
Abstract

Debugging applications running on an embedded system is very difficult. Often the chips inconsideration
has very littl e or no support for interactive debugging. This is due to the fact the most embedded chips are
not a general-purpose processor and lack most of convenience we find on conventional PC.

This paper will present each and every one of the difficulties associated with a non-general purpose limited
power chip then show how to work around it. The topics analyzed include the need and lack of debugger,
communication facilities, operating system support, and intuitive perhaps visual interfaces. The paper
revolves around a project that simulate these problems using a virtual x86 processor with bare
environmental support as a target machine. Using examples, this paper will demonstrate each problem
along with its workaround.

The goal of this paper is to present approaches taken to deal with specific yet promiscuous problems
relating to a certain chip’s deficiency. Reader can benefit from this paper as it paves way as fundamental
approach and background information when developing software for embedded chips.

Introduction

This paper focuses on how to attach intrusively
to a running process on a semi-crippled
processing environment, then pausing, watching
and manipulating its execution. On the other
hand, debugging embedded applications
sometimes denote debugging real time problems
where a program does not behave well or
expected under the real time constraint. That is
more so referred to as debugging temporal
behaviors in real time systems. This paper does
not focus on any temporal behaviors. We’ll be
focusing on how to build an environment
suitable for further use, such as real time
debugging.

Usually a semi-crippled processor cannot
provide the environments needed to create a flow
blown debugging environment. The workaround
for this problem is to do remote debugging,
where the debugging intelligences runs on a
remote and capable machine while the bare
minimal debugging agent runs on the target
machine. The two communicates to achieve its
debugging purpose.

Communication issues arise with remote
debugging. On some target machines, an
operating system can provide some support for
networking and through it the debugging agent
can send messages back and forth with the more
powerful machine. Other smaller chips may not
have the capabilities to run an operating system
nor the computing power to do network related
tasks. In these cases, the debugger agent will

relay on the other communication medium such
as a serial port to communicate.

Debugging work that requires a debugging agent
to utilize any serial port is tedious. It is best to
create a simulator for the chip and debug using
the simulator. E.g. machine that runs java
programs can relay on other java virtual machine
implementations to debug their software. There
are numerous publicly available simulators for
various chips.

The second problem with intrusive debugging is
the need for an operating system. On a chip with
operating system support (e.g. some chip may
run Linux), there’s minimal support for
processes along with other things. The agent can
simply run as a separate process on the target
chip and manipulate the debugged process with
the help of the operating system. On the other
hand, an environment without operating support
requires the debugging agent to be “in-process”
with the code of which we want to debug. This
is again very tedious.

Then the focus is on how to build an effective
remote debugging agent.

Related work

Debugging code on a remote chip is something
that all embedded engineers do. There are
papers out there that will ease any debugging
task by providing tools and information, which
can readily apply to the debugging process.

Adequate communication is the bases for remote
debugging; as it is the case for most embedded
work. Xu [] presents a logic base language for
networked agents. The paper discusses the java
model as developing communication facilities
for mobile agents. The idea can allow us to
create a systematic way of communicating by
uses of serial ports for debugging purposes. This
of course assumes there is not already
communication support.

Further, Hendrey [] discusses the uses of
Ethernet as embedded network. His paper
describes the delays and tolerance one can expect
from a multi access device when used in
embedded systems. Now chips that do not have
network support can consider interfacing with
simple Ethernet cards for testing purposes.
Again, this proves useful for chips that do not
already have some network connectivity.

On machine that already has communication
facilities, more sophisticated tasks that involve
programs running in some distributed real time
constraint may need additional support. This is
to say, the engineer need to take note of the
temporal aspect of the code in addition to
providing communication facilities. There needs
to be a way to monitor and control the traffics
that are part of the debugging process. Sung []
describes a “backplane” protocol that will
monitor and control traffi c so that the engineer
can reproduce intermittent problems. The use of
a backplane as a centralized master traffi c

control provides reproducible sequence of
execution that a debugger may need.

The other necessity for remote debugging
remotely is the operating system (or just simply
processes) support. Although remote debugging
can still be achieved on the target chip without
the notion of process, it’s just much simpler to
have system support. Also, the industry prefers
to use a simulator for simple chips that does not
run heavy software like the operating system.
The fact that these chips are simple enough
suggests that a simulator can be easil y written.

Montague [] presented an operating system for
the embedded java network computers. The idea
is to create a semi-operational operating system
(or some threading support) so that people can
easil y write a debugging agent to run on the
target.

Röblit z [] presented the idea of using pthread to
simulate embedded kernels. The idea can further
develop into creating pthread package for
embedded chip. With the minimal threading
support engineers can separate the code that is
being debugged and the code that does the
debugging work.

Now this paper will present a debugging
environment created for one particular setup
involving a minimal target x86 machine. It will
mainly cover the communication and process
support problem arising from this setup.

Semi-compiled References

Below is a list reference(not fully compiled) along with some that I might want to consult later on.

Dianxiang Xu, Guoliang Zheng, Xiaocong Fan
http://citeseer.nj.nec.com/xu98logic.html
A logic based language for networked agents (1998)
a Java based tool for developing mobile agent systems

Danny Patel
http://citeseer.nj.nec.com/469972.html
Object-Oriented Design of an Embedded Communication Protocol in UML
Describes communication protocols in UML.

Wonyong Sung and Soonhoi Ha
http://citeseer.nj.nec.com/sung98efficient.html
Efficient and Flexible Cosimulation Environment for DSP Applications (1998)
this paper defines and implements the backplane protocol for communication
and synchronization between client simulators

Uses a "master controller" to watch over all communication
going over the write and perhaps synchronize them to reproduce
problem.

Geoffrey R. Hendrey
http://citeseer.nj.nec.com/hendrey99standard.html
Standard Ethernet as an Embedded Communication Network (1999)
This paper shows what kind of delay performance to expect when Ethernet
is used for embedded networking, shows how to use...

Bruce R. Montague
http://citeseer.nj.nec.com/montague96jn.html
JN: An Operating System for an Embedded Java Network Computer (1996)

Thomas Röblitz, Oliver Bühn, Frank Mueller
http://citeseer.nj.nec.com/538188.html
LegoSim: Simulation of Embedded Kernels over Pthreads
using Pthreads as a means to resemble embedded task execution and
suggests an I/O-based representation of device information.

Lars Albertsson, Peter S Magnusson Computer and Network Architectures
http://citeseer.nj.nec.com/522464.html
Simulation-Based Temporal Debugging Of Linux (2000)
We present a temporal debugger, capable of examining tempora! behaviour
of operating systems

Below are ones I might consult:

http://citeseer.nj.nec.com/kiniry98idebug.html
IDebug: An Advanced Debugging Framework for Java (1998)
Infospheres Debug package (called IDebug [8]) to insert assertions
into the original program code to check the code against the specification

http://citeseer.nj.nec.com/kellomaki94psd.html
Psd a Portable Scheme Debugger (1994)
the source program is transformed into one that behaves as if
run under a conventional debugger.

http://citeseer.nj.nec.com/159506.html
Debugging in Standard ML of New Jersey
This paper describes how to setup and operate emacs as a
interface to the ML debugger.

http://citeseer.nj.nec.com/20306.html
Evaluating Testing Methods by Delivered Reliabilit y (1998)
There are two main goals in testing software: (1) To achieve adequate
qualit y (debug testing); the objective is to probe the software for
defects so that these can be removed. (2) To assess existing qualit y

(operational testing); the objective is to gain confidence that the
software is reliable.

http://citeseer.nj.nec.com/liu96communication.html
Communication Issues in Heterogeneous Embedded Systems (1996)

http://citeseer.nj.nec.com/jaramillo99debugging.html
Debugging of Optimized Code through Comparison Checking (1999)
approach to the debugging of optimized code through comparison checking

http://citeseer.nj.nec.com/528882.html
A Heterogeneous and Distributed Co-Simulation Environment (2002)
This paper presents the implementation and evaluation of a hardware and
software co-simulation tool

http://citeseer.nj.nec.com/543545.html
Debugging Parallel Systems:
give an introduction to work presented in the area of debugging large
software systems with modern hardware architectures.

http://citeseer.nj.nec.com/thane00monitoring.html
Monitoring, Testing and Debugging of Distributed Real-Time Systems (2000)
In this thesis we try to remedy these problems by
presenting an integrated approach
to monitoring, testing, and debugging of distributed real-time
systems.

http://citeseer.nj.nec.com/503035.html
Debugging Using Time Machines Replay Your Embedded Systems History
the program is repeatedly reexecuted to track down errors when a failure
has been observed.

http://citeseer.nj.nec.com/528776.html
Simulation-Based Debugging of Soft Real-Time Applications (2001)
The debugger is based on a simulator modelling an entire workstation in
sufficient detail to run unmodified operating systems and applications

