

People Counter Example

Construct an Esterel program that counts the number of
people in a room. People enter the room from one door
with a photocell that changes from 0 to 1 when the light is
Interrupted, and leave from a second door with a similar
photocell. These inputs may be true for more than one
clock cycle.

The two photocell inputs are called ENTER and LEAVE.
There are two outputs: EMPTY and FULL, which are
present when the room is empty and contains three
people respectively.

Source: Mano, Digital Design, 1984, p. 336

Overall Structure

7

ENTER— Conditioner ADD - _EMPTY
—| Counter .-
LEAVE—=| Conditioner / SUB FULL

Conditioner detects rising edges of signal from photocell.

Counter tracks number of peop Ieinthwm.

‘
‘

‘

|
\
\

|

|

|

|

/ \ /
\ /
\\ //
\ /
\ \ /
/ / \
/
//
/
/
|

\ \ /

Implementing the Co

nodul e Condi ti oner:

| nput A,
out put Y,
| oop

awalt A emt Y;
await [not A];
end

end nodul e

Testing the Conditioner

esterel -simul cond. strl
gcc -0 cond cond.c -lcsinmul #mayneed-L
./ cond I
Condi ti oner> ; - T
--- Qut put : -

Conditioner> A, # Risj/ngedge

--- Qutput: Y

Condi ti oner> A; # Doesn't generate a pulse
--- Qut put: /

Condi ti oner> ; # Reset

--- Qutput: |

Condi tioner> A; # Another rising edge

--- Qutput: Y g
Conditioner> ; \

\\\
Y

--- Qutput: \ \
Condi ti oner> A \\\ |
--- Qutput: Y N \)

S | rd

Implementing the Counter:

nodul e Counter:
| nput ADD, SUB,;
out put FULL, EMPTY;, R
var count := 0 : integer in
| oop /
present ADD then if count < 3 then
count := count + 1 end end;
present SUB then if count > 0 then
count := count - 1 end end;
| f count O then emt EMPTY end;
| f count 3 then emt FULL end,
pause - N
end / \\ N\
end / \ \

|
|
/ /
/
y
/
y
/ g
/
/
/
e

end nodul e . %

Testing the Counter

Count er > ;

--- Qutput: EMPTY

Count er> ADD SUB:)
--- Qut put: EMPTY -
Count er > ADD;

--- Qut put:

Count er > SUB;

--- Qutput: EMPTY

Count er > ADD; /

--- Qut put:

Count er > ADD;

--- Qut put:

Count er > ADD;
--- Qutput: FULL
Count er > ADD SUB:

--- Qut put: #Oops still FULL

\
\
|
|
|
|
|
|
|
/
/
/
/
/
/
‘/////

Counter, second try

nodul e Counter:
| nput ADD, SUB;
out put FULL, EMPTY;

var ¢ := 0 : integer in
| oop /
present ADD t hen
present SUB el se

|
|
|
/’f“
/
//
/
/
/
pd
e

~ | -

if c <3thenc :=c¢c + 1 end \
end / \
el se /
present SUB t hen
If ¢ >0thenc :=c¢c - 1 end
end; |
end; aw "
If ¢ =0 then emt EMPTY end; /
If ¢ = 3 then emt FULL end; /
gause / \ \ /
en ; | \ /
end f \\\ \
end nodule N | e

Testing the second count

Count er > ;

--- Qutput: EMPTY

Count er > ADD SUB;

--- Qutput: EMPTY

Count er> ADD_SUB; -
--- Qutput: EMPTY

Count er > ADD;

--- Qut put .

Count er > ADD;

--- Qut put:)
Count er > ADD; /

--- Qutput: FULL /
Count er > ADD SUB; [

--- Qutput: FULL # Working
Count er > ADD SUB; |

--- Qutput: FULL o

\
‘
\
|
\
\
|
‘
|
|
|
/
/
/
//
/
//

Count er > SUB; A .
--- Qut put: \ j
Count er > SUB; \ /
--- CQut put_:) \ ! /

Counter> SUB; \

--- Qutput: EMPTY \

Count er> SUB; |

--- Qutput: EMPTY

nodul e
| nput ENTER, LEAVE;
out put EMPTY, FULL; L

signal ADD, SUB in
run Conditioner[signal ENTER / A,
/ ADD / Y] \
run Conditioner[signal LEAVE / A,
. SuB /Y]

.
run Count er / \
end / \ /

/ ! \\
end nodule \\\\\\

~_ | -
. | -

Vending Machine Example

Design a vending machine controller that dispenses gun
once. Two inputs, N and D, are present when a nickel an
dime have been inserted, and asiﬁ{;le output, GUM,
should be present for a single cycle when the machine
has been given fifteen cen}:é. No change is returned.

. JWRIALEYS, " F N\
= DOUBLEMINT & 3

e

s i
-

TR,
L

Source: Katz, Contemporary Logic Design, 1994, p. 389

d

Vending Machine Solutio

nodul e

| nput N, D

out put GUM B

| oop

var m:= 0 : intege/A
trap WAIT In
| oop /

present N then m:= m+ 5; end,
present Dthen m:= m+ 10 end
T m>= 15 then eX|t WAI T end
pause .

end
end: ////
emt GUNl \

pause \

end
end ; \
end nodul e |

~_ | -
. | -

Alternative Solution

| oop
awali t
case I medi ate N do awalt

_—

case N do awai't
case N do not hing
case i mMmmedi ate D do not hi ng

end
case |nned|ate D do not hi ng
end *
case i nmedi ate D do await
case i nmedi ate N do “not hi ng

case D do hlng ™
end //;mﬂ\ \\\\
end; \

\

emt GUM pause \
end ;

|
/
/
/
/ /
/
/

\\

Tail Lights Example

Construct an Esterel program that controls the turn
signals of a 1965 Ford Thunderbird.

Source: Wakerly, Digital Design Principléé*&_Practices, 2ed, 1994, p. 550

Tail Light Behavior

Tail Lights

There are three inputs, LEFT, RIGHT, and HAZ, that
Initiate the sequences, and six outputs, LA, LB, LC, RA,
RB, and RC. The flashing sequence is

LC LB LA step RA RB RC

A Single Tail Light

3

out put A, B, C

| oop
emt A, pause;
emt A emt B;
emt A emt B;
pause
end

ause;
emt C, pause;

end nodul e

The T-Bird Controller Interface ™ =
nmodul e Wm_

i nput LEFT, RIGHT, HAZ
output LA, LB, LC, RA, RB,

end nodul e

The T-Bird Controller Body

| oop
awal t
case i medi ate HAZ do S
abor t _ ~_
run Lights[signal LA'A LB/B, LCC

run Lights[signal RNVA RB/B, RYC
when [not HAZ]
case |1 mmedi at e LEFT do

abort
run Lights] $| gnal LA/ A, LB/ B, LCC
when [not LEFT] ~
case imediate RIGHT do \\\
abort / \

run Li ght s[si gnal RA/ A, RB/ B, RC/C
when [not RI GHT] | /
end 5 A | -

Comments on the T-Bird

| choose to use Esterel’s innate ability to control the
execution of processes, producing succinct
easy-to-understand source but a somewhat larger
executable. :

An alternative: Use signals to control the execution of two
processes, one for the left lights, one for the right.

A challenge: synchronizing hazards.

Most communication signals can be either level- or
edge-sensitive.

Control can be done explicitly, or implicitly through signals.

Traffic-Light Controller Example

m)cl 8 This controls a traffic light at the
—————————— Intersection of a busy highway
and a farm road. Normally,

the highway light is green but if a
m ICl e sensor detects a car on the farm
road, the highway light turns yellow then red. The farm
road light then turns green until there are no cars or after
a long timeout. Then, the farm road light turns yellow then
red, and the highway light returns to green. The inputs to
the machine are the car sensor C, a short timeout signal
S, and a long timeout signal L. The outputs are a timer
start signal R, and the colors of the highway and farm road
lights.

Source: Mead and Conway, Introduction to VLSI Systems, 1980, p. 85.

The Traffic Light Contro

nodul e Fsm

\
\
|
|
|
|
|
|
|
|
/
|
/r‘

lnput C, L, S
out put R;
out put HG HY, FG FY;

\\

| oop
emt HG;, emt R await [C and L];

enmit HY : emit R await S
emt FG;, emt R, await [not C or LJ;
emt FY ; emt R await S

end - .
end nodul e \ \\\\\\

The Traffic Light Contr

nodul e ;
| nput R, SEC,
output L, S

| oop \\\\\\\\\
weak abort
awalt 3 SEC
[
sustain S

| | | E
awalt 5 SEC |
sust ai n o |

]
when R

end

end nodul e K\ /L////////

The Traffic Light Controller =

nmodul e TLC
| nput C, SEC,
out put HG HY, FG FY,
signal S, L, Sin
run Fsm
|
run TI ner
end

end nodul e

