
The C Language
COMS W4995-02

Prof. Stephen A. Edwards
Fall 2002

Columbia University
Department of Computer Science

The C Language

Currently, the most
commonly-used language for
embedded systems

”High-level assembly”

Very portable: compilers
exist for virtually every
processor

Easy-to-understand
compilation

Produces efficient code

Fairly concise

C History

Developed between 1969 and 1973 along
with Unix

Due mostly to Dennis Ritchie

Designed for systems programming

• Operating systems

• Utility programs

• Compilers

• Filters

Evolved from B, which evolved from BCPL

BCPL

Martin Richards, Cambridge, 1967

Typeless

• Everything a machine word (n-bit integer)

• Pointers (addresses) and integers identical

Memory: undifferentiated array of words

Natural model for word-addressed machines

Local variables depend on frame-pointer-relative
addressing: no dynamically-sized automatic objects

Strings awkward: Routines expand and pack bytes to/from
word arrays

C History

Original machine (DEC
PDP-11) was very small:

24K bytes of memory, 12K
used for operating system

Written when computers
were big, capital equipment

Group would get one,
develop new language, OS

C History

Many language features designed to reduce memory

• Forward declarations required for everything

• Designed to work in one pass: must know everything

• No function nesting

PDP-11 was byte-addressed

• Now standard

• Meant BCPL’s word-based model was insufficient

Euclid’s Algorithm in C

int gcd(int m, int n)

{

int r;

while ((r = m % n) != 0) {

m = n;

n = r;

}

return n;

}

“New syle” function
declaration lists
number and type of
arguments.
Originally only
listed return type.
Generated code did
not care how many
arguments were
actually passed,
and everything was
a word.
Arguments are
call-by-value

Euclid’s Algorithm in C

int gcd(int m, int n)

{

int r;

while ((r = m % n) != 0) {

m = n;

n = r;

}

return n;

}

Automatic variable

Allocated on stack
when function
entered, released
on return

Parameters &
automatic variables
accessed via frame
pointer

Other temporaries
also stacked

← Ignored
n
m

FP→ PC
r → SP

Euclid on the PDP-11
.globl gcd GPRs: r0–r7
.text r7=PC, r6=SP, r5=FP

gcd:
jsr r5, rsave Save SP in FP

L2: mov 4(r5), r1 r1 = n
sxt r0 sign extend
div 6(r5), r0 r0, r1 = m ÷ n
mov r1, -10(r5) r = r1 (m % n)
jeq L3 if r == 0 goto L3
mov 6(r5), 4(r5) m = n
mov -10(r5), 6(r5) n = r
jbr L2

L3: mov 6(r5), r0 r0 = n
jbr L1 non-optimizing compiler

L1: jmp rretrn return r0 (n)

Euclid on the PDP-11

.globl gcd

.text
gcd:

jsr r5, rsave
L2: mov 4(r5), r1

sxt r0
div 6(r5), r0
mov r1, -10(r5)
jeq L3
mov 6(r5), 4(r5)
mov -10(r5), 6(r5)
jbr L2

L3: mov 6(r5), r0
jbr L1

L1: jmp rretrn

Very natural
mapping from
C into PDP-11
instructions.

Complex addressing modes
make frame-pointer-relative
accesses easy.

Another idiosyncrasy:
registers were
memory-mapped, so taking
address of a variable in a
register is straightforward.

Pieces of C

Types and Variables

• Definitions of data in memory

Expressions

• Arithmetic, logical, and assignment operators in an
infix notation

Statements

• Sequences of conditional, iteration, and branching
instructions

Functions

• Groups of statements invoked recursively

C Types

Basic types: char, int, float, and double

Meant to match the processor’s native types

• Natural translation into assembly

• Fundamentally nonportable: a function of processor
architecture

Declarators

Declaration: string of specifiers followed by a declarator

static unsigned

basic type
︷︸︸︷

int
︸ ︷︷ ︸

specifiers

(*f[10])(int, char*)[10];
︸ ︷︷ ︸

declarator

Declarator’s notation matches that of an expression: use it
to return the basic type.

Largely regarded as the worst syntactic aspect of C: both
pre- (pointers) and postfix operators (arrays, functions).

Struct bit-fields

Aggressively packs data into memory

struct {

unsigned int baud : 5;

unsigned int div2 : 1;

unsigned int use_external_clock : 1;

} flags;

Compiler will pack these fields into words.

Implementation-dependent packing, ordering, etc.

Usually not very efficient: requires masking, shifting, and
read-modify-write operations.

Code generated by bit fields

struct {

unsigned int a : 5;

unsigned int b : 2;

unsigned int c : 3;

} flags;

void foo(int c) {

unsigned int b1 =

flags.b;

flags.c = c;

}

unsigned int b1 = flags.b

movb flags, %al

shrb 5, %al

movzbl %al, %eax

andl 3, %eax

movl %eax, -4(%ebp)

flags.c = c;

movl flags, %eax

movl 8(%ebp), %edx

andl 7, %edx

sall 7, %edx

andl -897, %eax

orl %edx, %eax

movl %eax, flags

C Unions

Like structs, but only stores the most-recently-written
field.

union {

int ival;

float fval;

char *sval;

} u;

Useful for arrays of dissimilar objects

Potentially very dangerous: not type-safe

Good example of C’s philosophy: Provide powerful
mechanisms that can be abused

Layout of Records and Unions

Modern processors have byte-addressable memory.

0

1

2

3

4

Many data types (integers, addresses, floating-point
numbers) are wider than a byte.

16-bit integer: 1 0

32-bit integer: 3 2 1 0

Layout of Records and Unions

Modern memory systems read data in 32-, 64-, or 128-bit
chunks:

3 2 1 0

7 6 5 4

11 10 9 8

Reading an aligned 32-bit value is fast: a single operation.

3 2 1 0

7 6 5 4

11 10 9 8

Layout of Records and Unions

Slower to read an unaligned value: two reads plus shift.

3 2 1 0

7 6 5 4

11 10 9 8

6 5 4 3

SPARC prohibits unaligned accesses.

MIPS has special unaligned load/store instructions.

x86, 68k run more slowly with unaligned accesses.

Layout of Records and Unions

Most languages “pad” the layout of records to ensure
alignment restrictions.

struct padded {

int x; /* 4 bytes */

char z; /* 1 byte */

short y; /* 2 bytes */

char w; /* 1 byte */

};

x x x x

y y z

w

= Added padding

C Storage Classes
/* fixed address: visible to other files */
int global static;

/* fixed address: only visible within file */
static int file static;

/* parameters always stacked */
int foo(int auto param)
{

/* fixed address: only visible to function */
static int func static;

/* stacked: only visible to function */
int auto i, auto a[10];

/* array explicitly allocated on heap (pointer stacked) */
double *auto d =

malloc(sizeof(double)*5);

/* return value passed in register or stack */
return auto i;

}

malloc() and free()

Library routines for managing the heap
int *a;

a = (int *) malloc(sizeof(int) * k);

a[5] = 3;

free(a);

Allocate and free arbitrary-sized chunks of memory in any
order

malloc() and free()

More flexible than (stacked) automatic variables

More costly in time and space

malloc() and free() use non-constant-time algorithms

Two-word overhead for each allocated block:

• Pointer to next empty block

• Size of this block

Common source of errors:

Using uninitialized memory Using freed memory

Not allocating enough Indexing past block

Neglecting to free disused blocks (memory leaks)

malloc() and free()

Memory usage errors so pervasive, entire successful
company (Pure Software) founded to sell tool to track
them down

Purify tool inserts code that verifies each memory access

Reports accesses of uninitialized memory, unallocated
memory, etc.

Publicly-available Electric Fence tool does something
similar

malloc() and free()
#include <stdlib.h>
struct point {int x, y; };
int play with points(int n)
{

struct point *points;
points = malloc(n*sizeof(struct point));
int i;
for (i = 0 ; i < n ; i++) {

points[i].x = random();
points[i].y = random();

}
/* do something with the array */

free(points);

}

Dynamic Storage Allocation

↓ free()

↓ malloc()

Dynamic Storage Allocation

Rules:

Each allocated block contiguous (no holes)

Blocks stay fixed once allocated

malloc()

Find an area large enough for requested block

Mark memory as allocated

free()

Mark the block as unallocated

Simple Dynamic Storage Allocation

Maintaining information about free memory

Simplest: Linked list

The algorithm for locating a suitable block

Simplest: First-fit

The algorithm for freeing an allocated block

Simplest: Coalesce adjacent free blocks

Dynamic Storage Allocation

S N S S N

↓ malloc()

S S N S S N

Simple Dynamic Storage Allocation

S S N S S N

↓ free()

S S N

Dynamic Storage Allocation

Many, many other approaches.

Other “fit” algorithms

Segregation of objects by size

More clever data structures

malloc() and free() variants

ANSI does not define implementation of malloc()/free().

Memory-intensive programs may use alternatives:

Memory pools: Differently-managed heap areas

Stack-based pool: only free whole pool at once

Nice for build-once data structures

Single-size-object pool:

Fit, allocation, etc. much faster

Good for object-oriented programs

On unix, implemented on top of sbrk() system call
(requests additional memory from OS).

Fragmentation

malloc() seven times give

free() four times gives

malloc() ?

Need more memory; can’t use fragmented memory.

Fragmentation and Handles

Standard CS solution: Add another layer of indirection.

Always reference memory through “handles.”

ha hb hc

*a *b *c
↓ compact

ha hb hc

*a *b *c

The original
Macintosh did
this to save
memory.

Automatic Garbage Collection

Remove the need for explicit deallocation.

System periodically identifies reachable memory and
frees unreachable memory.

Reference counting one approach.

Mark-and-sweep another: cures fragmentation.

Used in Java, functional languages, etc.

Automatic Garbage Collection

Challenges:

How do you identify all reachable memory?

(Start from program variables, walk all data structures.)

Circular structures defy reference counting:

A B

Neither is reachable, yet both have non-zero reference
counts.

Garbage collectors often conservative: don’t try to collect
everything, just that which is definitely garbage.

Arrays

Array: sequence of identical objects in memory

int a[10]; means space for ten integers

By itself, a is the address of the first integer

*a and a[0] mean the same thing

The address of a is not stored in memory: the compiler
inserts code to compute it when it appears

Ritchie calls this interpretation the biggest conceptual
jump from BCPL to C. Makes it unnecessary to initialize
arrays in structures

Lazy Logical Operators

”Short circuit” tests save time

if (a == 3 && b == 4 && c == 5) { ... }

equivalent to

if (a == 3) { if (b ==4) { if (c == 5) { ... } } }

Strict left-to-right evaluation order provides safety

if (i <= SIZE && a[i] == 0) { ... }

The Switch Statment
switch (expr) {

case 1: /* ... */

break;

case 5:

case 6: /* ... */

break;

default: /* ... */

break;

}

tmp = expr;

if (tmp == 1) goto L1;

else if (tmp == 5) goto L5;

else if (tmp == 6) goto L6;

else goto Default;

L1: /* ... */

goto Break;

L5: ;

L6: /* ... */

goto Break;

Default: /* ... */

goto Break;

Break:

Switch Generates Interesting Code

Sparse labels tested sequentially

if (e == 1) goto L1;

else if (e == 10) goto L10;

else if (e == 100) goto L100;

Dense cases uses a jump table:

/* uses gcc extensions */

static void *table[] =

{ &&L1, &&L2, &&Default, &&L4, &&L5 };

if (e >= 1 && e <= 5) goto *table[e];

setjmp/longjmp: Sloppy exceptions

#include <setjmp.h>

jmp buf closure; /* address, stack */

void top(void) {

switch (setjmp(closure)) {

case 0: child(); break;

case 1: /* longjmp called */ break;

}}

void child() {child2(); }

void child2() {longjmp(closure, 1); }

Nondeterminism in C

Library routines

• malloc() returns a nondeterministically-chosen
address

• Address used as a hash key produces
nondeterministic results

Argument evaluation order

• myfunc(func1(), func2(), func3())

• func1, func2, and func3 may be called in any order

Nondeterminism in C

Word sizes
int a;

a = 1 << 16; /* Might be zero */
a = 1 << 32; /* Might be zero */

Uninitialized variables

• Automatic variables may take values from stack

• Global variables left to the whims of the OS?

Nondeterminism in C

Reading the wrong value from a union

• union int a; float b; u; u.a = 10; printf(”%g”, u.b);

Pointer dereference

• *a undefined unless it points within an allocated array
and has been initialized

• Very easy to violate these rules

• Legal: int a[10]; a[-1] = 3; a[10] = 2; a[11] = 5;

• int *a, *b; a - b only defined if a and b point into the
same array

Nondeterminism in C

How to deal with nondeterminism? Caveat programmer

Studiously avoid nondeterministic constructs

Compilers, lint, etc. don’t really help

Philosophy of C: get out of the programmer’s way

C treats you like a consenting adult

Created by a systems programmer (Ritchie)

Pascal treats you like a misbehaving child

Created by an educator (Wirth)

Ada treats you like a criminal

Created by the Department of Defense

