
A Domain-Specific Language for Device Drivers

Christopher Conway

16 December 2002

Abstract

Device drivers are difficult to write and error-prone.
They are usually written in low-level languages with
minimal type safety and little support for device
driver semantics. As a result, they have become a
major source of instability in operating system code.

This paper presents NDL, a type-safe, platform-
independent Network Device Language. NDL pro-
vides high-level abstractions of device resources and
constructs tailored for the expression of common de-
vice driver operations. We show that NDL allows for
the coding of a robust and efficient driver with a code
size reduction of approximately 45%.

1 Introduction

Device drivers have been noted as a major source of
faults in operating system code [2]. Largely for ef-
ficiency, device drivers and other systems code have
historically been written in low-level languages like
C. Unfortunately, these languages do not provide the
type safety and robustness one would expect in crit-
ical systems code. Work has been done to augment
the type safety of low-level languages [3, 6], but the
efficacy of this work is limited by both fundamental
and practical concerns.

In this paper, I will describe NDL, a domain-
specific language for network interface device drivers.
The language has been used to implement a driver
for NE2000 network cards, a widely available class
of inexpensive LAN adaptors. The language includes
direct support for the operational semantics of device
drivers and provides a high level of type safety. Con-
currency semantics are included for the description of
devices with multiple independent operational units.
Though the language has been built for and tested
on network drivers, it is flexible enough to describe a
wider class of drivers. The compiler is also designed
to be readily ported to a wider class of operating sys-
tems.

2 Related Work

A variety of approaches have been suggested to im-
prove the reliability of low-level software and de-
vice driver software in particular. Crary and Mor-
rissett proposed typed assembly language (TAL) as a
compiler target for preserving type information from
higher-level languages [3]. Unfortunately, C, the most
common systems programming language, is not much
more strongly typed than a traditional assembly lan-
guage and there is little the compiler can do to im-
prove the type safety of C code.

Deline and Fähndrich use a similar typing system
in the C-like programming language VAULT [4]. The
use of variables is controlled through type guards
which describe when an operation on a variable is
valid. In order for the compiler to accept the pro-
gram, it must respect the type guards’ access specifi-
cations and types must match at program join points.
VAULT has shown some success in preventing com-
mon programmer errors, but its limitations on alias
types prevent it from being generally applicable to
device driver development.

A more pragmatic approach is static analysis of
traditional C systems code. Ball and Rajamani de-
veloped SLAM, a system that is currently in use in
the Microsoft Windows group [1]. SLAM operates
on a specification for correct behavior developed sep-
arately from the driver code. The result is very good
error detection at compile time for the properties cap-
tured by the specification. However, the analysis can
be slow and may take many iterations to complete.
In addition, the types of errors that may be detected
are restricted in principle, and limited as well by the
correctness of the behavior specification.

A group at the University of Rennes has done
work on domain-specific languages for device drivers.
Thibault, et al., developed GAL, a domain-specific
language for X Windows video drivers [7]. The
project combines a partial evaluation framework with
a language tailored to video driver operations to pro-
duce driver code that is nearly 90% smaller than the
equivalent C code and just as fast. This work is

1

promising, but the methodology may not be appli-
cable to device drivers as a whole.

Mérillon, et al., also of the University of Rennes,
designed a more general solution for device driver de-
velopment: the Devil interface definition language [5].
A Devil specification describes entities exposed for
interaction with a hardware device (e.g., I/O ports,
memory-mapped registers). The specification is com-
piled into a C module for manipulating the device, al-
lowing the driver programmer to write to a clean API
and avoid writing low-level code. This approach pre-
vents certain common low-level programming errors,
but it does not fully specify the protocol for using the
device, and it does not provide the type safety of a
higher-level solution.

3 NDL

The Network Device Language (NDL) is a domain-
specific language for network device drivers. Its inter-
face definition syntax is based on the Devil IDL [5],
but it provides significant additional facilities for de-
vice manipulation and behavioral specification. The
hardware interface is described using ports, registers

and device variables. The behavior of the device is
defined using member variables, device operations, de-

vice functions, platform functions and a protocol spec-

ification. Complex driver semantics are supported
with language constructs for device inheritance, syn-

chronization and interrupt handling. We will demon-
strate the features of NDL using the example of a
driver for the National Semiconductor NE2000 Eth-
ernet controller and the 8390 chipset on which it is
based.

3.1 Ports

Ports abstract the details of device access (e.g., the
base address of the device, whether it is accessed us-
ing I/O or memory operations) and provide a window
for communicating with a device. Consider the port
declarations for the 8390 chipset:

port registers = 0..0x0f ;

port dataport = 0x10..0x17, littleendian ;

port reset = 0x18..0x1f ;

Port ranges indicate offsets from the base address
of the device. dataport is declared littleendian,
meaning that any multi-byte read from or write to
that port should use little-endian byte ordering. The
compiler can use this information to automatically
translate from or to the CPU byte ordering scheme
as needed.

3.2 Registers

Registers define the basic hardware-level granularity
of device access. They are defined by their offset
within a port window and may have separate ports
for reading and writing. A bitmask may be associ-
ated with a register to specify bit constraints. A ‘.’
in a bitmask denotes a bit that is relevant and ‘*’ de-
notes a bit that can be ignored. ‘0’ or ‘1’ denote a bit
that can be ignored when read but has a fixed value
when written. The command register on the 8390 is
defined as:

register CommandReg = registers(0),

read mask ’......**’ : bit[8];

CommandReg is an 8-bit register at the beginning
of the registers port. Only bits 2 through 7 are
considered relevant when the register is read.

3.3 Device Variables

Device registers often contain several semantically
distinct values. To provide independent access to
these values, a device specification may contain de-
vice variables. Device variable values may be taken
from individual bits of a single register, an entire reg-
ister, or multiple registers concatenated together. De-
vice variables are strongly typed. Consider a variable
defined on the command register of the 8390:

variable registerPage =

CommandReg[7..6] : int{0..2};

registerPage takes its value from the high-order
two bits of CommandReg. It is of type int with a range
of values from 0 to 2.

3.4 Member Variables

Member variables are used for storing driver state.
They are not associated with a register or port; they
are statically allocated or created on the stack at run-
time, just as variables in C or C++. They may be
integers, booleans, structures or arrays.

3.5 Device Operations

NDL’s data types and operators simplify the expres-
sion of common device driver operations. Device vari-
ables on a single register can be grouped into struc-
tures to efficiently write their values without the use
of bit operations. Additionally, device variables that
are spread over multiple registers can be read and
written with just one assignment statement.

2

Take, for example, a typical sequence of register
writes in C:

outb(E8390_NODMA+E8390_PAGE0+E8390_START,

nic_base+ NE_CMD);

outb(count & 0xff, nic_base + EN0_RCNTLO);

outb(count >> 8, nic_base + EN0_RCNTHI);

Bit flags are combined and the integer count is
shifted and masked to force its value into a disjoint
register format. The write operations are a series
of low-level I/O calls, using predefined indexes on
the device’s base address. The equivalent NDL code
would use simple assignment and structure syntax:

command = { nicState=START,

remoteDmaState=DISABLED } ;

remoteDmaByteCount = count ;

Another frequent device operation is copying data
to or from buffers and ports. There are common id-
ioms for a buffer-to-buffer copy in C and C++, but
they are complicated by the need to support com-
patible devices with different data bus widths in the
same driver. NDL provides an extraction operator
that handles these differences automatically:

var buffer: byte[count] ;

buffer << dataport ;

In this example, the buffer will be completely filled
from the dataport using the appropriate I/O opera-
tions.

3.6 Device Functions

Device functions expose an interface for interacting
with the device. They combine low-level device oper-
ations to provide access to high-level actions like de-
vice initialization or data transmission. Device func-
tions may take parameters and return a value of any
valid type.

3.7 Platform functions

Certain functions necessary for the proper operation
of the device may be platform-dependent. For exam-
ple, Ethernet cards usually have a packet buffer which
is filled from an operating system queue of outgoing
packets. When the packet buffer is full, the card must
issue a signal to stop pulling packets off the queue
until there is room in the buffer. The nature of this
signal will vary between operating systems.

A platform-specific function is declared using the
keyword platform. Platform functions will be de-
fined or mapped to existing system functions in a
platform-specific library included with the compiler.

protocol {

NetworkDevice :

init (start DevFunc* stop)*

;

DevFunc :

set_multicast_list

| start_transmit

| timeout

| hard_header

| rebuild_header

| set_mac_address

| interrupt

;

}

Figure 1: Protocol specification for an Ethernet adap-
tor.

3.8 Protocol Specification

In order to avoid entering an unknown state, every
driver has a protocol for accessing device resources.
Dependencies between device functions can be de-
fined using a protocol declaration. Protocol decla-
rations begin with the protocol keyword, followed
by a series of yacc-like extended Backus-Naur form
grammar productions. Only functions included in the
protocol declaration are visible outside of the driver.

Figure 1 shows the protocol declaration for
NetworkDevice, the description of a generic Ether-
net adaptor interface. The function init must be
called first, to initialize the device. Then start

may be called to put the device in a running
state, followed by any of the functions denoted by
DevFunc. The DevFunc functions represent typical
Ethernet interface operations like start transmit

and set mac address. (The function interrupt is
special and will be discussed in Section 3.12.) The
DevFunc functions may called in any order and re-
peated any number of times, as indicated by the use
of the Kleene closure operator ‘*’. The protocol con-
cludes with a call to stop. The sequence “start
DevFunc* stop” may be repeated any number of
times, indicating that the device may be restarted
after it has been stopped.

3.9 Device Inheritance

A device may belong to a class that presents a generic
interface to the operating system, or it may belong
to a sub-class of devices that share a usage protocol
(e.g., devices based on a common chipset). NDL pro-

3

abstract device NetworkDevice {

abstract function init() ;

...

}

abstract device NS8390

extends NetworkDevice {

abstract function hard_reset() ;

function init() {

...

hard_reset() ;

...

}

function timeout() {

...

}

device NE2000 extends NS8390 {

function hard_reset() { ... }

...

}

Figure 2: A device that inherits from abstract de-
vices.

vides an interface abstraction and a limited form of
inheritance that allow device drivers to be built in
a modular way, minimizing duplicate code in related
devices.

An NDL specification may represent an abstract
device encapsulating the behavior of a broad class of
devices. A device is considered abstract when one or
more of its functions is declared using the abstract

keyword. An abstract function has no body and rep-
resents a device-specific function that will be defined
in a specification that extends the abstract device.

A device may inherit the behavior, interface and
use protocol of another device using the keyword
extends. The new device has access to all of the
original interface’s variables and functions, and ex-
poses the same interface to the operating system. If
the original device was abstract, then the new device
must define all of its abstract functions, or itself be-
come abstract. The new device may redefine any of
the inherited functions and alter the protocol specifi-
cation as needed.

Figure 2 shows several device specifications with
abstraction and inheritance. NetworkDevice declares
several abstract functions, including init. NS8390

extends NetworkDevice, defines the function init

and declares abstract functions like hard reset to

identification {

REALTEK { name="RealTek RTL-8029",

id=0x802910ec },

HOLTEK32 { name="Holtek HT80232",

id=0x005812c3,

ioBits=16 },

HOLTEK29 { name="Holtek HT80229",

id=0x559812c3,

ioBits=32 }

...

}

Figure 3: An identification block.

modularize board-specific behavior. Finally, NE2000
extends NS8390 and defines all of its abstract func-
tions.

3.10 Device Identification

A device driver must include a method for identifying
the hardware devices it can control to the underlying
system. The PCI bus identifies hardware using a 32-
bit unique ID. The IDs of the devices supported by
the driver can be enumerated using an identification
block. In addition, the block may be used to set
model-specific variables to handle minor inconsisten-
cies between compatible devices. A common exam-
ple is the display name of the device, which should
include the precise vendor and model number rather
than the generic device class.

Figure 3 shows a portion of the identification block
for the NE2000. Each supported board has a handle,
a display name and a unique ID number. The handles
become boolean constants that can be tested in de-
vice functions sensitive to incompatibilities. ioBits

is an implicit member variable that is used by the
compiler to generate correct data operations.

3.11 Synchronization

Device drivers often contain precisely defined actions
on device memory. The code defining these actions
is vulnerable to race conditions. Unpredictable er-
rors can be avoided by protecting critical sections of
code. A critical section is defined with the keyword
critical followed by a block of code to be protected.
Critical blocks prevent another process from enter-
ing any other critical section while the code within
the block is being executed—only one critical section
may be executing in the driver at one time.

4

critical function receive()

@(interruptStatus.packetRxIrq

|| interruptStatus.rxErrorIrq) {

...

interruptStatus = {

packetRxIrq=ACKNOWLEDGED,

rxErrorIrq=ACKNOWLEDGED

} ;

}

Figure 4: An interrupt handling routine, declared
critical.

By itself, critical defines a simple lock; it does
not prevent the driver from being interrupted by an-
other process. Under certain circumstances, this may
lead to deadlock. To prevent an interrupt from oc-
curing on the device’s IRQ line, the declaration is fol-
lowed by an optional parameter: irq. To disable all
interrupts, the parameter takes the macro ALL IRQ.
An entire function may be treated as a critical sec-
tion by placing the declaration critical before the
function definition, as in Figure 4.

3.12 Interrupt Handlers

A function is marked as an interrupt handling rou-
tine using the notation “@(boolean-expr)”. Inter-
rupt handling routines are invoked by a compiler-
generated top-level interrupt handler associated with
the device IRQ. (This function may be referred to
as interrupt in the protocol specification, as in Fig-
ure 1, but it may not be explicitly invoked elsewhere
in the driver.) When an interrupt occurs, each rou-
tine’s boolean expression is evaluated and, if true, the
associated function is executed.

Figure 4 shows an interrupt handling routine. If
either the packetRxIrq or rxErrorIrq fields of the
interruptStatus structure is true at the time of an
interrupt, receive will be invoked and the condition
will be handled. The function ends by acknowledging
the interrupts, clearing the execution condition for
future evaluation.

4 Conclusions

NDL demonstrates the benefits of a domain-specific
language approach to device driver development and
reliability. NDL specifications are more robust, per-
spicuous and concise than their C language equiva-
lents. Figure 5 shows the number of lines of code

C NDL
8390 1000 684
NE2000 507 142

Total 1507 826

Figure 5: A comparison of lines of code in C vs. NDL.

for the full NE2000 device driver (including the sep-
arate 8390 chipset code) written in C and NDL. In
total, the NDL code is approximately 45% shorter, a
significant increase in expressiveness.

The next step is to demonstrate that NDL is a
practical, flexible and efficient choice for real-world
driver code. We intend to develop a Linux compiler
for the language and test it in comparison with ex-
isting C drivers. The compiler will incorporate static
verification techniques and the language may need to
be altered to accomodate more sophisticated model
checking. Work also needs to be done to improve
NDL’s application to a more general class of drivers
and ensure it is able to specify the driver interface on
a wide variety of platforms.

References

[1] Thomas Ball and Sriram K. Rajamani. The
SLAM project: Debugging system software via
static analysis. In Symposium on Principles

of Programming Languages, pages 1–3, Port-
land, Oregon, January 2002. ACM SIGPLAN-
SIGACT.

[2] Andy Chou, Junfeng Yang, Benjamin Chelf, Seth
Hallem, and Dawson R. Engler. An empirical
study of operating system errors. In Proceed-

ings of the 18th ACM Symposium on Operating

Systems Principles, pages 73–88, Banff, Alberta,
Canada, October 2001. ACM.

[3] Karl Crary and Greg Morrisett. Type structure
for low-level programming languages. In Interna-

tional Colloquium on Automata, Languages, and

Programming 1999, volume 1644 of Lecture Notes

in Computer Science, pages 40–54, Prague, Czech
Republic, July 1999. Springer Verlag.

[4] Robert DeLine and Manuel Fähndrich. Enforcing
high-level protocols in low-level software. In Pro-

ceedings of the ACM Conference on Programming

Language Design and Implementation, pages 59–
69, Snowbird, Utah, June 2001. ACM SIGPLAN.

[5] Fabrice Mérillon, Laurent Réveillère, Charles
Consel, Renaud Marlet, and Gilles Muller. Devil:

5

An IDL for hardware programming. In Proceed-

ings of the 4th USENIX Symposium on Operating

System Design and Implementation, pages 17–30,
San Diego, California, October 2000. USENIX.

[6] Greg Morrisett. Type checking systems code. In
European Symposium on Programming, volume
2305 of Lecture Notes on Computer Science, pages
1–5, Grenoble, France, April 2002. Springer Ver-
lag.

[7] Scott Thibault, Renaud Marlet, and Charles Con-
sel. Domain-specific languages: from design
to implementation–application to video device
drivers generation. IEEE Transactions on Soft-

ware Engineering, 25(3):363–377, May-June 1999.

6

