
Assembly Languages
COMS W4995-02

Prof. Stephen A. Edwards
Fall 2002

Columbia University
Department of Computer Science

Assembly Languages

One step up from machine
language

Originally a more
user-friendly way to program

Now mostly a compiler target

Model of computation:
stored program computer

Assembly Language Model

PC →

...

add r1,r2

sub r2,r3

cmp r3,r4

bne I1

sub r4,1

I1:

jmp I3
...

ALU ↔ Registers ↔ Memory

Assembly Language Instructions

Built from two pieces:

add R1, R3, 3

Opcode Operands

What to do with the data Where to get the data

Types of Opcodes
Arithmetic, logical

• add, sub, mult

• and, or

• Cmp

Memory load/store

• ld, st

Control transfer

• jmp

• bne

Complex

• movs

Operands

Each operand taken from a particular addressing mode:

Examples:

Register add r1, r2, r3

Immediate add r1, r2, 10

Indirect mov r1, (r2)

Offset mov r1, 10(r3)

PC Relative beq 100

Reflect processor data pathways

Types of Assembly Languages

Assembly language closely tied to processor architecture

At least four main types:

CISC: Complex Instruction-Set Computer

RISC: Reduced Instruction-Set Computer

DSP: Digital Signal Processor

VLIW: Very Long Instruction Word

CISC Assembly Language

Developed when people wrote assembly language

Complicated, often specialized instructions with many
effects

Examples from x86 architecture

• String move

• Procedure enter, leave

Many, complicated addressing modes

So complicated, often executed by a little program
(microcode)

Examples: Intel x86, 68000, PDP-11

RISC Assembly Language

Response to growing use of compilers

Easier-to-target, uniform instruction sets

“Make the most common operations as fast as possible”

Load-store architecture:

• Arithmetic only performed on registers

• Memory load/store instructions for memory-register
transfers

Designed to be pipelined

Examples: SPARC, MIPS, HP-PA, PowerPC

DSP Assembly Language

Digital signal processors designed specifically for signal
processing algorithms

Lots of regular arithmetic on vectors

Often written by hand

Irregular architectures to save power, area

Substantial instruction-level parallelism

Examples: TI 320, Motorola 56000, Analog Devices

VLIW Assembly Language

Response to growing desire for instruction-level
parallelism

Using more transistors cheaper than running them faster

Many parallel ALUs

Objective: keep them all busy all the time

Heavily pipelined

More regular instruction set

Very difficult to program by hand

Looks like parallel RISC instructions

Examples: Itanium, TI 320C6000

Example: Euclid’s Algorithm

int gcd(int m, int n)

{

int r;

while ((r = m % n) != 0) {

m = n;

n = r;

}

return n;

}

i386 Programmer’s Model

31 0

eax Mostly

ebx General-

ecx Purpose-

edx Registers

esi Source index

edi Destination index

ebp Base pointer

esp Stack pointer

eflags Status word

eip Instruction Pointer

15 0

cs Code segment

ds Data segment

ss Stack segment

es Extra segment

fs Data segment

gs Data segment

Euclid on the i386
.file "euclid.c" # Boilerplate
.version "01.01"

gcc2 compiled.:
.text # Executable
.align 4 # Start on 16-byte boundary
.globl gcd # Make “gcd” linker-visible
.type gcd,@function

gcd:
pushl %ebp
movl %esp,%ebp
pushl %ebx
movl 8(%ebp),%eax
movl 12(%ebp),%ecx
jmp .L6

.p2align 4,,7

Euclid on the i386

.file "euclid.c"

.version "01.01"
gcc2 compiled.:

.text

.align 4

.globl gcd

.type gcd,@function
gcd:

pushl %ebp
movl %esp,%ebp
pushl %ebx
movl 8(%ebp),%eax
movl 12(%ebp),%ecx
jmp .L6

.p2align 4,,7

Stack Before Call
n 8(%esp)
m 4(%esp)

%esp→ R. A. 0(%esp)

Stack After Entry
n 12(%ebp)
m 8(%ebp)

R. A. 4(%ebp)
%ebp→ old ebp 0(%ebp)
%esp→ old ebx −4(%ebp)

Euclid in the i386
jmp .L6 # Jump to local label .L6

.p2align 4,,7 # Skip ≤ 7 bytes to a multiple of 16

.L4:
movl %ecx,%eax
movl %ebx,%ecx

.L6:
cltd # Sign-extend eax to edx:eax
idivl %ecx # Compute edx:eax / ecx
movl %edx,%ebx
testl %edx,%edx
jne .L4
movl %ecx,%eax
movl -4(%ebp),%ebx
leave
ret

Euclid on the i386
jmp .L6

.p2align 4,,7

.L4:
movl %ecx,%eax # m = n
movl %ebx,%ecx # n = r

.L6:
cltd
idivl %ecx
movl %edx,%ebx
testl %edx,%edx # AND of edx and edx
jne .L4 # branch if edx was 6= 0
movl %ecx,%eax # Return n
movl -4(%ebp),%ebx
leave # Move ebp to esp, pop ebp
ret # Pop return address and branch

SPARC Programmer’s Model

31 0

r0 Always 0

r1 Global Registers
...

r7

r8/o0 Output Registers
...

r14/o6 Stack Pointer

r15/o7

r16/l0 Local Registers
...

r23/l7

31 0

r24/i0 Input Registers
...

r30/i6 Frame Pointer

r31/i7 Return Address

PSW Status Word

PC Program Counter

nPC Next PC

SPARC Register Windows

The output registers of
the calling procedure
become the inputs to
the called procedure

The global registers
remain unchanged

The local registers are
not visible across
procedures

r8/o0...
r15/o7
r16/l0...
r23/l7

r8/o0 r24/i0... ...
r15/o7 r31/i7
r16/l0...
r23/l7

r8/o0 r24/i0... ...
r15/o7 r31/i7
r16/l0...
r23/l7
r24/i0...
r31/i7

Euclid on the SPARC
.file "euclid.c" # Boilerplate

gcc2 compiled.:
.global .rem # make .rem linker-visible
.section ".text" # Executable code
.align 4
.global gcd # make gcd linker-visible
.type gcd, #function
.proc 04

gcd:
save %sp, -112, %sp # Next window, move SP

mov %i0, %o1 # Move m into o1
b .LL3 # Unconditional branch
mov %i1, %i0 # Move n into i0

Euclid on the SPARC
mov %i0, %o1
b .LL3
mov %i1, %i0

.LL5:
mov %o0, %i0 # n = r

.LL3:
mov %o1, %o0 # Compute the remainder of
call .rem, 0 # m / n, result in o0
mov %i0, %o1

cmp %o0, 0
bne .LL5
mov %i0, %o1 # m = n (always executed)
ret # Return (actually jmp i7 + 8)
restore # Restore previous window

Digital Signal Processor Apps.

Low-cost embedded systems

• Modems, cellular telephones, disk drives, printers

High-throughput applications

• Halftoning, base stations, 3-D sonar, tomography

PC based multimedia

• Compression/decompression of audio, graphics, video

Embedded Processor
Requirements

Inexpensive with small area and volume

Deterministic interrupt service routine latency

Low power: ≈50 mW (TMS320C54x uses 0.36 µA/MIPS)

Conventional DSP Architecture

Harvard architecture

• Separate data memory/bus and program memory/bus

• Three reads and one or two writes per instruction cycle

Deterministic interrupt service routine latency

Multiply-accumulate in single instruction cycle

Special addressing modes supported in hardware

• Modulo addressing for circular buffers for FIR filters

• Bit-reversed addressing for fast Fourier transforms

Instructions to keep the pipeline (3-4 stages) full

• Zero-overhead looping (one pipeline flush to set up)

• Delayed branches

Conventional DSPs

Fixed-Point Floating-Point

Cost/Unit $5–$79 $5–$381

Architecture Accumulator load-store

Registers 2–4 data, 8 address 8–16 data, 8–16 address

Data Words 16 or 24 bit 32 bit

Chip Memory 2–64K data+program 8–64K data+program

Address Space 16–128K data 16M–4G data

16–64K program 16M–4G program

Compilers Bad C Better C, C++

Examples TI TMS320C5x TI TMS320C3x

Motorola 56000 Analog Devices SHARC

Conventional DSPs

Market share: 95% fixed-point, 5% floating-point

Each processor comes in dozens of configurations

• Data and program memory size

• Peripherals: A/D, D/A, serial, parallel ports, timers

Drawbacks

• No byte addressing (needed for image and video)

• Limited on-chip memory

• Limited addressable memory on most fixed-point
DSPs

• Non-standard C extensions to support fixed-point data

Example

Finite Impulse Response filter (FIR)

Can be used for lowpass, highpass, bandpass, etc.

Basic DSP operation

For each sample, computes

yn =

k∑

i=0

aixn+i

where

a0, . . . , ak are filter coffecients,

xn is the nth input sample, yn is the nth output sample.

56000 Programmer’s Model

55 4847 2423 0
x1 x0 Source
y1 y0 Registers

a2 a1 a0 Accumulator
b2 b1 b0 Accumulator

15 0
r7...
r4
r3...
r0

15 0
n7...
n4
n3...
n0

15 0
m7...
m4
m3...
m0

Address
Registers

15 0
Program Counter
Status Register
Loop Address
Loop Count

15 PC Stack...
0

15 SR Stack...
0

Stack pointer

56001 Memory Spaces

Three memory regions, each 64K:

• 24-bit Program memory

• 24-bit X data memory

• 24-bit Y data memory

Idea: enable simultaneous access of program, sample,
and coefficient memory

Three on-chip memory spaces can be used this way

One off-chip memory pathway connected to all three
memory spaces

Only one off-chip access per cycle maximum

56001 Address Generation

Addresses come from pointer register r0 . . . r7

Offset registers n0 . . . n7 can be added to pointer

Modifier registers cause the address to wrap around

Zero modifier causes reverse-carry arithmetic

Address Notation Next value of r0
r0 (r0) r0
r0 + n0 (r0+n0) r0
r0 (r0)+ (r0 + 1) mod m0
r0 - 1 -(r0) r0 - 1 mod m0
r0 (r0)- (r0 - 1) mod m0
r0 (r0)+n0 (r0 + n0) mod m0
r0 (r0)-n0 (r0 - n0) mod m0

FIR Filter in 56001
n equ 20 # Define symbolic constants
start equ $40
samples equ $0
coeffs equ $0
input equ $ffe0 # Memory-mapped I/O
output equ $ffe1

org p:start # Locate in prog. memory
move #samples, r0 # Pointers to samples
move #coeffs, r4 # and coefficients
move #n-1, m0 # Prepare circular buffer
move m0, m4

FIR Filter in 56001
movep y:input, x:(r0) # Load sample into memory

Clear accumulator A
Load a sample into x0

Load a coefficient
clr a x:(r0)+, x0 y:(r4)+, y0

rep #n-1 # Repeat next instruction n-1 times
a = x0 × y0

Next sample
Next coefficient

mac x0,y0,a x:(r0)+, x0 y:(r4)+, y0

macr x0,y0,a (r0)-
movep a, y:output # Write output sample

TI TMS320C6000 VLIW DSP

Eight instruction units dispatched by one very long
instruction word

Designed for DSP applications

Orthogonal instruction set

Big, uniform register file (16 32-bit registers)

Better compiler target than 56001

Deeply pipelined (up to 15 levels)

Complicated, but more regular, datapath

Pipelining on the C6

One instruction issued per clock cycle

Very deep pipeline

• 4 fetch cycles

• 2 decode cycles

• 1-10 execute cycles

Branch in pipeline disables interrupts

Conditional instructions avoid branch-induced stalls

No hardware to protect against hazards

• Assembler or compiler’s responsibility

FIR in One ’C6 Assembly Instruction

Load a halfword (16 bits)

Do this on unit D1
FIRLOOP:

LDH .D1 *A1++, A2 ; Fetch next sample
|| LDH .D2 *B1++, B2 ; Fetch next coeff.
|| [B0] SUB .L2 B0, 1, B0 ; Decrement count
|| [B0] B .S2 FIRLOOP ; Branch if non-zero
|| MPY .M1X A2, B2, A3 ; Sample × Coeff.
|| ADD .L1 A4, A3, A4 ; Accumulate result

Use the cross path

Predicated instruction (only if B0 non-zero)

Run these instruction in parallel

Peripherals

Often the whole point of the system

Memory-mapped I/O

• Magical memory locations that make something
happen or change on their own

Typical meanings:

• Configuration (write)

• Status (read)

• Address/Data (access more peripheral state)

Example: 56001 Port C

Nine pins each usable as either simple parallel I/O or as
part of two serial interfaces.

Pins:
Parallel Serial
PC0 RxD Serial Communication Interface (SCI)
PC1 TxD
PC2 SCLK

PC3 SC0 Synchronous Serial Interface (SSI)
PC4 SC1
PC5 SC2
PC6 SCK
PC7 SRD
PC8 STD

Port C Registers for Parallel Port

Port C Control Register

Selects mode (parallel or serial) of each pin

X: $FFE1 Lower 9 bits: 0 = parallel, 1 = serial

Port C Data Direction Register

I/O direction of parallel pins

X: $FFE3 Lower 9 bits: 0 = input, 1 = output

Port C Data Register

Read = parallel input data, Write = parallel data out

X: $FFE5 Lower 9 bits

Port C SCI

Three-pin interface

422 Kbit/s NRZ asynchronous interface (RS-232-like)

3.375 Mbit/s synchronous serial mode

Multidrop mode for multiprocessor systems

Two Wakeup modes

• Idle line

• Address bit

Wired-OR mode

On-chip or external baud rate generator

Four interrupt priority levels

Port C SCI Registers

SCI Control Register

X: $FFF0 Bits Function
0–2 Word select bits
3 Shift direction
4 Send break
5 Wakeup mode select
6 Receiver wakeup enable
7 Wired-OR mode select
8 Receiver enable
9 Transmitter enable
10 Idle line interrupt enable
11 Receive interrupt enable
12 Transmit interrupt enable
13 Timer interrupt enable
15 Clock polarity

Port C SCI Registers

SCI Status Register (Read only)

X: $FFF1 Bits Function
0 Transmitter Empty
1 Transmitter Reg Empty
2 Receive Data Full
3 Idle Line
4 Overrun Error
5 Parity Error
6 Framing Error
7 Received bit 8

Port C SCI Registers

SCI Clock Control Register

X: $FFF2 Bits Function
11–0 Clock Divider
12 Clock Output Divider
13 Clock Prescaler
14 Receive Clock Source
15 Transmit Clock Source

Port C SSI

Intended for synchronous, constant-rate protocols

Easy interface to serial ADCs and DACs

Many more operating modes than SCI

Six Pins (Rx, Tx, Clk, Rx Clk, Frame Sync, Tx Clk)

8, 12, 16, or 24-bit words

Port C SSI Registers

SSI Control Register A $FFEC

Prescaler, frame rate, word length

SSI Control Register B $FFED

Interrupt enables, various mode settings

SSI Status/Time Slot Register $FFEE

Sync, empty, oerrun

SSI Receive/Transmit Data Register $FFEF

8, 16, or 24 bits of read/write data.

