FUNCTIONAL PROGRAMMING (2)
PROF. SIMON PARSONS

o The advantage of call-by-need is that we waste no computation.
o The disadvantage is the expense of implementation.

o In general with functional languages we distinguish between
eager and lazy evaluation.

o Eager evaluation does everything as soon as possible without
worrying whether it is useful.

o Lazy evaluation only does things when absolutely necessary.

o They roughly correspond to call-by-value and call-by-need.

Functional Programming Lecture 2

o One such is:
--- f(x, y) <= if x <10 then x else y

o This does not always need the value of y, but does need the
value of X.

o It is thus strict in X.
e And non-strictiny.

o Thus when x < 10, we waste computation evaluating y since
there is no need to know its value.
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o Last lecture I introduced functional programming using the
language HOPE.

e This allows us to write functions like:

dec map : (al pha -> beta) # |ist(al pha)
-> list(beta);
--- map(f, nil) <=nil;
--- map(f, x 10 1) <=f(x) :: map(f, |);
o This lecture will look at the mathematical underpinning of
functional languages.

 But first we will look at some more typical things one can do
with them.

Functional Programming Lecture 2 2

o However, there is more to eagerness and laziness than just these
efficiency issues.

o Their effect permeates the whole of functional programming.

o In particular they determine what it is possible to do at the
extreme limits of the language.

o (For example, handling infinite data structures.)

o Let’s start by considering the limitations that strictness imposes
on a language.
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e As an extreme, consider:
f(4, <non-termnating expression>)

o Here, an eager implementation would cause the program to fail,
whereas a lazy one would give us 4.

o Of course, this does not help us when we have:

f(<non-term nating expression>, 4)
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o One important property of functional languages is the way they
handle parameters.

o We are used to passing parameters using call-by-value.
® You may even have come across call-by-reference.

e Call by value is good for efficiency.

o It may, however, result in redundant computation.

® So we also consider call-by-need where arguments are passed
unevaluated and evaluated when required.
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e The function + is strict.

o It requires that both its arguments are known before it can be
called.

® More precisely any function which requires at least one of its
arguments have known value before it can be called is strict.

e +is strict in both arguments.

o Some functions work perfectly well without being strict.
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o To see how laziness can eliminate redundant computation,
consider the function:

dec reduce : (alpha # beta -> beta)
# beta # list(al pha) -> beta
--- reduce(f, b, nil) <= b;
--- reduce(f, b, x::1) <= f(x, reduce(f, b, 1));

o This function takes a function as an argument and applies it to
reduce a list to a single element.

e b is what you use as an argument when you get to the end of the
list.

e Thusreduce(+, 0, L) sums the elements of L and
reduce(*, 1, L) computes their product.
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o Writing b for:

| anbda(el, isthere) => if isthere then true
else (1 = el)

we canuser educe(b, false, List) totestiflisinList.
o Consider doing this for thelist[1, 3, 5, 7].

o For eager evaluation we would get:
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o We read this lambda expression as follows.
e The A we read as “The function of”.
e The dot we read as “which returns”.
® So, the whole thing is:

The function of 2 which returns z times 2.
o Of course it is very similar to:

lanbda x => 2 * x
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o When we call a lambda function we place it in brackets before its
argument.

o Thus calling:
Az x2x

on the value 4 is done by writing:
(Az.x2x)4
and we call:
Az.(My. * (+2 y)2))
with y as 2 and z as 3 by:

(Az.(Ay. * (+x y)2) 2) 3
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reduce(b, false, [1, 3, 5, 7]
b(1, b(3, b(5, b(7, false))))
b(1, b(3, b(5, false)))

b(1, b(3, false))

b(1, false)

true

o If the implementation were lazy, we would get:

reduce(b, false, [1, 3, 5, 7]
b(1, b(3, b(5, b(7, false))))
true

since in this case the second argument never has to be evaluated.
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e The z in the lambda abstraction is called the bound variable.
o This corresponds to the idea of a formal parameter.

o The bit of the lambda abstraction to the right of the dot is the
body.

o The body can be any valid lambda expression, so it can be
another lambda abstraction.

Az Ay, * (+2 y)2

“ The function of = which returns the function of y which returns
the sum of z and y multiplied by 2.”
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o This is all there is to the syntax of the lambda calculus.
o The BNF is:
<exp> ::=)<id>. <exp>| <i d>
| <exp><exp>| (<exp>) | <con>

<i d> = any identifier
<con> ::= constant

o There is a suprising amount that you can put together with such
a simple syntax.
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Lambda calculus

o The lambda calculus is the calculus of anonymous functions.

o It provides a means of representing functions and a means of
transforming them.

e Let’s consider a very simple function:
--- double(x) <=2 * x
o We write this in lambda notation as:
Az x2x
o Dropping the name anonymises the function.

o Note that we use the prefix form of the * function.
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o This is just the lambda calculus version of:
|anbda x => lanbda y => (x +y) * 2
o All lambda calculus functions have just a single argument.

o So multi-argument functions become multiple applications of
single-argument functions.

o This is known as “currying”.

o Although we should write brackets between the different
functions:
(Az.(Ay. * (+2 y)2))
by convention we don’t.
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o The syntax shows us how to build valid lambda expressions.
o But how do we evaluate them?

o We have conversion rules which do this.

o The first rule is the simplest.

o Constants evaluate to constants.

o Other functions are reduced using the d-rules.

o These allow us to replace function applications with their values.
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o For example:
+13 —54
we read this as “+ 1 3 reduces to 4”.

o To do this we have to have the arguments of the function be
themselves already reduced.

® So we cannot directly reduce:
*(+12)(—41)

o Instead we have to reduce each argument of the outer * first.
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o For example:
((Az. Ay + 2 y)7)8)
will reduce as:
(AzAy. + 2 y)7)8) —5 (A\y. +Ty)8
—p5 +78
—s 15

o However, we have to be careful in doing this.
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o There is one other form of reduction
o n-reduction allows the reduction:
. Ex—, B
if 2 does not occur free in E since:
(A\z.Ez)A
is just
EA
e This is not widely used.

o (It is a compile-time feature rather than a run-time one.)
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e So we have:

*(+12)(—41)
—s (+12)3
—5 %33
—5 9

o This reduction then evaluates simple functions.

e To evaluate lambda abstractions we need a 3-reduction
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e Consider:
Az.(Az.z)(+1 z)

e Here we have two distinct s.

o There is the inner one, in the (+1 z), and the one referred to in
the outer \z.

o Thus it would be wrong to do a 3-reduction for the argument 1

as:
(Az.(Az.z)(+12))1
— (Az.1)(+11)
nd 1
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o Sometimes we have a choice in the order we apply reductions.
o This can have a big impact on the result.

o Consider:
Az Ay y)(Az.z 2)(Az.z 2))

o Here we end up either trying to reduce:
(Az.z 2)(Az.z 2)

or
Az Ay.y)(Az.z 2)(Az.2 2))
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o A (-reduction replaces the value of the bound variables with the
values they are called with.

o Thus evaluating:
(Az.*z x)2

we have:

(Az.xz2)2 —p %22
—5 4

o This kind of reduction might end up having to be repeated.
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e We have to be careful not to substitute inside an abstraction if the
bound variable has the same name as the variable being
substituted.

o The easiest way to do avoid this is to do a-conversion.

e This is to rename the bound variables to make them have
different names.

o The same thing as standardising variables in logic.
o Applying this to our previous example, gives:

Az (Ay.y)(+1 z)
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o If we try to reduce the first one we get:

(Az.z 2)(Az.2 2)
— (Az.z2)(Az.z 2)
— (Az.z2)(A\z.z 2)

which does not terminate.
o IF we reduce the other we get:

Az Ay.y)(Az.z 2)(A\z.z 2))
— Ay.y

which does terminate.

e So, order matters.
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o We call the expression being reduced the redex.
o Then we have:

o The leftmost redex is the one whose ) is to the left of all other
redexes in the expression.

o The rightmost is similarly defined.
o The outermost redex is a redex not contained in any other redex.
o The innermost redex is one which contains no other.

o We can then define two ways of reducing expressions.
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o A lambda expression is said to be in normal form when it can be
reduced no more.

e Thus:
Ay.y
is the normal form of:

Az y.y)(Az.z 2)(A\z.z 2))

o It turns out that there is something special about the normal
form, and normal order reduction.

o Basically we can use NOR to get the same normal form
expression whatever way we do the reduction.
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o Applicative order reduction (AOR) says you should always reduce
the leftmost innermost redex first.

o Normative order reduction (NOR) says you should always reduce
the leftmost outermost redex first.

¢ So in our example,
(Az.z 2)(Az.z 2)
is the leftmost innermost, and
Az Ay.y)(Az.2 2)(Az.2 2))

is the leftmost outermost.
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o The Church-Rosser theorem has as a consequence:

If an expression £ can be reduced in two different ways to two
normal forms, then these normal forms are the same up to
alphabetical equivalence.

o The last bit means you can change variable names to make them
identical.

o The standardization theorem says:

If an expression £ has a normal form then reducing the leftmost
outermost redex at each stage in the reduction of F guarantees to
reach that normal form (up to alphabetical equivalence).
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o Thus AOR will try to evaluate:
(Az.z 2)(Az.z 2)
and so fail to terminate, while:
Az Ay.y)(Az.z 2)(Az.z 2))
will be evaluated by normal order reduction and this will
terminate.
o Do not infer from this that NOR is better than AOR.

o While NOR plays safe, and avoids evaluating any expressions
until it has to, AOR is more efficient on conventional computers.

o Of course, AOR is related to eager evaluation, and NOR to lazy
evaluation.
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o Thus the normal form is unique.

o (Which is exactly what we want— it would be a shame if
different implementations of the same function could give us
different results.)

o We also have the diamond property for reductions.

If you can reduce E to E1 and E2 by applying any reduction
operation several times, then by applying the same operation
some more, you can reduce both E1 and E2 down to some
expression N.
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