A Domain-Specific Language for Device

Drivers

Christopher Conway

16 December 2002

Project Goals

A language for device drivers that is:

e Robust

e Simple

e Platform-independent

e Useful

Hardware interface

Defined using ports, registers and variables.

device NS8390 {

port registers = 0..0x0f ;
port dataport = 0x10..0x17, littleendian ;
port reset = 0x18..0x1f ;

register CommandReg = registers(0),
read mask ’...... *x’ : bit[8];

variable registerPage = CommandRegl[7..6] : int{0.

.2};

Device operations

In C, register writes are a jumble of bit operations:

outb (ES8390_NODMA+E8390_PAGEO+E8390_START,
nic_base+ NE_CMD) ;

outb(count & Oxff, nic_base + ENO_RCNTLO) ;

outb(count >> 8, nic_base + ENO_RCNTHI);

The equivalent NDL code:

command = { nicState=START, remoteDmaState=DISABLED } ;
remoteDmaByteCount = count ;

Operating System Interface

Device operations are grouped into device functions. Functions
expose an external interface defined by a use protocol:

protocol {
NetworkDevice
init (start DevFunc* stop)*
DevFunc :
set_multicast_1list
| start_transmit

| interrupt

.
b

Synchronization
Three levels of protection:

critical {

/* simple mutual exclusion */

}

critical(irq) {

/* mutex + disables the device’s IRQ */

critical (ALL_IRQ) {

/* mutex + disables all processor IRQs */

}

Interrupt Handlers

Interrupt handling routines are tagged with the conditions under
which the should run. A compiler-generated top-level interrupt
function evaluates the conditions and dispatches control.

critical function receive()
Q(interruptStatus.packetRxIrq
| | interruptStatus.rxErrorIrq) {

interruptStatus = { packetRxIrq=ACKNOWLEDGED,
rxErrorIrq=ACKNOWLEDGED } ;

Device Identification

The operating system needs a way of associating a physical de-
vice with a device driver.

identification {

REALTEK { name="RealTek RTL-8029",
id=0x802910ec 1},

HOLTEK32 { name="Holtek HT80232",
1d=0x005812c3,
ioBits=16 1},

HOLTEK29 { name="Holtek HT80229",
1d=0x559812c3,
ioBits=32 }

Conclusion

NDL demonstrates an advance in clarity and expressiveness. A
lines-of-code comparison between C and NDL:

C NDL
3390 1000 | 684
NE2000 | 507 | 142

Total 1507 | 826

Future Work

e Build a compiler.

e Incorporate static verification.

e [est semantics on a broader class of drivers.

