically scheduled. The
point at which execution of a finite state machine stops and
at a which another finite state machine resumes execution can
be determined at compile time for most Esterel programs. The
EC approach generates smaller and nearly as efficient code as
the hardware approach but cannot compile all classes of legal
Esterel programs.

3 Project Plan

• Design EVM instruction codes

• Modify ESUIF Compiler to generate EVM codes

– Create mappings for intermediate constructs such
as: if, break, goto, try, resume, parallel, fork, join

– Identify Static schedule

– Generate per-thread (fsm) code with explicit thread
context switches

• Create EVM Assembler

– Use awk

• Implement EVM in C on Linux

• Verify EVM on Linux

• Port EVM to Lego Mindstorms RCX

• Verify and demonstrate simple Esterel program on Lego
Mindstorms

References

[1] Gerard Berry. Esterel v5 language primer, 2000.

[2] Gerard Berry and G. Gonthier. The esterel synchronous
programming language: Design, semantics and implemen-
tation. Scientific Computer Programming, 19, November
1992.

[3] Stephen A. Edwards. An esterel compiler for large
control-dominated systems. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Sys-
tems, 21(2), 2002.

[4] Stephen A. Edwards. ESUIF: An Open Esterel Compiler.
Electronic Notes in Theoretical Computer Science, 65(5),
2002.

[5] Jonathan B. Knudsen. The Unofficial Guide to LEGO
MINDSTORMS Robots. O’Reilly, 1999.

[6] Steven Pemberton and Martin Daniels. Pascal Implemen-
tation: The P4 Compiler and Interpreter. Ellis Horwood,
1982.

[7] Thuan Thai and Hoang Q. Lam. .NET Framework.
O’Reilly, 2001.

[8] Frank Yellin Tim Lindholm. The Java Virtual Machine
Specification. Addison-Wesley, 1996.

2


