ANTLR: A Compiler Development Tool

Stephen A. Edwards

: : : lass SimpLexer extends Lexer;

ANTLR comprises the functionality of a lexer generator (e.ggptions { testLiterals = false: k = 2: }
supplanting lex or flex), a parser generator (e.g., supplanting
YACC or Bison), and an AST walker. It is highly customizablepLus : '+ ;
has been under development for many years, and generates é’!lilsligg'
in Java, C++, or Sather formats. | have found it to be very fle%-lv Do
ble and embody many best compiler design practices. ASSIGN : '=' -

To illustrate ANTLR, | show how it can be used to build aPARENS options { testLiterals = true; }
grammar for a simple calculator-like language that parsesand . C 1)"
; “ » : SEMI
interprets “programs” that look like

protected LETTER : (a..'z’ | 'A..Z) ;

foo = 3 + 4; protected DIGIT : '0"..9’ ;

bar = 2 * (5 + 4);

; " [SRTR ID options { testLiterals = true; }
pr!nt The ansvyer IS%, : LETTER (LETTER | DIGIT | "_)* ;
print foo + bar; NUMBER : (DIGIT)+;
if foo+bar then print "non zero";

STRING : ™! (™ ™1 | "("™)* ™1 ;

1 The Lexer)

WS : (" || \n" { newline(); } | \r)
Figure 1 shows the lexer for the simple langauge. Running this { $setType(Token.SKIP); } ;
throughANTLR produces a Java class called “SimpLexer” that
produces tokens from the input stream. Figure 4 shows how

a lexer is created, connected to the standard input stream ({§i§ example, | avoided this problem by turning literal matching

could also have be_en z_;\ﬂle), an_d passed to the parser. off for all but the ID and PARENS rules; thenTLR-generated

_ Lexer rules begin with a capital letter and contain grammagy e will not check its literal table when it encounters a string.

like specifications for the text of a token. o Actions can be included in the lexer by enclosing Java code in
Unlike Lex or Flex,ANTLR generates predictive lexers thajces. ve used an action to discard whitespace: by setting the

behave much like recursive-descent parsers. Thekithtar- e of the token to “SKIP; the lexer discards the token and goes
acters of a token must be enough to distinguish which nog {4 the next. A call to “newline” in the rule for whitespace
protected rule is in force. For this exampte= 2 (set in the ., nts the number of lines.

options section) because the lexer needs to look two charactergsiyq)i of ANTLR, lexer specifications use an extended BNF

ahead to decide when a string constant terminates. form in rules. In this example, I've used the Kleene star op-

Protected rules in the lexer can be used by other rules, butgq o represent zero or more instances of letters, digits, or
not return tokens by themselves. In this example, LETTER apfqeriines in the rule for ID.

DIGIT are used in the rules for ID and NUMBER,; the parser the ryle for STRING is rather cryptic, but very convenient

will never see LETTER or DIGIT tokens by itself. because oANTLR’s ability to modify the text of a token as it

ANTLR handles keywords differently than automata-based §¢qfking scanned (impossible with an automata-based scanner).
ners. Rather than having a separate rule for each keyword chosen syntax for string constants is a sequence of charac-

construct a complicated automata that can identify LR 1015 enclosed in double quotés A double quote is included
assumes keywords are caught by other rules (typically idenf-the string by doubling double quotes, i.&",. The lexer
fiers, as in this lexer, although any rule can be used in this Wayje modifies the string as it is being scanned so the text of the
the rule for PARENS is used in this way in this example). Aftelyinq token is as desired: thes after the first and last double
each token is recognized, the scanner checks its literals tab'ﬁlﬁ%tes discard them when they are encountered, removing the
see if the text for the token matches one of the literals (e-g-sarrounding quotes, and thein the body discards the second

keyword). If the text matches, the scanner returns the type @fyq double quotes in a row. Thus, only the first double quote

the literal token, not the rule that matched it. in a pair is copied into the text, exactly what the escape sequence
An advantage of this approach is that the parser has a S\Fﬂ'plies.

ple mechanism for passing keywords (“if,” “then,” “else,” “(,
and “)” in this example) to the lexer. Literal strings—in doubl@ The Parser

guotes—in the parser are entered in the lexer’s literal table aﬁ%ure 2 shows the parser for the simple langaudenTiR

matched. uilds LL(Kk) recursive-descent parsers. The advantage of such

This technlque_ of matchln%t’(’)ken text can have pitfalls. ?en approach is that actions can be inserted anywhere within the
do not want a string such as “if” being parsed as a keyword. In

Figure 1: The Lexer for the simple langauge.

class SimpParser extends Parser; class SimpWalker extends TreeParser;

options { buildAST = true; k = 2; } { java.util.Hashtable dict = new java.util.Hashtable(); }
file : (expr SEMI!)+ EOF!; file { int a; } : (a=expn+ ;
expr expr returns [int r]
: "if"” expr "then"! expr {inta b, c;r=20;}
(options {greedy=true;} : "else"! expr)? o #("if" a=expr b=expr {c = 0;} (c=expr)?
| "print” (STRING | expr) { if (@ != 0) r=b; else r=c; })
| ID ASSIGN™ expr | #("print"

| exprl (s:STRING { System.out.printin(#s.getText()); }
; | a=expr { System.out.printin(a); }))
| #(ASSIGN ID a=expr

exprl : expr2 ((PLUS™ | MINUS") expr2)* ; { dict.put(#ID.getText(), new Integer(a)); })
expr2 : expr3 ((TIMES™ | DIV") expr3)* ; | #(PLUS a=expr b=expr { r = a + b; })
expr3 | #(MINUS a=expr b=expr { r = a - b; })

. ID | #(TIMES a=expr b=expr { r = a * b; })

| (" expr ") | #(DIV a=expr b=expr { r = a / b; })

| NUMBER | ID { if (!(dict.containsKey(#ID.getText())))

| MINUS™ expr3 System.err.printin("unrecognized: "+#ID.getText());

= ((Int dict.get(#ID.getText())).intValue();
Figure 2: The parser for the simple langauge. " = ((ntegen) dictget(#ID.getText))) intvalue(

}
. _ . . | NUMBER {
grammar, including very early in a rule, and that the operation of r = Integer.parselnt(#NUMBER.getText(), 10);

the parser is easy-to-understand because it is essentially a direct

translation of the grammar. The disadvantage of this approach Figure 3: The AST walker for the simple language.

is that LL(k) langauges are more restricted than the LALR

grammarsyAcc or Bison parse. This example hks= 2 be- is a member of the same class), but it has extensive facilities for
cause it is necessary to look two tokens ahead to recognize agomatically building more complicatedTs.

assignment operation (both assignment and exprl can start with

an ID, but only assignment may have an “=" following it). =~ 3 The AST Walker

Rules in the parser begin with lowercase letters and cont@mce the parser has built tesT, it's useless unless you do
EBNF expressions (include Kleene closuj& , zero-or-one something with it, such as traverse it to check static semantics,
()? , one-or-morg))+ in addition to sequencing, choice, andransform it into a lower-level representation, or, in this case,
grouping) describing the grammar for each rule. execute it in an interpretive style.

Unlike YACC or Bison, anANTLR grammar needs operator Figure 3 showaNTLR rules for amasT walker that interprets
precedence and associativity stated implicitly. E.g., in this ete AsT. The rules look much like those for a parser, but they
ample, the “if” “print” and assignment operators are at the lovsperate on trees. The synt&PLUS expr expr) means
est precedencet and — are next, therx and /, and finally “match a tree whose root is a PLUS token with two children that
atoms. This is perhaps the most awkward aspect of specifyimgitch the expr rule.” No lookahead is used: the root of each tree
ANTLR grammars compared to other parser generators. must be enough to disambiguate among multiple rules. Note

Many grammars are inherently ambiguous. A typical exiso that no precedence rules are necessary: the structure of the
ample is the “dangling else” problem: there is confusion ovesT already embodies them from parsing.
which “if” owns an “else” clause when if-then-else statements The rule for expr is the only interesting one. The rule defi-
nest. The usual solution is to attach the “else” to the nearegfion says it returns an integer—the value of the expression—
“if,” and this parser is no exception. This is specified by se&nd the generated method contains local variables a, b, and c.
ting the “greedy” option in the optional “else” clause part of th&he actions simply evaluate any child expressions then compute
“if” rule. Normally, the generated code for parsing an optionaind return the value of the expression. Assignment enters the
clause needs to decide whether to try to parse the optional clavsieie of its expression in a hash table indexed by the name of the
or continue one. It does this by looking at tokens that start thariable, and the rule for ID attempts to retrieve such an entry
optional clause as well as those that may follow it. An “else” tasy searching on the text of the token—the identifier itself. The
ken appears in both sets because the “expr” being parsed cauléhber rule converts the text of its token—the actual number—
be the one after a “then”, which may have an “else” followinghto a base-10 integer before returning it.
it. The greedy option makes the parser prefer the optional clause
over skipping it when such ambiguity arises.

ANTLR parsers can automatically generaters; this exam- import antlr.CommonAST;
ple takes advantage of this facility. By setting tha&ldAST class Simp { o
option true, by default every token becomes a sibling oftse ~ Public static void main(String[] args) {
being constructed, but annotations can refine this behavibr. A m

. : SimpLexer | = new SimpLexer(System.in);
following a token supresses the generation ofam node (e.g., SimpParser p = new SimpParser(l);
for punctuation such as parentheses and semicolon§) fok p-file(); _
lowing a token makes it the root of a new subtree. This is used ~ SmpWalker w = new SimpWalker();
L . w.file((CommonAST) p.getAST());
in virtually every rule to impose structure on therT. } catch (Exception e) {
By default,ANTLR builds homogeneoussTs (i.e., every node System.err.printin(e);
1

Figure 4: The driver for the simple langauge.

