
COMS W4995-02
Languages for Embedded System Design

Homework 3

Prof. Stephen A. Edwards Assigned October 28, 2002
Columbia University Due November 18, 2002

You may submit the solutions either on paper or electronically, but not both. If you
submit it electronically, send a single file that is text, PostScript, PDF, or Word. Don’t
send multiple files or an archive such as tar or zip. I just print out whatever you submit
and read it; I don’t try to run the programs.

Make sure your name appears at the beginning of the file you send.
I want the paper or electronic versions at the beginning of class (4:10 PM EDT) on

the due date. This applies to both on-campus and CVN students.

1. (40 points) Esterel programming.

I’ve installed the Esterel compiler on labdien.cc.columbia.edu, part of the cunix
cluster (it core dumps on the others because it requires Solaris 2.7, not 2.5).
The distribution is in my home directory, i.e., ˜se2007/esterel. For those who
prefer to run their own copy, the compiler can be downloaded from the Esterel
Technologies web site1. It is available for Linux, Solaris, and Windows NT.

Here’s how to compile and run an Esterel program:

$ uname -r # Check OS version, Solaris only
5.7 # Can’t be 5.5.1
$ cat > hello.strl
module Hello:
input A; output B;
await A; emit B
end module
ˆD
$ ˜se2007/bin/esterel -simul hello.strl
$ cc -o hello hello.c ˜se2007/lib/libcsimul.a
$./hello
Hello> ; # Clock tick with no inputs
--- Output:
Hello> ;
--- Output:
Hello> A; # Make input A present and tick
--- Output: B
Hello> ;
--- Output:
Hello>

1http://www.esterel-technologies.com/v2/download/download free software.html

1

(a) Write an Esterel module that implements a two-bit grey-code up counter
whose counting sequence is 00–01–11–10–00. It should have two inputs,
C, which increases the count, and R, which resets the counter; and two
outputs B0 and B1 that should always indicate the current count (i.e., B0
should be present when the least significant bit of the count is 1). The
new value should appear when C is present, and R should take precedence
over C. Hint: Try to think concurrently. The best solution to this problem
consists of a few processes running concurrently.

(b) Add a user interface to your little counter: Make it advance once every 5
arrivals of a “T” signal, and add an alarm signal “A” that is set off when
the count reaches a given setting. Set the alarm with three environmental
signals: S, S0, and S1. When S is present, S0 and S1 contain the new
setting. Thus, your program should behave like this:

S S1; # Set the alarm to 10
T; T; T; T; T; # Count is now 01
T; T; T; T; T; # Count is now 10 and A is present

For both programs, show me the source and an example run that tests it.

2. (60 points) More Esterel Programming

This is a simplified version of an industrial problem due to Bob Paddock2.

Create an Esterel program that controls an overhead crane. Here’s the interface:

module Crane:

input DISABLE;
input LOCKOUT;

input OFF, ON, START;

sensor JOY : integer;
input DR, BR;

output D1, D2, D3;
output B1, B2, B3;

output RUN, FAULT;

end module

This amounts to a controller for a very large electric motor driven through a bank
of relays that either power it or connect it to resistors the size of hot water heaters
that act as a brake. When braking, the motor becomes a generator and the resis-
tors dissippate the kinetic energy of the crane, slowing and eventually stopping
it. Such a design minimizes the number of (guaranteed-to-break) moving parts.

Outputs D1–D3 enable relays for driving and B1–B3 enable the relays for brak-
ing. Figure 1 show how the relays should be enabled in various modes.

Two LEDs controlled by the RUN and FAULT outputs indicate the state of the
system to the user. When the unit is off, neither should be on. RUN should be

2Thanks Bob! http://www.unusualresearch.com/

2

state B3 B2 B1 D3 D2 D1 Stick Value
Brake 7 X 0
Brake 6 X X 1
Brake 5 X X X 2
Brake 4 X X 3
Brake 3 X 4
Brake 2 X X 5
Brake 1 X 6
Neutral 7 and 8
Drive 1 X 9
Drive 2 X X 10
Drive 3 X 11
Drive 4 X X 12
Drive 5 X X X 13
Drive 6 X X 14
Drive 7 X 15

Figure 1: Relay states for the seven brake and drive states. An X indicates an output
should be present in that state. The grey code encoding ensures that at most one relay
changes at a time.

present whenever the unit is operating normally. If a fault occurs, the FAULT
light should blink until the user switches the unit to OFF (see below).

The environment supplies two enabling inputs, DISABLE, and LOCKOUT, which
should both be absent at all times for the unit to work. The unit should brake and
flash the FAULT light if either of these is ever present.

The user’s controls include of a car-like “ignition” switch that activates and de-
activates the unit. The key can be removed when in the OFF position. To activate
the unit, the user turns the switch briefly to START, then it returns to ON. The
FAULT light should blink if the controls are not zeroed (i.e., JOY at 7 or 8, BR
and DR off) when the unit is switched to start and continue to blink until the unit
is returned to the OFF state.

In normal operation, the user operates an analog joystick whose values range
from 0 (full brake) to 15 (full forward). 7 and 8 are neutral. Note that the
joystick controls drive/brake, and not forward/reverse.

The BR/DR inputs come from switches on the joystick that become active below
7 and above 8 respectively. These inputs are redundant; they are meant to check
for a fault in the joystick input.

Any sort of inconsistency on these inputs should be treated as a fault and cause
the system to shut down. For example, BR and DR inputs being on simultane-
ously, BR being on when the joystick input reads above 8, etc. Furthermore, the
system should shut down if the joystick number changes by more than one per
clock cycle.

There are seven drive and seven brake states in addition to neutral. Figure 1
illustrates the relay activation rules for each of these.

3

(a) Write a module called Relays that continuously translates the JOY sensor
value into the relay activation patterns in Figure 1.

(b) Write the topmost module. Start from the following template and flesh out
the commented areas.

loop
trap Fault in
await START;
abort

% exit Fault if the controls are not safe
when ON;
abort

sustain ON
||
% Normal operation: run Relays

||
% Check for faults and exit Fault if any appear

when OFF

handle Fault do
abort

% Blink the FAULT light
when OFF

end;
pause

end

(c) Devise a simple test suite (i.e., a file that runs the simulator through some
interesting states). Show me both this suite and the result of running it
through the simulator.

The test suite will be some files that look like

OFF JOY=8;
OFF;
START;
ON;
ON;
ON JOY=9 DR;
ON JOY=10 DR;
ON JOY=12 BR;

4

