
Code generation from an Esterel PDG

Cristian Soviani

Department of Computer Science
Columbia University

www.cs.columbia.edu/~soviani

soviani@cs.columbia.edu

0-0



Esterel

• Hybrid programing language; both s/w and h/w flavour

• Developed by Gerard Berry starting from 1983 [2]

• Very solid mathematical background

• Synchronous model of time, concurency, determinism

• Suitable for embedded systems design

• Can both be translated in software and hardware

• s/w: performance (code size / speed) is critical

• Project goal: to efficiently compile Esterel into software
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Related work

• Automata Compilers: V3 Compiler [Berry, Gonthier][2]
very fast
code size can exponentially grow for large programs

• Netlist Compilers: V5 Compiler [Berry][1]
code size grows linear w/ source input - large programs
slow code because of “idle” instructions

• Halt points functions [Bertin, Weil, et al.’s][3][7]
good overall speed / size performance

• EC [Edwards][4]
sees Esterel as an imperative language
code size almost identical to netlist
much quicker, still slower than automata compilers
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My work: Esterel PDG to CFG

Starts from PDG (Program Dependency Graph) - concurrent
intermediate representation
Generates CFG (Control Flow Graph) - sequential - can be
trivialy translated to code

• computes data dependencies and remove deps. between
mutual exclusive nodes

• uses Edwards [4] technique of thread slicing and inter-
leaving; to minimize context switches, replaces EC’s depth-
first with a more efficient algorithm

• uses a modified Simons & Ferrante’s algorithm [5] to or-
der siblings according to data / flow dependencies

• generates the CFG adding guard vars when necessary
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What is a PDG

• PDG is a very used intermediate format in compiler de-
sign

• Consists from a CDG (Control Dependency Graph) and
a DDG (Data Dependency Graph)

• Compared to IC: a more high level abstraction of the
program

• PDG can be efficiently optimized

• PDG is a better starting point than other intermediate
formats
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CFG - CDG
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DDG - red edges
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Compute the DDG

• my program input is CDG

• DDG will be computed by looking at variable names; use
Esterel particularities

– if a signal is emitted by several instr., the result does
no depend on order; they can be read only after emit-
ted by all

– if a var is written by a thread, another thread can’t
read or write it

• remove data deps. between mutual excl. nodes

• more complex analysis is required to detect all dependen-
cies which can be removed
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Remove unnecessary data deps.
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Slice the PDG

Cyclic dependencies between threads
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Cutting the threads
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Fighting for minimum cuts

• following Edwards’ EC: interleave threads

• add “state” variables for thread resuming

• interesed in minimum number of cuts

• EC uses a depth first approach

• my approach: detect threads which has to be cut

• a greedy algorithm makes minimum number of cuts

• to do: minimum number of additional variables
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Order siblings

• Simons and Ferrante describe a O(VE) algorithm when
a concise CFG exists [5]. Steensgaard extends it. [6]

• The problem is reduced to the ordering of siblings

• External edges are the biggest problem

• For each node a “eec” (external edge condition) set is
computed. Based on “eec”, siblings are ordered using a
set of rules

• Only particular PDGs have a corresponding concise CFG

• When a concise CFG does not exist, the algorithm stops

• But it points out where guard variables / code duplica-
tion are necessary
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EEC ordering rules

X ∈ eec(Y ) iff X executes if any descendents of Y executes

X 6∈ eec(Y ) Y has an external edge with respect to X

• it is possible to simply schedule X before Y

• to schedule X after Y, guard variables are required

• this relationship can be written as X < Y

Ordering is done by comparing siblings.

• data dependencies have priority

• if no guard variable is needed, the algorithm is guaran-
teed to insert none
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PDG with a concise CFG
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PDG without a concise CFG
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Generate CFG

• now each region’s children are ordered

• CFG generation is straight forwarding if no guard vari-
able is needed

• guards variables simulate function calls without intro-
ducing overhead

• careful not to introduce unnecessary additional code

• CFG is generated in two steps

• CFG has an obviuos transalation to code
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CFG with additional guard variable
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Results

• the program was tested on “problem” handwritten inputs

• both input PDG and generated CFG were exhaustively
simulated: results match

• the results are encouraging

To do:

• test it on a real Esterel PDG, generated by ESUIF

• optimize the thread cutting “frontiere”

• optimize sibling ordering when guard variables are re-
quired

• optimize the PDG: open problem
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module Example:
input S, I;
output O;

signal A,R in
every S do
await I;
weak abort
sustain R

when immediate A;
emit O

||
loop

pause; pause;
present R then emit A end

end
end

end

end module

PDG (simplified)
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This is the CFG

PDG stats - 29 nodes:
7 regions
7 statements
15 predicates

CFG stats - 24 nodes:
8 predicates
16 statements
worst execution path: 15 instructions
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This is the CFG

PDG stats - 21 nodes:
8 regions
6 statements
7 predicates

CFG stats - 42 nodes:
16 predicates
26 statements
worst execution path: 27 instructions
simulation space: 2880 input combinations
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