
ANTLR: A Compiler Development Tool

Stephen A. Edwards

ANTLR comprises the functionality of a lexer generator (e.g.,
supplanting lex or flex), a parser generator (e.g., supplanting
YACC or Bison), and an AST walker. It is highly customizable,
has been under development for many years, and generates code
in Java, C++, or Sather formats. I have found it to be very flexi-
ble and embody many best compiler design practices.

To illustrate ANTLR, I show how it can be used to build a
grammar for a simple calculator-like language that parses and
interprets “programs” that look like

foo = 3 + 4;
bar = 2 * (5 + 4);
print "The answer is";
print foo + bar;
if foo+bar then print "non zero";

1 The Lexer

Figure 1 shows the lexer for the simple langauge. Running this
throughANTLR produces a Java class called “SimpLexer” that
produces tokens from the input stream. Figure 4 shows how
a lexer is created, connected to the standard input stream (this
could also have been a file), and passed to the parser.

Lexer rules begin with a capital letter and contain grammar-
like specifications for the text of a token.

Unlike Lex or Flex,ANTLR generates predictive lexers that
behave much like recursive-descent parsers. The firstk char-
acters of a token must be enough to distinguish which non-
protected rule is in force. For this examplek = 2 (set in the
options section) because the lexer needs to look two characters
ahead to decide when a string constant terminates.

Protected rules in the lexer can be used by other rules, but do
not return tokens by themselves. In this example, LETTER and
DIGIT are used in the rules for ID and NUMBER; the parser
will never see LETTER or DIGIT tokens by itself.

ANTLR handles keywords differently than automata-based scan-
ners. Rather than having a separate rule for each keyword and
construct a complicated automata that can identify them,ANTLR

assumes keywords are caught by other rules (typically identi-
fiers, as in this lexer, although any rule can be used in this way:
the rule for PARENS is used in this way in this example). After
each token is recognized, the scanner checks its literals table to
see if the text for the token matches one of the literals (e.g., a
keyword). If the text matches, the scanner returns the type of
the literal token, not the rule that matched it.

An advantage of this approach is that the parser has a sim-
ple mechanism for passing keywords (“if,” “then,” “else,” “(,”
and “)” in this example) to the lexer. Literal strings—in double
quotes—in the parser are entered in the lexer’s literal table and
matched.

This technique of matching token text can have pitfalls. We
do not want a string such as “if” being parsed as a keyword. In

class SimpLexer extends Lexer;
options { testLiterals = false; k = 2; }

PLUS : ’+’ ;
MINUS : ’-’ ;
TIMES : ’*’ ;
DIV : ’/’ ;
ASSIGN : ’=’ ;
PARENS options { testLiterals = true; }

: ’(’ | ’)’ ;
SEMI : ’;’ ;

protected LETTER : (’a’..’z’ | ’A’..’Z’) ;
protected DIGIT : ’0’..’9’ ;

ID options { testLiterals = true; }
: LETTER (LETTER | DIGIT | ’_’)* ;

NUMBER : (DIGIT)+;

STRING : ’"’! (’"’ ’"’! | ˜(’"’))* ’"’! ;

WS : ( ’ ’ | ’\t’ | ’\n’ { newline(); } | ’\r’ )
{ $setType(Token.SKIP); } ;

Figure 1: The Lexer for the simple langauge.

this example, I avoided this problem by turning literal matching
off for all but the ID and PARENS rules; theANTLR-generated
lexer will not check its literal table when it encounters a string.

Actions can be included in the lexer by enclosing Java code in
braces. I’ve used an action to discard whitespace: by setting the
type of the token to “SKIP,” the lexer discards the token and goes
on to the next. A call to “newline” in the rule for whitespace
counts the number of lines.

Like all of ANTLR, lexer specifications use an extended BNF
form in rules. In this example, I’ve used the Kleene star op-
erator to represent zero or more instances of letters, digits, or
underlines in the rule for ID.

The rule for STRING is rather cryptic, but very convenient
because ofANTLR ’s ability to modify the text of a token as it
is being scanned (impossible with an automata-based scanner).
The chosen syntax for string constants is a sequence of charac-
ters enclosed in double quotes" . A double quote is included
in the string by doubling double quotes, i.e.,"" . The lexer
rule modifies the string as it is being scanned so the text of the
string token is as desired: the! s after the first and last double
quotes discard them when they are encountered, removing the
surrounding quotes, and the! in the body discards the second
of two double quotes in a row. Thus, only the first double quote
in a pair is copied into the text, exactly what the escape sequence
implies.

2 The Parser

Figure 2 shows the parser for the simple langauge.ANTLR

builds LL(k) recursive-descent parsers. The advantage of such
an approach is that actions can be inserted anywhere within the

1



class SimpParser extends Parser;
options { buildAST = true; k = 2; }

file : (expr SEMI!)+ EOF!;

expr
: "if"ˆ expr "then"! expr

(options {greedy=true;} : "else"! expr)?
| "print"ˆ (STRING | expr)
| ID ASSIGNˆ expr
| expr1
;

expr1 : expr2 ( (PLUSˆ | MINUSˆ) expr2 )* ;
expr2 : expr3 ( (TIMESˆ | DIVˆ) expr3 )* ;
expr3

: ID
| "("! expr ")"!
| NUMBER
| MINUSˆ expr3
;

Figure 2: The parser for the simple langauge.

grammar, including very early in a rule, and that the operation of
the parser is easy-to-understand because it is essentially a direct
translation of the grammar. The disadvantage of this approach
is that LL(k) langauges are more restricted than the LALR(1)
grammarsYACC or Bison parse. This example hask = 2 be-
cause it is necessary to look two tokens ahead to recognize the
assignment operation (both assignment and expr1 can start with
an ID, but only assignment may have an “=” following it).

Rules in the parser begin with lowercase letters and contain
EBNF expressions (include Kleene closure()* , zero-or-one
()? , one-or-more()+ in addition to sequencing, choice, and
grouping) describing the grammar for each rule.

Unlike YACC or Bison, anANTLR grammar needs operator
precedence and associativity stated implicitly. E.g., in this ex-
ample, the “if” “print” and assignment operators are at the low-
est precedence,+ and− are next, then∗ and /, and finally
atoms. This is perhaps the most awkward aspect of specifying
ANTLR grammars compared to other parser generators.

Many grammars are inherently ambiguous. A typical ex-
ample is the “dangling else” problem: there is confusion over
which “if” owns an “else” clause when if-then-else statements
nest. The usual solution is to attach the “else” to the nearest
“if,” and this parser is no exception. This is specified by set-
ting the “greedy” option in the optional “else” clause part of the
“if” rule. Normally, the generated code for parsing an optional
clause needs to decide whether to try to parse the optional clause
or continue one. It does this by looking at tokens that start the
optional clause as well as those that may follow it. An “else” to-
ken appears in both sets because the “expr” being parsed could
be the one after a “then”, which may have an “else” following
it. The greedy option makes the parser prefer the optional clause
over skipping it when such ambiguity arises.

ANTLR parsers can automatically generateASTs; this exam-
ple takes advantage of this facility. By setting thebuildAST
option true, by default every token becomes a sibling of theAST

being constructed, but annotations can refine this behavior. A!
following a token supresses the generation of anAST node (e.g.,
for punctuation such as parentheses and semicolons). Aˆ fol-
lowing a token makes it the root of a new subtree. This is used
in virtually every rule to impose structure on theAST.

By default,ANTLR builds homogeneousASTs (i.e., every node

class SimpWalker extends TreeParser;
{ java.util.Hashtable dict = new java.util.Hashtable(); }

file { int a; } : (a=expr)+ ;

expr returns [ int r ]
{ int a, b, c; r = 0; }
: #("if" a=expr b=expr {c = 0;} (c=expr)?

{ if (a != 0) r=b; else r=c; } )
| #("print"

( s:STRING { System.out.println(#s.getText()); }
| a=expr { System.out.println(a); } ) )

| #(ASSIGN ID a=expr
{ dict.put(#ID.getText(), new Integer(a)); } )

| #(PLUS a=expr b=expr { r = a + b; } )
| #(MINUS a=expr b=expr { r = a - b; } )
| #(TIMES a=expr b=expr { r = a * b; } )
| #(DIV a=expr b=expr { r = a / b; } )
| ID { if ( !(dict.containsKey(#ID.getText())))
System.err.println("unrecognized: "+#ID.getText());

r = ((Integer) dict.get(#ID.getText())).intValue();
}

| NUMBER {
r = Integer.parseInt(#NUMBER.getText(), 10);

}
;

Figure 3: The AST walker for the simple language.

is a member of the same class), but it has extensive facilities for
automatically building more complicatedASTs.

3 The AST Walker

Once the parser has built theAST, it’s useless unless you do
something with it, such as traverse it to check static semantics,
transform it into a lower-level representation, or, in this case,
execute it in an interpretive style.

Figure 3 showsANTLR rules for anAST walker that interprets
the AST. The rules look much like those for a parser, but they
operate on trees. The syntax#(PLUS expr expr) means
“match a tree whose root is a PLUS token with two children that
match the expr rule.” No lookahead is used: the root of each tree
must be enough to disambiguate among multiple rules. Note
also that no precedence rules are necessary: the structure of the
AST already embodies them from parsing.

The rule for expr is the only interesting one. The rule defi-
nition says it returns an integer—the value of the expression—
and the generated method contains local variables a, b, and c.
The actions simply evaluate any child expressions then compute
and return the value of the expression. Assignment enters the
value of its expression in a hash table indexed by the name of the
variable, and the rule for ID attempts to retrieve such an entry
by searching on the text of the token—the identifier itself. The
number rule converts the text of its token—the actual number—
into a base-10 integer before returning it.

import antlr.CommonAST;
class Simp {

public static void main(String[] args) {
try {

SimpLexer l = new SimpLexer(System.in);
SimpParser p = new SimpParser(l);
p.file();
SimpWalker w = new SimpWalker();
w.file((CommonAST) p.getAST());

} catch (Exception e) {
System.err.println(e);

}}}
Figure 4: The driver for the simple langauge.

2


