
Abstract – Java and C are two popular specification languages
used to define systems of all sizes and forms. In this paper, we
present a per formance compar ison of var ious algor ithms wr itten
in C and Java on Windows NT and L inux environments. The
metr ics considered in the analysis include speed of execution,
memory usage, Java vs. C overheads and other special features
that character ize the two languages. We investigated both
languages based on how their design choices influence their
per formance rather than by semantics and programming
paradigms. The algor ithms for the analysis were chosen to
represent those commonly used in embedded systems (such as
FIRs) as well as more exotic ones like the MD5 cipher . Our
results show that, in general, C produced better run time
per formance than Java across both L inux and Windows NT
platforms.

Index Terms-Java, C, Per formance compar ison

I. INTRODUCTION

HE design of a computer language often results from a
desire to solve a set of problems in a given domain. Most
modern languages strive to be the ‘one size fits all’ type of

solution implying a broad set of goals. These often-divergent
goals often lead to a ‘specialization’ effect wherein certain
features are readily adopted into the mainstream and others
fade away. We compare two such languages - Java and C.

Conventional wisdom suggests that Java and C make an odd
pair to investigate. They do not share a common programming
paradigm (object oriented vs. procedural). Moreover, Java
tries to insulate users from the underlying architecture, while C
is very accommodating to low-level access. It is perhaps for
this reason that much of the published research work has
focused on more natural comparisons such as Java and C++.

Java and C are both specification languages. C was
conceived as a ‘high level assembly’ language whereas Java
had its roots as an embedded/portable language for set-top
boxes. The C language derived much of its semantics from its
ancestor B, and so a simple procedural pass-by-value
methodology was adopted. Java, due to its (very lucrative)
requirement for portability and ease of use, chose to go with an
object-oriented model. So while Java’s internals grew to be
more complex, the programmer was largely insulated from all
the details.

Both Java and C have design choices that were intended to
aid the programmer and (or) the compiler. Many of these
features remain unused or unimplemented despite underlying
hardware support. For example, hardware often has support
for execution of MAC type instructions but there is no direct
syntax for doing so in C or Java.

C allows a lot of flexibility to the programmer, but it is left
largely to programmers and compilers to exploit these features.
In the case of Java, the Java Virtual Machine (JVM), on which
all Java programs run, hides many of the optimizations. Java,
in its current form, is not very suitable for use in embedded
systems. This is because does not support operations like

direct memory access, interrupt handling and scheduling to
meet hard deadlines.

The rest of this paper is organized as follows – In Section II,
we present a summary of related work in this field. In Section
IV, we discuss our project plan.

II. RELATED WORK

A. The Java Performance Report – Osvaldo Pinali
Doederlein

The Java Performance report [1] compares the performance
of C and Java algorithms on Win32 platforms. The tests used a
suite of algorithms written in C (BYTEmark) and their direct
port to Java (JBYTEmark). The results presented in the paper
indicate that, in general, C outperformed Java, as one would
expect. However, the performance of Java depended on the
underlying JVM, and also the specific algorithm under test. In
fact, in some algorithms, specific Java implementations
(especially IBM’s JDK 1.3) outperformed C.

B. Binaries vs. Bytecodes - Chris Rijk

The results from Pinaldi’s Java performance report [1] were
further strengthened by Rijk’s results [2] where IBM’s JDK
v1.3.0 was seen to outperform even Microsoft’s Visual C
compiler in many of the benchmarks, as shown in Fig.1. Some
of the algorithms used were “Game of life” (an advanced
implementation of J.H. Conway's simple cellular automaton),
Fibonacci and FFT. This challenges the notion that the JVM is
always an extra piece of luggage.

Figure 1 - Compar ison results between IBM's JVM and C. From
[2] Chr is Rijk, Binar ies Vs Byte-Codes. The ordinate for the plots

is Mflops

 Ambika PAJJURI and Haseeb AHMED

A Performance Analysis of Java and C

T

A Performance Analysis of Java and C 2

C. The Java Performance Analysis for Scientific Computing
– Roldan Pozo

In contrast to Pinaldi’s report [1], Pozo [3] considered a
more diversified array of algorithms commonly used in
scientific computing. His approach was unique in that he
worked with operations that were both CPU and memory
intensive (e.g., large matrix (1000x1000) multiplication
operations). His observations were as follows:

C’s strengths:

• Allows for direct mapping to hardware
• Provides more opportunities for optimizations
• No penalty for garbage collection

Java’s strengths:
• Performance varies widely by the choice of a JVM –

the best results were from IBM and Sun.
• Performance closely linked to underlying hardware

(i.e. faster CPU does make an impact)

Pozo’s experiments also showed that unlike the performance
of C/C++ compilers, there is a lot of variation in the
performance of the different JVMs. The application of some
small non-standard optimization also produced significant
benefits (as shown in Fig. 2). Considering the benefits
incurred, such optimization should probably become the norm.

0

50

100

150

200

250

160 320 480 640 800 960
��������� 	�
��
�������	����

�� � �
��

Unoptimized

Optimized

Figure 2 - Results of matr ix multiplication from R. Pozo [3]
showing that select matr ix optimizations can yield significant

improvements

R. Pozo concluded with two important comments:
i. Java requires more aggressive memory mechanisms

to compensate for the gawkiness of automatic
garbage collection. (This point is reinforced by
Pozo’s work [3]).

ii. JVMs are increasingly important in byte-code
manipulation. (Also see for more recent research by
Kyle [6] and Radhakrishnan [7]).

Other more subtle issues alluded to why Java was less

favorable than C for use in large scientific and engineering
applications. These include the lack of efficient
multidimensional arrays, the inability to take advantage of

fused multiply-add and associativity operations in compiler
optimizations (also confirmed by Midkiff’s result [8]).

D. The Java Real-time Extension Specification

Another emerging area for study is the Java ‘Real-time
Extension Specification’ [5]. It is expected to bring long
desired advantages of the Java Platform, like binary
portability, dynamic code loading, tool support, safety,
security, and simplicity, to an important industry segment:
real-time systems. This extension targets both "hard real-time"
and "soft real-time" systems. The specification addresses many
issues, including garbage collection semantics,
synchronization, thread scheduling, JVM-RTOS interface, and
high-resolution time management.

III. METHODOLOGY AND GOALS

A. Methodology

We ran experiments over a gamut of algorithms written in
both Java and C, on both Windows NT and Linux platforms.
Each of the algorithms was run for different number of the
appropriate variable or number of iterations, giving a larger
data set for analysis. Moreover, each sample point was
averaged over five runs to minimize random errors. All the
algorithms were run using the same hardware to enable a
meaningful performance comparison. Some of the programs
were used from existing benchmarks and others written by us
for the purpose of this comparison.

Details of the machine and compilers used in the

experiments are given in Table 1:

Processor Intel Pentium II 200 MMX
Memory 32MB
Linux OS Kernel 2.2.12-20
WinNT OS NT 4.00.1381 with Service Pack 6
Compiler - Java java 1.3.1_01, Java HotSpot(TM)

Client VM (build 1.3.1_01, mixed
mode)

Compiler - C gcc 2.95.3-5

Table 1 Details of hardware, operating systems and
compilers used

Run times for Java were calculated as a combination of

Java’s System.currentTimeMillis() and computing the time
before and after the run algorithm. Memory for Java was
observed using Java’s Runtime.getFreeMemory(). – We
believe this is more accurate as it gives the algorithm run times
and memory usage computing time and memory for only the
relevant objects. We also observed the Task Manager for
Windows NT and the Top monitor on Linux, to ensure that
any garbage collection runs do not affect our results and that
both results behave similarly.Runtimes and Memory for Java
were obtained using Top on Cygwin for Windows NT and
Linux.

A Performance Analysis of Java and C 3

To ensure a fair comparison, we chose algorithms that were
not dependant on System calls to minimize kernel/library calls.
Our run times for the C version of the tests show very little
System time.

B. Operating Systems and target metrics

Linux and Windows have distinct architectures. This
extenuates C and Java’s design where C likes to be close to the
native OS while Java relies on its JVM. In considering our
metrics for evaluation some of the factors influencing the
algorithms chosen and the tests run include:

i. Memory management is one of the key differences

between Java and C. We tried to expand on Milo
Martin’s [4] work to identify other such opportunities
for enhancements to both Java and C.

ii. Run times for the two versions. With C being close to
the OS, it is expected to work much faster than Java.
We tried to see how well Java performed with respect to
C.

iii. Another area that has not been well investigated is the
primitive data type selection in Java. Strings in
particular pose a challenge because they consist of 16-
bit Unicode. We ran some tests on String concatenation
to see how they fare in Java vs. their C counterparts.

iv. We tried to analyze the numbers for simple DSP
operations to see if Java has a future in Real time
systems.

C. Algorithms

The suite of algorithms we used was both CPU and memory
intensive. The algorithms that we ran are shown in Table 1
below –

Algor ithm Character istics
Basic FIR Traditional DSP ‘multiply

then add’ computation
Matrix Multiply Exercise memory and CPU
MessageDigest5 (MD5) 32bit-CPU friendly.
Ackermann’s Highly recursive algorithm.
Fibonacci Series Recursion with ADD

operations
Simple Hash Memory traversal
Array Copy Exercise mem-to-mem

operations
String Concatenation Unique to Java and C.

Table 2 L ist of algor ithms used

In this paper, a subset of the results is presented. We have

chosen the subset based on uniqueness of results or if some
unexpected or anomalous results were observed. An Excel
spreadsheet with all the results can be downloaded from
http://www.columbia.edu/~ap714/COMS4995/results.xls

IV. RESULTS AND DISCUSSION

1) FIR and MD5
The run time results for MD5 and FIR for the four test

configurations are shown in Figure 3. The results show that the
run times for Java are compatible with C. The results seem to
imply that Java’s performance is good enough for at least some
DSP type applications.

Run times for MD5 and FIR

0

0.5

1

1.5

2

2.5

3

3.5

4

MD5 FIR

Ti
m

e
(s

)

Java on Win NT

Java on Linux

C on Linux

C on Win NT

Figure 3 - Run time results for MD5 and FIR.

However, it is to be noted that timing alone is not sufficient

for use on Embedded Systems. A typical JRE on Window’s
requires over 40MB of free space before attempting to install
it. On Linux, it requires about 45 megabytes of free disk. In
addition it requires a minimum RAM of 32MB. C is close to
the native OS, while Java is built on the JVM. The following
figure gives a high level view of how differently applications
in Java and C operate.

Figure 4 - JRE and C on the different operating systems

Newer stripped down JVMs are aimed at using lesser

memory and providing good predictable runtimes. For
Example, the Java Embedded Server 2.0 software, including
all the services required by the OSGi standard, requires 900
KB of persistent memory and 2.1 MB of DRAM. Java
Embedded Server 2.0 has been tested on Solaris[tm],
Microsoft Windows NT 4.0, Linux (JDK 1.2), and VxWorks

A Performance Analysis of Java and C 4

(PersonalJava[tm] 3.0.2) platforms. The small size,
architecture, use of Java technology, and extensibility are
targeted primarily at developers and manufacturers of
network-enabled products. Examples of these targeted
applications are PDAs, cell and web phones, set-top boxes and
televisions, medical and industrial devices, gauges and meters,
ATMs, gas pumps, manufacturing equipment,
telecommunications equipment and devices, and network
communications equipment such as routers and switches. It
remains to be seen if the potential would be realized soon.

2) FibonacciSeries

The run time results for Fibonacci series for all the
configurations are shown in Figure 5. The results showed,
surprisingly, that Java performed better than C, although very
marginally. This runs counter to the myth that C code is always
faster than Java.

Run time vs. N for Fibonacci

0

5

10

15

20

25

30

35

40

0 10 20 30 40

No. of iterations

T
im

e
(s

)

Java on Win NT

Java on Linux

C on Linux

C on Win NT

Figure 5 - Results for run times of Fibonacci ser ies fare
better for Java than C.

This effect can be explained in part by the recursive
operations that require continual stack management. The
Fibonacci assembly code snippet in the appendix explains this
further. Even though the test program was solely devoted to
running the Fibonacci program, there is still poor register
allocation with penalties for restoring the stack. Java bytecode
(see appendix) revealed additional register use to
accommodate this situation. The assembly code shows also
that branches are followed by multiple nop statements –
Contrast this to an extremely recursive algorithm like
Ackermann. Java’s attempts to balance register allocations not
knowing that the stack will be frequently updated adds a lot
more overhead that ultimately degrades performance
significantly.

3) Array copy operation

Both run times and memory usage was higher for Java than
for C. The run times for both C and Java were approximately
constant for array sizes between 10 and 10000. The run time
increased dramatically for larger array sizes.

4) Matrix operations
Matrix operations again gave better runs for C than Java. An

interesting point discussed earlier in this paper is the effect of
bounds checking. While this does incur extra operations and
time, it is a very good safety feature. A feature considered in
the original Java proposal called “asserts” is an alternative to
this. It gives a hint to the compiler and skips the bounds
checking. This feature should probably be re-introduced in
Java.

In addition, we also encountered a java.lang.OutOfMemory
error with matrix size of 3000X3000. This is due to the heap
size of the VM. While the heap size can be increased using
VM options -Xmx (should be larger than the setting for –
Xms). What this does imply is that such large operations
should be performed piecewise.

5) Ackermann

The results obtained for memory usage for Ackermann
algorithm are shown in Figure 6. The Ackermann[n] algorithm
is a massively recursive algorithm. The interesting result of
this experiment (in addition to a comparison of the memory
usage) is that the Java Virtual Machine crashed on both the
Windows and Linux platforms for N=20 and N~370000
respectively. The error generated in both cases was a "Stack
Overflow" exception. The JVM has a maximum stack size that
is configured at the VM compile time. While there are
command line options (namely -Xss) that make the stack size
configurable, our experimentation leads us to believe that this
functionality does not work. (Same experience reported by
developers on the Sun Microsystem Java developer website)
The only alternative is that for highly recursive functions, care
should be taken to do the job piecewise just as is done for
large matrix multiplications.

 C on the other hand, seemed to develop a voracious appetite
for more and more memory during this test. At one point about
4K was being consumed every 2 seconds! This was
anticipated, as the stack is central to C's 'pass by value' design.
Program execution speed also deteriorated due to the intensive
stack management.

Memory vs. N for Ackerman

0

500

1000

1500

2000

2500

3000

3500

4000

0 5 10 15 20

N - Recursion depth

M
em

o
ry

 (
K

B
)

Java on Win NT

Java on Linux

C on Linux

C on Win NT

Figure 6 - Memory usage for Ackerman. The Java on NT
crashed for N=20

A Performance Analysis of Java and C 5

6) Hash
Java performs well for simple hash functions. However, with

somewhat more complex hashing, the memory usage increased
very quickly for Java. The results for complex hash functions
are shown in Figure 7. In addition, we noticed some anomalous
dips in memory usage for increasing number of iterations (over
multiple runs). This may be due to the garbage collector.

Memory Vs. N for Complex Hash functions

0

500

1000

1500

2000

2500

3000

1 10 100 1000No. of iterations

M
em

or
y

(K
B

)

Java on Win NT

Java on Linux

C on Linux

C on Win NT

Figure 7 - Memory usage for different iterations of a Complex
hash function.

7) String concatenation

Java’s String class has been designed differently from other
classes. The String class is Immutable and concatenating
strings creates multiple intermediate representations.
StringBuffers are used by the compiler to implement the binary
string concatenation operator ‘+’ . We used the StringBuffer’s
append method for concatenation in our tests. The memory
usage results obtained for string concatenation are shown in
Figure 8.

Memory Vs. N for String concatenation

0

2000

4000

6000

8000

10000

12000

1 10 100 1000 10000 100000 1000000

Length

M
em

o
ry

 (
K

B
)

Java on Win NT

Java on Linux

C on Linux

C on Win NT

Figure 8 - Results of Memory Vs. N for Str ing
Concatenation operations. C per forms better than Java

As in the complex hash case, we noticed some kinks with
anomalous dips in memory usage with increasing length.

Every string buffer has a certain capacity. As long as the
length of the character sequence contained in the string buffer
does not exceed the capacity, it is not necessary to allocate a
new internal buffer array. If the internal buffer overflows, it is
automatically made larger. Due this string buffer structure, it is
possible that occasional reductions in memory take place.

Another point to note, is that the StringBuffer’s append

method is synchronized. While this is important to support
Java’s multithreading, it is not inexpensive. Each call to the
append method requires a lock on the StringBuffer object to be
acquired and released. While this may be necessary to support
multithreading, it may sometimes be overused and lead to slow
and expensive code. In general care must be taken not to
overdo synchronization in applications to avoid sluggish
performance.

V. ANALYSIS

In this section we present the overall analysis of the key
metrics from our results.

A. Execution Speed

This factor is readily visible to programmers (and end users).
Execution speed is often seen as the most important attribute
of a language’s performance. As for this metric, run times were
better for C than Java, but Java’s performance was not bad
particularly when we look at the FIR and MD5 results.

B. Memory Usage

 Is this a moot point in these times of cheap memory? We do
not think so – especially since embedded systems have far
more stringent memory requirements. Minimizing memory
usage is becoming increasingly important, as expensive (and
slow) I/O is still the bottleneck, even with faster CPUs. Will
the smaller stripped off JVMs live up to the expectations?
Time will tell.

We saw some rather unexpected results during some of the

runs such as Hashing and String Concatenation with Java.
These can be attributed to the unpredictable manner in which
Garbage collection runs in Java and the creation/deletion of
objects. The real time specification for Java, does address the
unpredictable garbage collection issues.

C. Language Features

Java with its runtime optimizations, garbage collection and

freebies like bounds checking seem very impressive. C on the
other hand places the entire burden on the programmer. We
tried to analyze the cost(s) and effects of some of these.

We have also tried to see how well Java’s string
concatenation behaves compared to similar operations in C. C
does perform better, but the convenience of using this feature
in Java is indisputable. Java’s support for multithreading puts
the onus of ensuring proper synchronization on the
programmer. While using synchronization is important it can
sometimes lead to sluggish and expensive runs.

A Performance Analysis of Java and C 6

In order to facilitate testing, a customized Java Front-End

was written to try and capture several runs at once. This had
the (unintentional) side effect of exposing the garbage
collector in Java. Some of the behaviors observed were
consistent with the mostly-concurrent Garbage Collector
described in an earlier incarnation of Java (version 1.2_01)
(see Printezis’ report [9]). This proved to be a challenge
because the garbage collector appears to employ a
‘generational’ model for deciding when objects must be
automatically recalled. The effects were most visible when
under some tests the free memory on the JVM would suddenly
appear to grow after a test run that was intended to consume
memory. Consequently, the execution time would be distorted,
as it would now reflect the additional time consumed for
garbage collection.

VI. FUTURE WORK

An interesting area for future work would be to perform
some of the memory management experiments on Real time
devices. This can be done once some kind of JVM is
standardized and available for those devices. The Java Real
Time Specification discussed in Hardin’s article [5], tries to
address issues important to real time devices. It would be
particularly interesting to see if the Garbage collector does
behave more predictably. Printezis and Detlefs’ work [9]
suggests that the interruptions caused by the garbage collector
can be minimized by exploiting parallelism between marking
and sweeping garbage. Our experience shows that algorithms
that require multiple intermediate values should be first
optimized away so that the garbage collector’s task is kept as
small as possible. Java has the advantage of optimizing at the
bytecode level and C compilers already optimize away
temporaries so there is certainly good precedence to pursue in
Java. Another area of future investigation is the effect of
Java’s stack size on real-time specific applications.

Other areas for future work in the area include experiments
on how the scheduler works and the effects of compiler
optimizations. The scheduler can be enhanced to exploit the
underlying processor. Byte code representation presents a nice
way to utilize processors that are increasing RISC-CISC
hybrids without having to rewrite source code again.

VII. CONCLUSIONS

Just as any one language cannot lay claim to solving all
problem domains, our performance analysis rates Java and C
on different metrics. We hope this will aid in the selection of
the right language for the right task and provide future
opportunities for exploration.As far as Java is concerned we
think that the major challenge for its use in Embedded Systems
are:

1. Memory
2. DMA
3. Unpredictable Garbage collection

With memory becoming cheaper and if the effort for a real

time JVM is kept, Java will be very attractive for many non-

critical applications. It is likely that it would be particularly
popular for use on small devices.

REFERENCES

[1] Osvaldo Pinali Doederlein, The Java Performance Report
- Part III,
http://www.javalobby.org/fr/html/frm/javalobby/features/j
pr/part3.html

[2] Chris Rijk, Binaries Vs Byte-Codes, Ace’s Hardware,
June 27, 2000.

[3] Roldan Pozo, “ Java Performance Analysis for Scientific
Computing” - National Institute of Standards and
Technology, USA. This report was presented at the
UKHEC: Java for High-end Computing in Nov 2000.

[4] Milo Martin, Manoj Plakal and Venkatesh Iyengar, “ Top-
Level Data-Memory Hierarchy Performance: Java vs.
C/C++” - University of Wisconsin – Madison, Dec 1996.

[5] David Hardin, “ Bringing Java's benefits to real-time
developers” Dr. Dobb's Journal February 2000

[6] Kyle R. Bowers, David Kaeli, “ Characterizing the SPEC
JVM98 Benchmarks on the Java Virtual Machine” –
Northeastern University Computer Architecture Research
Group.

[7] R. Radhakrishnan, N. Vijaykrishnan, L. K. John, A.
Sivasubramaniam, J. Rubio and J. Sabarinathan, “ Java
Runtime Systems: Characterization and Architectural
Implications” . A preliminary version of this paper
appeared in the International Conference on High
Performance Computers and Architectures (HPCA-6), Feb
2001.

[8] S.P. Midkiff, J.E. Moreira and M. Snir, “ Optimizing
Array Reference Checking in JAVA programs” , IBM
Systems Journal, 37 (409-453) 1998.

[9] Tony Printezis and David Detlefs, “ A Generational
Mostly-concurrent Garbage Collector” , Sun
Microsystems Technical Report Series, June 2000.

A Performance Analysis of Java and C 7

VIII. APPENDIX

1) Assembly code snippet for Fibonacci:

pushl %ebp
movl %esp,%ebp // Normal program startup
pushl %ebx
cmpl $0x1,8(%ebp)
jle 0x2e <8048998>
movl 8(%ebp),%eax
decl %eax // data passed on the stack
pushl %eax
call 0xffffffec <fib>
addl $0x4,%esp // stack restoration
movl %eax,%ebx
movl 8(%ebp),%eax // Again data on stack
addl $0xfffffffe,%eax
pushl %eax
call 0xffffffd9 <fib>
addl $0x4,%esp // stack restoration
movl %eax,%eax
leal (%eax,%ebx),%edx
movl %edx,%eax
jmp 0xd <80489a0>
nop
jmp 0xa <80489a0>
nop
nop
movl 8(%ebp),%edx
movl %edx,%eax
jmp 0x1 <80489a0>
nop
movl -4(%ebp),%ebx
leave
ret

2) Bytecode for Fibonacci (using javap)

Compiled from fibo.java
public class fibo extends java.lang.Object {
 public fibo();
 /* Stack=1, Locals=1, Args_size=1 */
 public static void main(java.lang.String[]);
 /* Stack=2, Locals=2, Args_size=1 */
 public static int fib(int);
 /* Stack=3, Locals=1, Args_size=1 */
}

Method fibo()
 0 aload_0
 1 invokespecial #1 <Method java.lang.Object()>
 4 return

Line numbers for method fibo()
 line 3: 0

Local variables for method fibo()
 fibo this pc=0, length=5, slot=0

Method void main(java.lang.String[])
 0 aload_0
 1 iconst_0
 2 aaload
 3 invokestatic #2 <Method int
parseInt(java.lang.String)>
 6 istore_1
 7 getstatic #3 <Field java.io.PrintStream out>
 10 iload_1
 11 invokestatic #4 <Method int fib(int)>
 14 invokevirtual #5 <Method void println(int)>
 17 return

Line numbers for method void
main(java.lang.String[])
 line 5: 0
 line 6: 7
 line 7: 17

Local variables for method void
main(java.lang.String[])
 java.lang.String[] args pc=0, length=18, slot=0
 int N pc=7, length=11, slot=1

Method int fib(int)
 0 iload_0
 1 iconst_2
 2 if_icmpge 7
 5 iconst_1
 6 ireturn
 7 iload_0
 8 iconst_2
 9 isub
 10 invokestatic #4 <Method int fib(int)>
 13 iload_0
 14 iconst_1
 15 isub
 16 invokestatic #4 <Method int fib(int)>
 19 iadd
 20 ireturn

Line numbers for method int fib(int)
 line 9: 0
 line 10: 7

Local variables for method int fib(int)
 int n pc=0, length=21, slot=0

