
A minimal GDB stub for embedded remote debugging.
Minheng Tan

Columbia University
12/12/2002

Abstract
Debugging software running on an embedded chip is more
difficult than doing the same on a personal computer with
well-established user-friendly environment. The problem
with embedded chips is that there is minimal support to facili-
tate any debugging process. Often found on PCs and not on
the smaller scale embedded chips are operating system sup-
port, threading support, IO support, user interface support,
etc. Without these, engineers simply cannot run a debugger
on the embedded chip to test buggy software. To mitigate
these deficiencies, engineers often separate the debugging
setup by running small stub1 software on the small embedded
chip and leave the rest non-crucial and machine-independent
debugger running on a more powerful remote machine.

This paper describes the implementation of a minimal GDB
server that runs on an x86 processor. This demonstrates how
to split a debugging session into two halves: a server that runs
on the target being debugged and the debugger that runs on a
host machine. The example server implements the minimum
required number of commands. The goal is to run as little
code as possible on the chip. Anything that the remote ma-
chine can take care of gets isolated and runs on a remote ma-
chine. Symbol information, for example, is non-essential to
debugging an application so the remote machine instead of
the stub can manage it. User interface is also a non-essential
concern. The remote machine has the luxury of developing a
grand user interface, but it makes less sense to have to run this
code on the chip.

This paper provides insight as to how to work around a
situation where there’s limited computing power by leverag-
ing computing power elsewhere. It focuses on what is needed
while what can be exfoliated from the stub. This paper serves
as a guideline for how to setup a debugging session with fu-
ture and current embedded chip software development.

Introduction
There are many ways to test software running on an embed-
ded chip. One way is to test the software by running it on a
simulator for the embedded chip. A well-written simulator
can also behaves like a debugger for that it can always stop a
process by pausing the simulation. It can easily provide in-
formation on the variables, registers, or anything program-
mers wish to find out by looking up program memory that it
already simulates. But a simulator can be costly to construct
if one is not readily available.

Another feasible option considers remote debugging. The
buggy software runs on the actual board instead of a simula-
tor. A small stub program runs along side the tested program
and instruments the tested program. This stub is responsible
for stopping, continuing, reading, and writing regis-
try/memory, etc. It also communicates with the full debugger

1 Stub is referred to as the target, nub, etc in other literatures.

that oversees and manages the entire debugging operation.
The full debugger runs on a relatively powerful remote ma-
chine. It communicates and gives command to the stub,
which then carries out and returns with the results. A debug-
ging session consists of a sequence of request and reply be-
tween the debugger and the stub.

The most prominent command issued by the debugger is
perhaps the breakpoint command, followed by run, by read
memory addresses, and so forth. This correlates to a user at a
terminal issuing a breakpoint on a line of source code, runs
the program, wait until the program stops, and reads some
memory addresses that corresponds some variables in the
program while trying to understand the dynamic of what’s
going on under the hood. Thus with remote debugging
achieves the net effect of debugging software running on the
board, but without running the full debugger on the target
board.

The question arises on what exactly does the stub do and
how does the full debugger interact with the stub. Most im-
portantly, what the stub cannot do without.

This paper provides an analysis. Briefly, the stub needs
only be able to respond to a debugger’s command to read
write register memory and resume programs. The stub code
behaves unintelligently. The full debugger must have knowl-
edge of the target chip and be able to drive the stub intelli-
gently. Analogously, an operating system drives a kernel
driver to control a device. Here the debugger drives the stub
by issuing debugging related commands. For example, the
debugger wishes to set a break point at the certain line in the
source code. It consults the symbol table and finds out the
corresponding program address. It then issues a command to
read the instruction stored at the address. Then it writes an
interrupt instruction to that address location. The breakpoint
is set. The debugger thus achieves the user’s objective by
working with the few commands handled by the stub.

Related work
Programmers, prior to the popularity of debuggers, insert
printf statements into codes to gain insights on the dynamics
of buggy software. Since the first introduction of debuggers,
there are numerous debuggers and techniques introduced.
The more common debuggers include cdb, msdev, dbx,
windbg, kdb, gdb, etc….

Most debuggers work in similar fashion. They pause the
execution of a running process based on some criterions and
allow the user to examine the program internals while the
program is paused. The common way to achieve this is to
patch the program with special instructions so that program
relinquishes control of the CPU when it executes the instruc-
tions. For example on a x86 machine the special instruction is
byte “CC”, which will cause the program to fault and relin-
quish control to a signal handler.

While runtime code patching is not new, Buck and Holl-
ingswoth [1] describe an API for doing runtime code patch-

ing. They create common APIs at the machine independent
level. The actual patching work is done separately using dif-
ferent modules. This approach enables portability, and most
importantly resembles the remote debugging paradigm.

Then again, remote debugging is not something new. Han-
son and Raghavachari [2] introduce a machine-independent
debugger called cdb. The paper aims to separate the debugger
and the stub, which is called a ‘nub’ in their paper. The nub is
compiled with the program to be debugged. It communicates
with the debugger to facilitate the debugging environment.
This is the major design constituting remote debugging.

GDB is a more widely used debugger. It also provides re-
mote debugging capabilities. The debugged stub is called a
target. GDB is also extensible for that it can communicate
with a variety of remote stubs to perform debugging tasks. A
sample stub, called GDBServer, comes with the gdb. The
debugger and the stub communicate using its own protocol
called the Remote Serial Protocol.

The remote serial protocol is developed for gdb so that
there is a standard protocol for stub writers to communicate
with gdb. Gatliff [3] gives a summary the remote serial pro-
tocol. He also includes examples of the message exchanges
used in the protocol. The protocol is basically a request and
reply, which is very similar to the http protocol. The debug-
ger encodes the request in an ASCII string, sent to the server
(stub) and then waits for an ASCII string reply. The protocol
is significantly simple so it can run on top of virtual all com-
municate medium.

GDB is so widely used that it is selected as the sample in
this paper. Others find this debugger useful as well. Kawa-
chiya and Moriyama [5] describe their adaptation of gdb to
their own hardware, Engineering Support Processor. They
ported the GDBServer stub to the architecture and describe
the processing of doing so. Their paper also examines some
aspects for rewriting the stub.

Debuggers that support remote debugging
Remote debugging is not new. Most sophisticated debuggers
offer some support for debugging software remotely.

I choose gdb because it is extensible, open source and sup-
ports numerous platforms. The current gdb, version 5.2.1,
supports Intel 386, Motorola 680x0, Hitachi SH, SPARC, and
Fujitsu SPARCLITE. This means the debugger has knowl-
edge of these platforms and knows how to debug software
running on these platforms. The real gem is that the debugger
does not necessarily need to run on these platforms, despite
also having existing ports to these platforms. In short, gdb
knows how to set/restore interrupt instructions, unwind
stacks, and fiddle with the registers for all of these platforms.
But by itself, gdb does not necessarily do these tasks. It re-
quests a software stub designed for a particular platform to do
the actual low level fiddling, such as reading writing to mem-
ory and registers. This approach makes gdb extremely exten-
sible for all it takes for gdb to support a new version of the
same platform is to rewrite the appropriate stub if need be.

Because of the architecture, debugging remote programs
comes naturally to gdb. The only additional requirement to
enable remote debugging is that the communication between
the debugging stub and the debugger through some medium.

Figure 1. Debugger requesting the stub to read memory.

It’s worth mentioning the communication between the stub

and the debugger. GDB can use numerous communication
protocols. e.g. TCP/IP, udp, or serial cable. The example
GDBServer runs on top of TCP/IP, but any protocol would
suffice as long as the stub and the debugger can convey the
right information. The preferred way is often limited to the
capability of the chip and is not a concern in this paper. Dif-
ferent communication protocol/medium does not change what
are the essential things on the stub other than the communica-
tion portion of the code.

The gdb distribution comes with a sample stub call
GDBServer. The stub runs as a standalone process on a re-
mote machine, which also can be the same machine that gdb
runs on. As an example, this stub does not impress because it
requires the same operating system support as the debugger
itself. This is to say that if GDBServer can run on a machine,
then gdb can also run on the machine. Nonetheless, it serves
as an example of what the debugger requests stubs do and
how to implement these requests. A stub that works in similar
fashion but without the operating system support can be easily
derived from this example.

Example GDBServer
I created a sample gdbserver by following the same guidelines
outlined for the original gdbserver. The stub runs on the x86
architecture. It runs as a separate user process on the Red Hat
Linux operating system and can easily be ported to other x86
platforms. It implements a subset of the Remote Serial Proto-
col, while remaining capable to debug various programs run-
ning on the platform. It only answers on the TCP/IP protocol,
whereas the real GDBServer can work on other protocols
including udp and serial ports. Upon receiving a request, the
stub translates the request into ptrace calls to the operating
system. Then the stub returns the results from the ptrace calls
to the debugger in a messages reply. Here’s a list of com-
mands the sample stub implements.

Command In Stub Description
g yes Reads all registers
G yes Writes all registers
m yes Reads memory at address
M yes Writes memory at address
? yes Get last signal: S
s yes Step the program
c yes Continues program execu-

tion
Table 1. List of commands implemented by example stub.

Because the stub runs as user process in the operating sys-
tem, it does not have all of the privilege on a machine. So the
stub depends on the operating system to do its low level fid-
dling. For example, to read from memory, the stub requests
the operating system through a ptrace call with the
PTRACE_PEEKTEXT argument. The operating system is
responsible to read memory pages from the designated proc-
ess memory address space, along with all the necessary page
table lookup and translations. For stubs that run without the
operating system, it needs to do the above task itself. To a
read a register, the stub also consults the operating system
through a ptrace call. The operating system in turn looks up
the block that contains the saved registers of the preempted
process and returns the appropriate data. Again, a stub that
runs without the operating system needs to figure out the loca-
tion of the saved registers and fetch the saved data. So oper-
ating system support is absolutely required for this example
stub.

Here’s how to stub implements the commands. The stub
supports the “g” and “G” command, which are read and write
register respectively. The results of the “g” command are a
string of hex ASCII representing all of the registers in a order-
ing expected by gdb. Here’s an excerpt of the g command.

 buf = malloc (regset->size);
 res = ptrace (PTRACE_GETREGS,
 childpid,
 0,
 (int) buf);
Figure 2. Excerpts of register read implementation.

The buf variable, after the ptrace call, points to a buffer stor-
ing the registers. The “G” command is the complement of the
“g” command and is followed by string of hex ASCII repre-
senting all of the registers. Here’s the call to write the regis-
ters.

 regset->fill_function (buf);
 res = ptrace (PTRACE_SETREGS,
 childpid,
 0,
 (int) buf);
Figure 3. Excerpts of register write implementation.

The above ptrace calls writes the data pointed by the buf vari-
able to the saved registers block.

As for memory related commands, the stub supports the
“m” and “M” command to read and write memory, respec-
tively. The starting address and number of bytes follows
directly after the “m” character in the packet. The response is
a sequence of hex ASCII representing the memory content of
the requested memory address location. Here’s the helper
function that reads the data in ‘memaddr’ address of the de-
bugged process to ‘myaddr’ buffer.

void read_memory (long long memaddr,
 char *myaddr,
 int len) {
 int i;
 PTRACE_XFER_TYPE *buffer;
 long long startAddr = memaddr & -(long long)
 sizeof(PTRACE_XFER_TYPE);

 long long endAddr = (memaddr + (long long)len);

 endAddr = endAddr & -(long long)
 sizeof(PTRACE_XFER_TYPE);

 buffer = (PTRACE_XFER_TYPE*)
 alloca(((endAddr - startAddr)/4 + 1) *
 sizeof(PTRACE_XFER_TYPE));

 i = 0;
 while (startAddr <= endAddr) {
 buffer[i] = ptrace(PTRACE_PEEKTEXT,
 childpid,
 (PTRACE_ARG3_TYPE) startAddr,
 0);
 startAddr += sizeof(PTRACE_XFER_TYPE);
 i++;
 }

 memcpy(myaddr,
 buffer + (memaddr&
 (sizeof(PTRACE_XFER_TYPE)-1)),
 len);
}
Figure 4. Excerpts of the memory read implementation.

The complementary command “M” is accompanied by the
starting memory address, size of the data, and the data in hex
ASCII form. Here’s the other helper function that writes the
data in ‘myaddr’ to ‘memaddr’ address of the debugged pro-
gram.

int write_inferior_memory (long long memaddr,
 char *myaddr,
 int len) {
 int i;
 int count;
 PTRACE_XFER_TYPE *buffer;
 long long startAddr = memaddr & -(long long)
 sizeof(PTRACE_XFER_TYPE);
 long long endAddr = (memaddr + (long long)len);

 endAddr = endAddr & -(long long)
 sizeof(PTRACE_XFER_TYPE);
 count = (endAddr - startAddr)/4 + 1;

 buffer = (PTRACE_XFER_TYPE*)
 alloca(count * sizeof(PTRACE_XFER_TYPE));

 buffer[0] = ptrace(PTRACE_PEEKTEXT,
 childpid,
 (PTRACE_ARG3_TYPE) startAddr,
 0);
 if (count > 1) {
 buffer[count-1] = ptrace(PTRACE_PEEKTEXT,
 childpid,
 (PTRACE_ARG3_TYPE)endAddr,
 0);
 }

 memcpy ((char *)buffer + (memaddr &
 (sizeof(PTRACE_XFER_TYPE)-1)),

 myaddr,
 len);

 i = 0;
 while (startAddr <= endAddr) {
 errno = 0;
 ptrace (PTRACE_POKETEXT,
 childpid,
 (PTRACE_ARG3_TYPE) startAddr,
 buffer[i]);
 if (errno) {
 return errno;
 }
 i++;
 startAddr += sizeof(PTRACE_XFER_TYPE);
 }
 return 0;
}
Figure 5. Excerpts of memory write implementation.

In addition, the stub responses to three control-related com-
mands: get last signal, step, and continue command. The stub
responses to the get last signal command by sending the
reason that stops the debugged process. This information is
given to the signal handler when the debugged program is
interrupted, and is transferred from the operating system back
to the stub. The mechanism to do so is through a wait on
ptrace call. A stub without operating system support would
have to save the signal information somewhere in its memory
and transfer to gdb when asked to. This is true for any signal
such as bus error, access violation, out of memory, etc. This
information is transferred back to gdb, which then entails a
sequence of register and memory read commands. Once gdb
gathers enough information from the register and memory, it
can compute and display to the user the current point of exe-
cution of the debugged program along with the last signal.
Here’s the code segment that captures the last signal in vari-
able ‘w’.

unsigned char waitForProcess (int childpid, char *status) {
 int pid;
 int w;

 pid = waitpid(childpid, &w, 0);
 *status = ‘S’;
 return (unsigned char) WSTOPSIG(w);
}
Figure 6. Excerpts of get last signal implementation.

The step and continue command tells the stub to execute
one instruction and continue execution until signaled, respec-
tively. The stub calls ptrace with PTRACE_SINGLESTEP or
PTRACE_CONT for stepping and continuing. A stub with-
out the assistance of the operating system needs to manually
restore the debugged process’s context and switch2 to it. Fi-
nally, here’s the code to continue and step the debugged proc-
ess, respectively.

 ptrace (PTRACE_CONT, childpid, 1, 0);

2 Stepping a program is a difficult task as the debugger needs to inter-
pret a few instructions of the debugged program.

 …
 ptrace (PTRACE_SINGLESTEP, childpid, 1, 0);
Figure 7. Excerpts of the step and continue implementation.

The separated and the non-separable
Here I discuss the functionalities that are absolutely necessary
to run on the stub and those that the full debugger performs.

Regardless of how much or little intelligence a stub has, it
must be able to handle an exception or signal of the debugged
program, for that is the time the debugged program unwill-
ingly relinquish control of the CPU. The processor calls the
signal handler either deliberately so on a user breakpoint or
when the program encounters a fault. The handler needs to
convey this fault information back to the debugger.

The sample stub does this using a ptrace wait command,
which waits until the debugged program reaches the signal
handler. By itself, it does not setup the signal handler for the
debugged program as the operating system facilities this pro-
cedure. Nonetheless, any stub needs some method of inter-
cepting and handling a signal from the debugged program.

Resuming the stopped program is also a responsibility of
the stub. The stub must be able to restore the program context
and switch to the program when requested by gdb. The ex-
ample stub does this through the operating system, which
already saves the context of the program. Resuming a
stopped program in a multiprocessing operating system is as
simple as fiddling around with the scheduler that already sup-
ports this kind of operations.

Fetching and writing the registers and memory are also an-
other responsibility of the stub. A stub that runs with no op-
erating system support that fetches and writes the register
needs to identify the saved register block of the debugged
program at the time when the program faults. The saved reg-
isters can reside either on the stack or a predefined location in
memory depending on the platform. When requested by gdb
to fetch a register, the stub needs to read the corresponding
memory address for the appropriate register. Register writes
is analogous to reads. The new register content overwrites the
appropriate address in memory before the context of the
stopped program is restored.

The memory read and writing part is simpler as the associ-
ated address is passed along with the command. The proce-
dure is more difficult without operating system for that the
stub may need to consult the page table, if one is required, in
order translate the user address into physical address. The
sample stub does this through the operating system, which
already supports page table lookups and page fault handling.
In any case, a stub must implement both register and memory
operations.

Finally, a stub must be able to resume a stopped program.
It needs to bring back the program context saved in memory
and jump to last program counter location of the stopped loca-
tion.

With only the above-mentioned functionality implemented
in a stub, it is an unintelligent piece of code that is driven by
the debugger.

In theory, a user can debug a program with a minimal
working stub by manually interacting with the stub without
the presence of a debugger. However, it is tedious to do so as
the user needs to manually send commands to the stub and
listen for results from the stub. The analogy here is that the

user writes a large program in assembly instead of c code,
which can be readily compiled.

For instance, a debugger provides a user-friendlier interface
to help facilitate the speed at which the user can test buggy
software. The user improves on efficiency when much of
repetitive routines are automated into simple click and drag-
ging. The gdb debugger is the kind of debugger that can
builds on top of the minimal stub to provide the full debug-
ging experience.

The debugger, not the stub, is responsible for correlating
the correspondence between source code and layout of binary
code in memory. In order to do this correspondence, symbol
information, which translates between source lines and func-
tions and offsets, are required. The symbol tables basically
contain a source line and offset pair, along with other things
such as the layout of the variables, etc. For each line of
source, the symbol table has an entry that contains the number
of bytes beyond the last symbol, which usually is the function
entry point. These tables are large in size and may not be
feasible to store on the embedded chip. So the debugger, with
knowledge of the embedded chip, can store and query the
tables instead of the stub.

Symbol table is useful, for example, when the user decides
to read the data of a local variable for a stopped program. The
debugger consults the symbol table and finds the memory
address corresponding to the variable, then issues a memory
read command to the stub, and waits for a response.

Another use of the table is when the debugger needs to set a
break point. Normally a user does not tell the debugger to
stop the program at a certain memory address. The user tells
the debugger to stop the program when it reaches a certain
line in the source code. The debugger takes this argument and
translator it into the memory address for the user. It sets the
breakpoint first by recording the content in the memory ad-
dress through a memory read then writes interrupt instruction
to that address.

When a program stops, the user may be interested in know-
ing where the program stopped. This is accomplished by
printing out the stack trace. Stack information, store in regis-
ters and memory, is not readily in human readable form.
Every chip differs in the way it represents a call stack for its
disparate calling conventions, architecture, etc. But all of the
stack information, with pointers from registers, are in memory
somewhere. The debugger needs to unwind the stack by in-
terpreting it frame by frame. This code can logically exist in
either the stub or the debugger. The preferred option is the
debugger as the goal is to make the stub as small as possible.

During the frame by frame unwind, the debugger also looks
at the return address, which can be in registers or on stack
depending on the chip. The debugger consults the symbol
table to translate the return address back to the ASCII name of
the function. This is done for each frame on the stack so that
the stack trace shows functions corresponding to each frame.
To identify the topmost frame, the debugger looks at the pro-
gram counter. The debugger again translates the address
stored in the program counter by consulting the symbol table.
All of these functionalities are implemented in the debugger
and not the stub, and it makes little sense to have around in
the stub.

Even with the minimal stub such as the example stub, the
debugger can implement other more advanced debugging
techniques and tricks. On a sophisticated system, a watch

point is set by changing bits in the page table so that access to
a particular memory address stops the program by relinquish-
ing control to the stub. The example stub, however, does not
accept any commands that deal with page translations. But
the stub offers a step command that proves to be useful. A
naïve way to implement the watch point is to step the program
while interpret the next instruction until there is access to a
particular memory address.

Conditional breakpoint is another enhancement. The de-
bugger can easily implement this without addition help from
the stub. A conditional breakpoint is a normal breakpoint
with addition stopping criterions. The only difference is that
the when the debugged program breaks, the debugger evalu-
ates the additional condition, which usually translates into
reading and comparing memory contents. The debugger only
alerts the user when the evaluation is true; otherwise it con-
tinues the program execution.

This concludes the functionalities the need and need not be
part of the stub.

Conclusion
Often a debugger cannot run on the embedded chip, but hav-
ing a small stub that provides some core functionality is a way
to mitigate the problem. The size of the stub is limited to the
number of function it must provide. To the bare minimum, it
must provide functionalities to read write registers and mem-
ory, handle exception/signal, and resume a stopped program.
On top of these functionalities, the debugger such as gdb can
work its magic to provide user a full debugging experience.

Acknowledgements
I thank Professor Stephen Edwards for providing valuable
insight on debugging in general, which has gotten me inter-
ested in this topic.

References
[1] Bryan Buck and Jeffrey K. Hollingsworth. An API for

Runtime Code Patching. In The International Journal of
High Performance Computing Applications. 2000.

[2] David R. Hanson and Mukund Raghavachari. A Ma-
chine-Independent Debugger. In Software-Practice And
Experience, Vol. 26(11), 1277-1299 November 1996.

[3] Bill Gatliff. Embedding with GNU: The gdb Remote
Serial Protocol. In Red Hat Developer Network
(RHDN).

[4] Stan Shebs. An Open Source Debugger for Embedded
Development. In Embedded Systems Conference. 1999.

[5] Kiyokuni Kawachiya and Takao Moriyama. A Symbolic
Debugger for PowerPC-Based Hardware, Using the En-
gineering Support Processor (ESP). In IBM Research,
Tokyo Research Laboratory. August, 1997.

[6] Richard M. Stallman, Roland Pesch, and Stan Shebs.
Debugging with GDB:The GNU Source-Level Debugger.
Free Software Foundation. January, 2002.

	Abstract
	Introduction
	Related work
	Debuggers that support remote debugging
	Example GDBServer
	The separated and the non-separable

	Conclusion
	
	
	
	Acknowledgements
	References

