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Abstract
As the cost of both networking and producing

powerful embedded devices drops, collections of these highly
specialized and heterogeneous platforms will proliferate. These
networks will face security threats and suffer traditional hardware
failure. Failure of embedded devices is undesirable because these
devices often perform critical functions and are difficult to take
offline and upgrade. Networks of embedded devices require a
method to accomplish functional survivability of essential
computations in a hostile or volatile environment.

This paper presents a protocol and describes an
implementation for migrating essential computations from failed
devices. An essential computation is a device's primary algorithmic
functionality. This migration is accomplished by specifying both
an Area Controller (AC), which contains definitions for every
essential computation, and a number of proxy agents, which
periodically send the AC update statements. The AC and proxy
agents negotiate the specifics of process migration when the AC
has determined that a device has failed.

The implementation of this protocol in a network of
embedded devices is a crucial step toward fault tolerance and
survivability in networks of embedded devices. The protocol can
also be applied to networks that do not involve embedded systems.
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Introduction
Even though the dedicated efforts of hardware and

software engineers have enabled computing devices to become
more or less reliable appliances, there are many domains where any
failure (either malicious or arbitrary) of a computing device is
completely unacceptable. In the non-embedded domain, many
organizations devote scads of money and countless human-hours to
assuring that their web services systems remain in a
High-Availability (HA) state. The amount of hardware, software,
networking, and management in such systems is staggering, if not
overwhelming.

We can observe how much effort is put into serving
web pages, and then consider the extreme requirements for
networks of embedded devices needed to fly airplanes, perform
health monitoring in hospitals, and control nuclear power facilities.
As embedded devices are networked together, not only do they face
traditional failures, but also the growing legion of threats made
possible by a networked environment.

Fault tolerance and survivability of computer systems
and networks is often addressed by both replication of critical
services (distributed databases, server clusters), and redundancy
(UPS, dual network connections). Traditionally, work has been
done to guarantee some level of service by the
system or network in the presence of attack, failure, or high load
[10].

The protocol presented in this paper continues this
theme by precisely specifying the steps necessary for ensuring that
an essential computation can be migrated to a target device based
on some optional policy specification. The result of ensuring that
an essential computation may be migrated is the continued
execution of critical algorithms in the network.

1. Related Work
The impetus for this work is detailed in Keromytis, et

al [2], which describes an ambitious and detailed plan to design
programming languages, policy languages and
compliance-checking mechanisms, and dynamic update
mechanisms to meet the challenges presented by survivability in
embedded network environments.

Faults in and failures of computing devices have long
been an area of concern for computing professionals. The design of
this protocol involves three areas of computer science: embedded
systems, process migration and distributed computation, and
network survivability.

1.1 Embedded Systems
Designing embedded systems to be robust is a

difficult and time consuming process because of the extreme
constraints involved in the available hardware environment.
Embedded systems have more extreme power, heat, speed, and
space requirements than ordinary computer hardware [2]. In
addition, Edwards et al [9] note that most design of embedded
systems was done on an ad hoc basis as recently as five years ago,
with little or no formal specification or proof of correctness.
Edwards et al [9] have written a detailed analysis and presentation
of formal methods for specifying, validating, and synthesizing
reactive real-time embedded systems. Their approach identifies
"management of both design complexity and system heterogeneity
as the key problem." It is clear that heterogeneity is a necessary
challenge in embedded systems, and any work done for embedded
systems networks would do well to adopt the approaches detailed
in their paper.

1.2 Process Migration
Process migration is a technique that has been studied

for some time with the intent of providing load balancing for
clusters of servers or workstations. Eager et al [4] had suggested
that process migration added too much overhead in general for the
anticipated benefits, but Downey and Harchol-Balter [1] refuted
this claim and presented several common environments in which
process migration is largely beneficial. Process migration is well
suited to clusters of computers and is most famously implemented
as part of the MOSIX [3,14] distributed operating system software.

The Charlotte system is another environment for
process migration research. Charlotte is built with the goal of
ensuring that the migration completes successfully. Artsy and
Finkel [12] provide both a succinct overview of process migration
theory and some performance characteristics related to Charlotte.

The technique of process migration is often compared
with remote execution, which is presented as a lower-cost
alternative. However, process migration offers true continuity of
service, whereas failure of a device providing remote execution
services necessitates the availability of a complete replica -
something that is not always practical in an embedded
environment. Typical remote execution mechanisms are RPC, Java

RMI, and CORBA. These mechanisms rely on a local proxy to call
functions on a server over the network, rather than actually moving
a process.
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Dynamic updates of software is a complex operation.
Hicks [7] points to Smith [5] as an excellent review of process
migration techniques. Hicks also describes the notion of state
transfer as a process of automatically encoding current process
information and details the difficulties involved with the
checkpointing technique. The primary difficulty in state transfer is
twofold: the target may not understand the state format, and some
essential state may be hidden by the operating system of the
original machine [7].

The initial version of the PCXSES protocol assumes
that with a common virtual machine in the embedded network,
state translation can be accomplished, albeit at a higher level than a
snapshot of the bits in (a hardware-specific) memory.  The protocol
does not limit what can be considered state; actually determining
what state is important and translating it are left to the
implementation, although a mechanism for specifying what state is
important and how to update it is presented in Section 2.3.

On the other hand, heterogeneous process migration, as
addressed in Smith and Hutchinson [8] does not make the
assumption that all devices share a common runtime platform.
Smith and Hutchinson [8] give a very precise analysis of the
requirements for designing a process migration protocol. Future
versions of PCXSES will address the issues raised by a
heterogeneous network.

1.3 Network Survivability
The threat model for computer networks is

significantly different from the threat model for a standalone
system. Networks are vulnerable to a wide variety of attacks, and
the technical report by Ellison et al [10] provides a very complete
overview of classic network survivability. Fault tolerance and
network survivability are two areas of network security that attempt
to research and respectively address Byzantine [6] and malicious
failures in networks.

Zhang et al [13] have commented that "the
composition of most networks tends to converge on a single
technology [often from the same vendor] at each layer of the
network." This trend may boost interoperability; however, Zhang et
al [13] have suggested that homogeneity in networks presents
vulnerabilities and that survivability may be achieved through
greater heterogeneity.

The weakness of this approach is the greater challenge
in configuration and the cost of management when adding
non-required complexity to the network. However, in the OASES
[2] proposal, Keromytis et al argue that the natural heterogeneity of
an embedded network provides a high degree of redundancy. This
inherent redundancy may provide a platform for survivability.
Furthermore, we should observe that embedded networks contain
many highly specialized components that already require diverse
configuration and specialized management.

Employing process migration in a network of
embedded devices is a highly desirable and cost effective method of
assuring the survivability of this network. The PCXSES protocol
performs this task.

2. The PCXSES Protocol
The PCXSES protocol is a straightforward series of

steps that borrows from general principles of network routing
protocols [16] and the idea of timeouts as presented in Lamport et
al [6]. The protocol has four phases:

The PCXSES protocol is a straightforward series of
steps that borrows from general principles of network routing
protocols [16] and the idea of timeouts as presented in Lamport et
al [6]. The protocol has four phases:

1. GOOD MORNING phase (walk in the door)
2. PARTY phase (continuously greet host)
3. RECOVERY phase (host gives keys to sober friend)
4. GOODBYE phase (people leave party)

The underlying idea is that the AC can store definitions (object
code) for every process running on the devices, but needs to be
alerted to changes in the state of those processes.

Each device joins the network with a GOOD
MORNING message. The device then periodically updates the AC
with altered state information via a HELLO or STATE message.
Finally, if the AC has determined that a device has failed, it will
enter the RECOVERY phase with that failed device and a target
device. It will send a MORPH (Mobile Object RePlacement
Header) message to the target device. The target device MUST NOT
implicitly trust any MORPH message. Entering the RECOVERY
phase with one device does not require the AC to abandon the
PARTY phase or GOOD MORNING phase with other devices.

The presentation of the PCXSES covers three core
components: the description of the protocol phases, the description
of the message formats, and the description of the state update
mechanism. Finally, a sample implementation [15] in Java is
discussed for migrating a running game of PacMan to another
device.

Figure 1 displays the various protocol phases and the
legal messages during each phase. The MORPH messages are only
employed if a device has failed. Normal operation consists of a
GOOD_MORNING pair, a variable number of HELLO or STATE
messages, and a GOOD_BYE pair.

[client] -- GOOD_MORNING {params} -->> [AC]
[client] <<-- GOOD_MORNING {params} -- [AC]

[client]        -- HELLO  |  STATE -->>        [AC]

[client] <<-- MORPH {^, ids, #b/id, state} --[AC]
[client]       <<-- object definition #1 --       [AC]
[client]       <<-- object definition #2 --       [AC]

[client]                    <<--  ....  --               [AC]
[client]       <<-- object definition #n --       [AC]
[client]       -- MORPH {ack | fail} -->>       [AC]

[client]           -- GOOD_BYE -->>           [AC]
[client]        <<-- GOOD_BYE --              [AC]

Figure 1: PCXSES Protocol Sketch. The client thread running on the
device maintains contact with the AC, notifying it of state updates. If the device
fails, the AC begins a MORPH conversation with another device to replace the
failed device. A device may also gracefully leave the protocol by sending a
GOOD_BYE message. Figure 1 depicts the phases involved in the full protocol.

2.1 Protocol Phases
The protocol phases are straightforward: session setup

(GOOD_MORNING), session maintenance (HELLO), failover
(MORPH) and session teardown (GOOD_BYE).

2.1.1 Good Morning Phase
This phase allows a device to join the federation or

network by contacting the AC. Thus, the AC does not have to poll
the network and solicit new devices for their connectivity
information. The AC maintains a cache of devices specified in a
configuration file, and activates a device once it receives a
GOOD_MORNING message.



This phase allows a device to join the federation or
network by contacting the AC. Thus, the AC does not have to poll
the network and solicit new devices for their connectivity
information. The AC maintains a cache of devices specified in a
configuration file, and activates a device once it receives a
GOOD_MORNING message.

2.1.2 Party Phase
In the party phase, each device sends notifications to

the AC that the device is still alive. The device may also send
updated state information as part of the notification or as part of a
different message. This phase is critical; should the AC fail to
receive some given number of HELLO messages in a given time
period, the AC will consider the device dead, act to replace it, and
ignore further communications from it.

2.1.3 Recovery Phase
Naturally, the RECOVERY phase is the most

interesting. This phase begins with the AC determining a suitable
target device for the failed computation according to its policy
rules. Once the AC selects a device, the AC retrieves the necessary
object code from its repository, and sends these bytes, along with
the LKGS and some metadata, to the target device. The AC first
sends a Bottle object of type MORPH with the metadata so that the
receiving client thread can properly parse the received object code
stream. The client thread receiving the new computation then
notifies the AC if the transfer has been successful, and attempts to
create the new computation, along with using the State Update
Interface (SUI) agent to configure the new computation to the
LKGS.

2.1.4 Goodbye Phase
This phase allows the protocol to terminate gracefully.

If this phase were not included in the protocol, the AC would
assume that a device had failed and being a needless Recovery
Phase.

2.2 Message Formats
All messages are encapsulated in a BOTTLE object

with appropriate type identifiers. There are five types of messages:

1. GOOD_MORNING message
2. HELLO message
3. STATE message
4. MORPH message
5. GOOD_BYE message

All BOTTLEs contain the same fields, some of which may be
unused depending on the message type. A BOTTLE contains the
message type, the client name, the mode, the hello interval, the dead
interval, the state, the object code identifiers, the number of bytes
per object, control signals, and flags to indicate which objects
should be invoked after a MORPH.

The GOOD_MORNING message is used by the client
to notify the AC of its existence and to negotiate parameters (mode,
hello interval, and dead interval) to be used in the rest of the
protocol. Mode is either SPLIT_MODE or JOINED_MODE. The
JOINED_MODE is more common and used to indicate that a
HELLO message includes state information. The SPLIT_MODE is
used to indicate that STATE messages are sent independently of
HELLO messages. A STATE message will not reset the timer that
controls the "alive" flag for the device.

The HELLO message is used to notify the AC that the
device is still active, and may be used to pass state information. The
STATE message is an optional message used to pass state
information. Providing the option of separating state from the
HELLO message is a performance enhancement; it also provides
the device programmer more control over network traffic. The
MORPH message is used to migrate a process to a target device and
acknowledge that the migration has successfully completed.
Finally, the GOODBYE message offers a graceful mechanism for a
device to notify the AC that it has left the network and does not
need to be "recovered."

The HELLO message is used to notify the AC that the
device is still active, and may be used to pass state information. The
STATE message is an optional message used to pass state
information. Providing the option of separating state from the
HELLO message is a performance enhancement; it also provides
the device programmer more control over network traffic. The
MORPH message is used to migrate a process to a target device and
acknowledge that the migration has successfully completed.
Finally, the GOODBYE message offers a graceful mechanism for a
device to notify the AC that it has left the network and does not
need to be "recovered."

2.3 State Transfer and Update Definition Meta Language
State checkpointing and recovery of the Last Known

Good State is critical. For example, software that tracks the flight
path of a missile should have the most current information
possible. However, transfer of a computation's state is difficult
precisely because every computation has a unique state, and the
form of this state is alien to any other computation (not to mention
the underlying target hardware).

In order to transfer state, the protocol supplies the
notion of a State Update Interface (SUI). This construct is based on
the fact that most computations have an informal collection of
methods, functions, or procedures that represent an "update API,"
wherein some of the methods represent ways to obtain current state
information and other methods represent ways to set the current
state information. Each device knows how to handle its state the
best. This functionality can be captured in a SUI agent so that the
device can "share" this knowledge with the rest of the devices on
the network when the need occurs.

The SUI object is transferred from the AC to the target
device VM along with the new compution. The SUI is unique to
each device and acts as a knowledgeable agent to transfer the LKGS
of that device to the new computation running in the target device.

For example, in a game of PacMan, the current state of
the game can be represented by the x,y coordinate locations of
PacMan and the BadGuys. In addition, lives left, level, and score are
also part of the state. Lastly, a flag for each traversable spot on the
board can be kept to indicate whether or not the "spot" has been
eaten by PacMan. This state information is all that matters, and can
be compactly represented in an integer array, without going through
the excruciating detail of saving every object's memory image.

3. Results
The protocol proof of concept and development

environment was implemented using the Java 2 Standard Edition
version 1.4.1 platform. This implementation was tested for a
variety of metrics, most notably network bandwidth consumption,
CPU utilization, memory consumption, and recovery time.

3.1 Implementation
The implementation of the protocol is centered around

three packages: a protocol package (locasto.pcxses.protocol ) that
encapsulates and specifies the core protocol objects, a client
package (locasto.pcxses.client ) that provides a default
implementation of the client functionality, and a server package
(locasto.pcxses.ac ) that provides the AreaController functionality.

The application is supported by several other packages
distributed with the implementation. These packages encapsulate
logging and configuration utilities.

The protocol package specifies the Bottle object
format, the base State class, the base StateUpdateInterface
interface, and a client API via the PCXClient interface. The client

package provides a PCXClientFactory object and a default
PCXClient implementation, including a MorphReceiver and a
HelloTask. The server package contains the various pieces of the
AreaController, including the PolicyEngine,
RepositoryManager, and DeviceManager components.
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package provides a PCXClientFactory object and a default
PCXClient implementation, including a MorphReceiver and a
HelloTask. The server package contains the various pieces of the
AreaController, including the PolicyEngine,
RepositoryManager, and DeviceManager components.

The AreaController uses two XML configuration files
to learn about its environment. The first configuration file contains
most implementation-specific details and configuration parameters
for the various components. The second configuration file specifies
all devices that the AreaController is responsible for. This file also
contains the object identifiers for the essential computations in
each device, as well as the object identifiers of the specific State and
SUI objects for each device. This implementation maintains a file
directory hierarchy that houses the object code for each essential
computation. Other options for this repository include a relational
database or LDAP-style directory.

3.2 General Performance Specifications and Observations
The AreaController was hosted on both a single

Pentium III processor at 1.0 GHz Windows 2000 (service pack 3)
platform with 384 megabytes of RAM and a dual Xeon at 2.0 GHz
machine running RedHat Linux 7.3 with 1024 megabytes of RAM.
However, the protocol does not require such firepower to perform in
a reasonable manner. Indeed, the memory requirements for the
AreaController were on the order of fifteen threads running in eight
megabytes, and taking on avergage less than three percent of the
CPU during normal operation. Network bandwidth consumption
remains low because all Bottle messages except for MORPH
messages are small, but increases in proportion to the number of
devices on the network and the requirements of their individual
rates of contact with the AC.

Test devices were hosted on weaker workstations and
some network cluster machines, running a variety of Microsoft
Windows and Solaris operating systems. Future testing will be
performed on smaller devices and embedded platforms.

3.3 Performance Measurements
The protocol functions as specified. Two devices were

represented during testing. The first device was a simple chat-style
GUI that recorded its input as state. The second device was a game
of PacMan. Both devices were allowed to (and successfully did)
load the other device's computation. The following sections detail
some of the performance metrics collected during testing. Testing
was performed using an unbridged shared local Ethernet medium at
10Mb/s and standard Java TCP Socket connections.

3.3.1 Network Bandwidth Consumption
Transport of a Bottle object involves serialization of

that object and then sending the serialized bytes over the wire. Java
serialization does not transport an entire class definition; rather, it
is a representation of all the instance data member variables (not
static class member variables) in the object. The average Bottle
object holds an integer-specified  message type (32 bits in Java),  a
variable length String object representing the device's identifier,
and the serialized bytes of a variable length State object. Therefore,
the number of bytes for the average serialized Bottle are quite small,
and are dominated by the size of the information contained in the
State object. If the state has not changed since the last HELLO
message, the client may opt not to send any State information, as

the AC already has the most current LKGS.
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There are three scenarios in which network bandwidth

can be measured. The first is normal operation of the network,
where all devices periodically send HELLO messages. Even if the
number of devices is great and their update timer has a short period,
bandwidth should not be a bottleneck or cause undue packet delay
due to the small size of the data being transferred. The second
scenario is one in which some devices have failed, placing a
moderate load on the AC and causing the existence of some
MORPH messages and attendant object byte streams. Bandwidth
should be nearly utilized in this scenario for the duration of the
MORPH transactions. However, it should soon stabilize as the AC
processes the transactions. The third scenario is the catastrophic
loss of many devices, where the AC is placed under heavy load
attempting to find surviving devices and satisfy its policy rules. In
this scenario, many MORPH messages may be present, but this is
not necessarily true in all cases. Only a handful of the numerous
failed devices may require a MORPH transport. In addition, the
number of MORPH messages is always limited by the number of
allowable target devices. In this final scenario, bandwidth may
become a bottleneck, especially if the amount of data for state and
object definitions to be transferred is large.

In normal operation, with two devices, each running a
HelloTask about every 5 seconds, bandwidth utilization is
minimal. If one of the devices fails, bandwidth is utilized for an
observed maximum of two seconds. Further experimentation with
collections of devices at different orders of magnitude will shed
light on scalability issues.

3.3.2 Network Errors
There were some observable network socket errors,

mostly due to collision of packets on the Ethernet medium.
However, these errors are minimal and sporadic, and the
DeadInterval parameter assures that minor network glitches will
not contribute to greatly exaggerated rumours about a device's
untimely demise.

3.3.3 CPU Utilization
The CPU of the AreaController is not placed under

significant load during execution of the protocol. The highest
utilization is at startup, when the VM is constructing objects and
reading configuration files. During normal operation, the CPU is
utilized about two percent for each request.

The CPU utilization of the VM's running the devices
depends on the computation being executed. However, a device
running nothing but the default PCXClient implementation
contributes almost no overhead (due to no state being transferred).

3.3.4 Memory Consumption
The memory consumption of the current

AreaController is about eight megabytes distributed among fifteen
threads.

The memory footprint of the default PCXClient
implementation is about 200kb.

3.3.5 Migration & Replacement Time
In the described testing environment, the

RECOVERY phase happens quite fast. The transfer of the PacMan
game to the Runner device occurs in an average of 3 seconds for ten
trials. The transfer of the PacMan game, including failure detection,
is dependent on the HelloInterval and DeadInterval parameters. The

transfer of the Runner application to the PacMan device happens in
less than two seconds over ten trials.
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3.4 Additional Requirements
Three important results are the realization of additional

requirements for survivable networks of embedded systems: the
development of a clear, concise, and powerful policy language, the
need to recognize and prevent "failure chaining", and the need to
detect Byzantine failure, perhaps through some peer-based
mechanism.

4. Conclusions and Future Work
The PCXSES protocol is a general solution to the

problem of process migration and fault tolerance in embedded
networks. Successive transformation of the protocol for
performance and security is anticipated. Most notably, a
challenge-response protocol will be integrated into the GOOD
MORNING phase. Alternatively, the protocol can be implemented
over SSL/TLS to provide integrity and confidentiality. However,
adding integrity, authentication, and confidentiality to the protocol
inherits all the problems of key distribution (and refreshment) for a
public key based infrastructure.

In addition, since the protocol currently assumes a
common virtual machine layer on each device (to simplify the
restart of processes), the protocol will be adjusted to account for
different hardware targets. Perhaps standardization of lifecycle
methods (in addition to saving state variables) can help achieve
some level of granularity by presenting well-known hooks into
object code, thus making transfer of a program counter unnecessary.
The current state transfer mechanism (SUI) will be upgraded to
include a translation phase between hardware targets.
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