
Code generation from an Esterel PDG

Cristian Soviani

Department of Computer Science
Columbia University

www.cs.columbia.edu/~soviani

soviani@cs.columbia.edu

0-0

Esterel

• Hybrid programing language; both s/w and h/w flavour

• Developed by Gerard Berry starting from 1983 [2]

• Very solid mathematical background

• Synchronous model of time, concurency, determinism

• Suitable for embedded systems design

• Can both be translated in software and hardware

• s/w: performance (code size / speed) is critical

• Project goal: to efficiently compile Esterel into software

0-1

Related work

• Automata Compilers: V3 Compiler [Berry, Gonthier][2]
very fast
code size can exponentially grow for large programs

• Netlist Compilers: V5 Compiler [Berry][1]
code size grows linear w/ source input - large programs
slow code because of “idle” instructions

• Halt points functions [Bertin, Weil, et al.’s][3][7]
good overall speed / size performance

• EC [Edwards][4]
sees Esterel as an imperative language
code size almost identical to netlist
much quicker, still slower than automata compilers

0-2

My work: Esterel PDG to CFG

Starts from PDG (Program Dependency Graph) - concurrent
intermediate representation
Generates CFG (Control Flow Graph) - sequential - can be
trivialy translated to code

• computes data dependencies and remove deps. between
mutual exclusive nodes

• uses Edwards [4] technique of thread slicing and inter-
leaving; to minimize context switches, replaces EC’s depth-
first with a more efficient algorithm

• uses a modified Simons & Ferrante’s algorithm [5] to or-
der siblings according to data / flow dependencies

• generates the CFG adding guard vars when necessary

0-3

What is a PDG

• PDG is a very used intermediate format in compiler de-
sign

• Consists from a CDG (Control Dependency Graph) and
a DDG (Data Dependency Graph)

• Compared to IC: a more high level abstraction of the
program

• PDG can be efficiently optimized

• PDG is a better starting point than other intermediate
formats

0-4

CFG - CDG

N1
A

N2
B

1

N5
W=1

2

N100

0

N3
C

1

N10
Z=1

2

N6
X=1

1

N13
Y=1

2

0

N101

0

0

0

N20

N1
A

0

N2
B

1

N4

2

N3
C

1

N7

2

N6
X=1

1

N9

2

N5
W=1

00

N8

00 0

N13
Y=1

0

N10
Z=1

0

0-5

DDG - red edges

N1

N2
A

0

N7
B*

0

N3
C*

0

N4
B*

1

N5
B=1

1

N6
C=1

1

N8
C*

1

N9
X=1

1

0-6

Compute the DDG

• my program input is CDG

• DDG will be computed by looking at variable names; use
Esterel particularities

– if a signal is emitted by several instr., the result does
no depend on order; they can be read only after emit-
ted by all

– if a var is written by a thread, another thread can’t
read or write it

• remove data deps. between mutual excl. nodes

• more complex analysis is required to detect all dependen-
cies which can be removed

0-7

Remove unnecessary data deps.
N1

N2
A

0

N7
B*

0

N3
C*

0

N4
B*

1

N5
B=1

1

N6
C=1

1

N8
C*

1

N9
X=1

1

dotted edges will be removed

0-8

Slice the PDG

Cyclic dependencies between threads
N1

N2
I

0

N4
B

0

N3

1

N6

2

N5
B=1

0 0

N7
A=1

1

N8
A

0

N9
X=1

1

Interleaving is mandatory

0-9

Cutting the threads
N1

N2
I

0

N4
B

0

N3

1

N6

2

N5
B=1

0 0

N7
A=1

1

N8
A

0

N9
X=1

1

N1

N2
I

1

N4
B

2

N100
f1*

3

N3

1

N6

2

N5
B=1

1 2

N7
A=1

1

N101
f1=1

1

N8
A

N9
X=1

1

1

0-10

Fighting for minimum cuts

• following Edwards’ EC: interleave threads

• add “state” variables for thread resuming

• interesed in minimum number of cuts

• EC uses a depth first approach

• my approach: detect threads which has to be cut

• a greedy algorithm makes minimum number of cuts

• to do: minimum number of additional variables

0-11

Order siblings

• Simons and Ferrante describe a O(VE) algorithm when
a concise CFG exists [5]. Steensgaard extends it. [6]

• The problem is reduced to the ordering of siblings

• External edges are the biggest problem

• For each node a “eec” (external edge condition) set is
computed. Based on “eec”, siblings are ordered using a
set of rules

• Only particular PDGs have a corresponding concise CFG

• When a concise CFG does not exist, the algorithm stops

• But it points out where guard variables / code duplica-
tion are necessary

0-12

EEC ordering rules

X ∈ eec(Y) iff X executes if any descendents of Y executes

X 6∈ eec(Y) Y has an external edge with respect to X

• it is possible to simply schedule X before Y

• to schedule X after Y, guard variables are required

• this relationship can be written as X < Y

Ordering is done by comparing siblings.

• data dependencies have priority

• if no guard variable is needed, the algorithm is guaran-
teed to insert none

0-13

PDG with a concise CFG
N20

N1
A

1

N2
B

1

N4

2

N3
C

1

N7

2

N6
X=1

1

N9

2

N5
W=1

13

N8

22 1

N13
Y=1

1

N10
Z=1

1

N1
A

N2
B

1

N5
W=1

2

N100

0

N3
C

1

N10
Z=1

2

N6
X=1

1

N13
Y=1

2

0

N101

0

0

0

0-14

PDG without a concise CFG

N1

N2
S

1

N3

2

N4

3

N5

1

N7

4

1

N6

2 3 1 2

N8
Z=1

1

N9
X=1

1

N10
Y=1

1

0-15

Generate CFG

• now each region’s children are ordered

• CFG generation is straight forwarding if no guard vari-
able is needed

• guards variables simulate function calls without intro-
ducing overhead

• careful not to introduce unnecessary additional code

• CFG is generated in two steps

• CFG has an obviuos transalation to code

0-16

CFG with additional guard variable

N1

N2
S

1

N3

2

N4

3

N5

1

N7

4

1

N6

2 3 1 2

N8
Z=1

1

N9
X=1

1

N10
Y=1

1

N2
S

N108
w5=2

1

N107
w5=1

2

N9
X=1

3

N10
Y=1

4

N100

0

N8
Z=1

N106
w5

0

0 0

0

1

N101

2

0

0-17

Results

• the program was tested on “problem” handwritten inputs

• both input PDG and generated CFG were exhaustively
simulated: results match

• the results are encouraging

To do:

• test it on a real Esterel PDG, generated by ESUIF

• optimize the thread cutting “frontiere”

• optimize sibling ordering when guard variables are re-
quired

• optimize the PDG: open problem

0-18

N30

N1
S

0

N2

1

N5

0

N3
S2=1

0

N4
S3=1

0

N12
s3

0

N6
s2

0

N13

2

N14
S3=2

1

N28
S3=0

0

N7
S2=0

0

N8
I

1

N10

2

N9
S2=2

0 1

N11

0

N18
R=1

0

N19
TH=1

0

N20
A

0

N23
TH

0

N15
R*

0

N17
S3=1

0

N16
A=1

0

N21
TH=1

0

N22
TH=2

1

N24
S2=2

1

N25

2

N26
O=1

0

N27
S2=0

0

Prof. Edwards’
favorite Esterel sample

module Example:
input S, I;
output O;

signal A,R in
every S do
await I;
weak abort
sustain R

when immediate A;
emit O

||
loop

pause; pause;
present R then emit A end

end
end

end

end module

PDG (simplified)

0-19

N30

N1
S

1

N2

1

N5

0

N3
S2=1

1

N4
S3=1

2

N12
s3

2

N6
s2

1

N100

3

N13

2

N14
S3=2

1

N28
S3=0

0

N7
S2=0

0

N8
I

1

N10

2

N9
S2=2

0 1

N11

1

N18
R=1

1

N19
TH=1

2

N103
f1=1

3

N15
R*

2

N17
S3=1

1

N16
A=1

0

N20
A

N21
TH=1

0

N22
TH=2

1

N102

1

N23
TH

2

N24
S2=2

1

N25

2

N26
O=1

1

N27
S2=0

2

N101
f1*

1

1

PDG
after
cutting
the
threads0-20

N1
S

N3
S2=1

1

N6
s2

0

N104

0

N4
S3=1

0

N105

0

N12
s3

N14
S3=2

1

N28
S3=0

0
N17
S3=1

2

N7
S2=0

0
N9

S2=2

0
N103
f1=1

0

0
N8
I

1

N18
R=1

2

0

1

N101
f1*

0

0

N15
R*

N16
A=1

0

-1

0

0

N19
TH=1

0

0

N20
A

N21
TH=1

0

N22
TH=2

1

1

-1
N23
TH

0 0

N24
S2=2

1

N26
O=1

2

0
N27
S2=0

0

0

This is the CFG

PDG stats - 29 nodes:
7 regions
7 statements
15 predicates

CFG stats - 24 nodes:
8 predicates
16 statements
worst execution path: 15 instructions

0-21

N1

N2
A*

0

N3

0

N6

1

N10

4

N13

2

N16

3

N19

5

N22

6

N4
I*

0

N5
B*

0

1

2

0

1

2

3

N7
B=1

0

N8
D*

0

1

N14
D=1

N12
C=1

0

N15
C*

0 0

N21
E*

0

1

2

N17
E=1

0

N18
F*

0

1

N23
F=1

N20
X=1

0

1

0

PDG
of a very

*** BAD ***
sample
Note the abundance
of external edges

0-22

N1

N2
A*

1

N3

0

N102

1

N10

4

N107

2

N115

3

N19

5

N22

6

N4
I*

1

N5
B*

2

N100

3

N105

4

N6

1

N104
f1=2

2

N13

0

N110
f2=2

1

N111
f2=3

3

N112
f2=4

2

N7
B=1

1

N103
f1=1

2

1

2

N8
D*

1

N101
f1*

1

2

N12
C=1

1

N14
D=1

1

N109
f2=1

2

1

2

N15
C*

N16

1

N118
f3=2

2

N108

1

N21
E*

2

N113

3

N17
E=1

1

N117
f3=1

2

N116

1

2

1

2

N18
F*

1

N114
f3*

1

2

N20
X=1

1

N106
f2*

12

4

3

1

N23
F=1

1

11

1

PDG
after
cutting
the
threads0-23

N2
A*

N4
I*

0

N128
w6=2

1

N137
w10=2

4

N143
w13=2

2

N161
w16=2

3

N20
X=1

5

N154
w22=2

6

N120

-1

N119

0

N5
B*

-1
N104
f1=2

2
N127
w6=1

1

N142
w13=1

0

N132
w100=1

-1

N110
f2=2

1

N111
f2=3

3

N112
f2=4

2

N126
w6

1

N133
w100=2

2

0

N7
B=1

N103
f1=1

0

0

0

N8
D*

N136
w10=1

1

N131
w100

-1

N101
f1*

1

2

-1

N12
C=1

N135
w10

0

0

0
N14
D=1

N109
f2=1

0

0

0

N15
C*

N160
w16=1

1

N21
E*

-1

N118
f3=2

2

N106
f2*

12

4

3

-1

N17
E=1

N117
f3=1

0

0

0

N18
F*

1

-1

N114
f3*

1

2

-1

0

-1

N153
w22=1

1

0

N159
w16

2

1

N23
F=1

N152
w22

0

0

0

0

0

0

1

2

N141
w13

2

1

0

0

0

0

1

2

0

1

2

This is the CFG

PDG stats - 21 nodes:
8 regions
6 statements
7 predicates

CFG stats - 42 nodes:
16 predicates
26 statements
worst execution path: 27 instructions
simulation space: 2880 input combinations

0-24

References

[1] Gérard Berry. Esterel on hardware. Philosophical Trans-
actions of the Royal Society of London. Series A, 339:87–
103, April 1992. Issue 1652, Mechanized Reasoning and
Hardware Design.

[2] Gérard Berry and Georges Gonthier. The Esterel syn-
chronous programming language: Design, semantics, im-
plementation. 19(2):87–152, November 1992.

[3] Valérie Bertin, Michel Poize, and Jacques Pulou. Une nou-
velle méthode de compilation pour le language ESTEREL
[A new method for compiling the Esterel language]. In Pro-
ceedings of GRAISyHM-AAA., Lille, France, March 1999.

[4] Stephen A. Edwards. An Esterel compiler for large
control-dominated systems. IEEE Transactions on

0-25

Computer-Aided Design of Integrated Circuits and Sys-
tems, 21(2):169–183, February 2002.

[5] Barbara Simons and Jeanne Ferrante. An efficient algo-
rithm for constructing a control flow graph for parallel
code. Technical Report TR–03.465, IBM, Santa Teresa
Laboratory, San Jose, California, February 1993.

[6] Bjarne Steensgaard. Sequentializing program dependence
graphs for irreducible programs. Technical Report MSR-
TR-93-14, Microsoft, October 1993.

[7] Daniel Weil, Valérie Bertin, Etienne Closse, , Michel Poize,
Patrick Venier, and Jacques Pulou. Efficient compilation of
Esterel for real-time embedded systems. In Proceedings of
the International Conference on Compilers, Architecture,
and Synthesis for Embedded Systems (CASES), pages 2–8,
San Jose, California, November 2000.

0-26

