A Minimal API For Support of
Real-Time Oper ations.

University of Columbia
Computer Science Department
Dirk Bridwell dnbridwell @earthli nk.net
Jan Mill er janalanmill er @uswest.net

Abstract

To addessthe growing reed to devdop
apgications that have real-time requirement,
this paper suggests an operating system levd
API. The requirements for this APl are derived
from a surveyof existing operating systems. The
survey @mpares the popuar operating system
Windows NT/200Q two flavors of Linux (plain
Linux and RTLinux), and ore traditiond Real-
Time Operating System, pSOSt+. The survey
discusses real-time aspeds of the operating
systems apgication programners’ interfaces

(AP1s) and unarlying implementations. An API
ispropased that med the minimum required
functiondity necessary to suppat a real-time
apgication.

I ntroduction

In his gurvey of real-time operating systems,
Gopalan [2] states that the need for Operating
Systems to support appli cations, which require
real-time behavior, is growing. From the desktop
to very spedali zed software/hardware
combinations, developers are required to create
systems that can satisfy bath hard real-time and
soft real-time requirements. As Y odaiken and
Barabanov [5] indicate, design cycles can be so
short, and projeds are beaoming more diversein
their demands. Devel opers want familiar and
robust (API), tods, and programming
environments to create their real-time
applications. The developer’s ahility to integrate
with their familiar todsisimportant, but popular
operating systems do not have equal levels of
supyort for real-time appli cations. Obenland [1]
points out that sincethe design of an OS can
have a significant impact on its ahility to be used
in areal-time system, implementation hasto be
considered along with the APIs provided.

A survey of the literature provides the necessary
qualiti es of areal-time operating system and the
requirements for areal-time API. The survey
concentrated on four operating systems:

Microsoft Windows NT, Linux, pSOS+, and RT-
Linux. The operating systemsin the survey were
chosen for bath popularity and varying
approaches to the problem of real-time
application support. WindowsNT and Linux are
bath General Purpose Operating System. RT-
Linux isahybrid that adapts the standard Linux
kernel to support real-time. pSOS+ isa
commercia real-time Operating System. The
operating systems were evaluated using the
necessary qualiti estaken from theliterature. The
results are not unexpeded. Windows NT and
Linux might be desirable for soft real-time

appli cations, but they do not provide adequate
supyport for hard real-time applications. RT-
Linux can support hard real-time with some
caveats. Only pSOS+ has the necessary support
for Real-Time operation.

The suggested real-time API is broken into three
parts: Process Management, Interprocess
Communication, and Memory Management.
Process Management encompasses the aeation
and scheduling of multiple mncurrent threads of
control. InterprocessCommunication provides
synchronization and information sharing
between proceses. Memory Management isthe
all ocation and organization of memory avail able
to an appli cation.

Necessary Qualities of a Real-
Time Operating System

There are several qualiti es, which an operating
system must have to support real-time
applications.

Pr ocess M anagement

Acoording to Obenland [1] an operating system
must support multi plethreads. The threads must
be preemptible by the operating system. There
must be a well -defined way to assgn prioritiesto
threads. The number of thread priorities ould
be sufficient to support many threads, each
assgned a different priority. Support for 256
priority levels ensto bethe mnsensus. The
scheduler must ensure that threads that need to
run areabletodo so. A classof threads,
Interrupt Handlers, must receve spedal
consideration in scheduling. Yodaiken and
Barabanov [5] state that an operating system
must be able to quickly deal with interrupts.



I nter pr ocess Communication

Any nontrivial system threads must share
information. This can be accompli shed through
avariety of mechanisms. Thesimplest is ared
memory. Beause of the need to all ow
concurrent accessto shared resources, an
operating system must provide predictable
synchronization mechanisms. The most basicis
the standard mutex (or lock). A thread must be
able to baund the time spent waiting for alock.
To support this, an operating system must have
support for high-resolution clocks and timers.
The acauracy of the timerswill ultimately be
dependant on the underlying hardware. An
operating system must support priority
inheritanceto prevent priority inversion when a
thread iswaiting for a lock.

Memory M anagement

An operating system neals to supdy predictable
memory management. A large source of
unpredictahility is virtual memory. If a page
fault is generated when accessng memory, a
processis blocked for an unbounded period of
time. In order to avoid this, virtual memory
must either not be all owed or an appli cation must
be ableto lock its all ocated memory into RAM.

Operation System Survey

The operating systems considered in this survey
have varying degrees of support for the
necessary qualiti es of real-time systems.

Windows NT

Windows NT isageneral purpose operating
system. Dueto its widespread acceptance its
use as a platform for Real-Time applicationsis
unavoidable. Windows NT implementsthe
Win32 APl. Win32isadiverse APl with
supyport for everything from low-level operating
system services to graphical interfaces.

Pr ocess M anagement

Windows NT supports priority based preemptive
scheduling. It supports 32 levels of priority with
32 being the highest. The priority spedfied
when athread is created is known as the base
priority. The actual priority of athread is not
fixed. Windows NT will bocst the priority of a
thread if it has not had enough CPU time.
Windows NT uses Deferred Procedure Calls
(DPC’s) to processssinterrupts. DPC'sare
placed in a FIFO queue. Ramamritham, et al [7]
clamsthat this disregards any associated

priority. DPC’s are preamptible by interrupts
even if theinterrupt islower priority. Thusthe
timeit takes to handle an interrupt is
unpredictable.

I nter pr ocess Communication

Win32 suppies mutexes, semaphores, queues
and other synchronization and communication
medanisms. The medanisms can have a
timeout associated with them to make sure that
they have bounded waiti ng times. According to
the Win32 SDK documentation [9], the order in
which threads will acquire a synchronization
medanism is not guaranteed. Thus,
Ramaritham, et al [7] concludes Windows NT
does not support priority inheritance Adding to
the unpredictabilit y of waiting in Windows NT is
the lack of high-resolution timers. Gopalan’s[2]
research indicates Windows NT can only support
delays of 10'sto 100 s of milli seconds.
Windows NT does provide a high-resolution
clock using the windows multimedia timer [9],
but the resolution istotally dependant on the
hardware.

Memory M anagement

Processesin Windows NT operatein their own
memory space To accomplish this Windows
uses a paged virtual memory system. Whilethis
isundesirable for Real-Time support, Pages can
be locked into memory. They may still be
swapped out if the processisinactive or if the
window running the processis iconized.
Timmerman and Monfret [8] indicate that the
former is difficult to produce and the latter is
unlikely to be an issue for Real-Time
applications.

Linux

Linux isan open sourceUnix clone. As such, it
is designed to be a general-purpose operating
system. Thebulk of Linux sreal-time
functionality is represented by the standards
POSIX.1b, POSIX.1c, and SystemV APIs.

Most of the discusson about Linux addressesthe
POSIX Real-Time standard and Linux’'s support
for it.

It isimportant to remember that thereis no
batom linewith Linux or its APIsbecuseit is
constantly being developed. New API' s are
constantly being grafted on through patches and
projeds. All i nformation supdied hereisat best
a snapshot of aversion of the kernel.



Pr ocess M anagement

Linux supports preemptive prioriti zed
scheduling. In order to comply with the POSIX,
Linux defines thirty-two levels of priority.
Threads may choose to be scheduled in a FIFO
order and run to completion, or they may be
scheduled in around-robin fashion. Acocording
to Barabanov and Y odaiken [4], asdgning the
highest prioritiesto criti cal tasks does not help,
Thisis partly because of the Linux "fair" time-
sharing scheduling algorithm.

Epplin [3] states that the fundamental probem
faced when attempting to graft POSIX.1b
functionality onto Linux is the fact that Linux
has a non-preamptible kernel. Sincethekernel is
non-preamptible, interrupts can be delayed.

I nter pr ocess Communication

Linux does provide standard synchronization
medanisms. However, Linux fail s to comply
with the POSIX.1b spec According to Epplin
[3], the timer functions and POSIX.1b signals
are not yet complete, and Linux does not
implement the real-time semaphores or message
gueues. Linux can only suppy predsion of
about 10 milli seconds using POSIX real-time
functions. POSIX timers are only supported
through patchesto the kernel.

Memory M anagement

Linux like other general-purpose operating
systems provides virtual memory. Barabanov
and Y odaiken [4] point out that bringing
requested pages back to RAM takes an
unpredictable amount of time. This can be
overcome sincethe POSIX memory locking
faciliti es have been implemented. Garnett [6]
states that by locking pages into memory and
using the round-robin scheduler a certain degree
of predictability is achievable. Unfortunately
Linuxis gill not ableto med even moderately
demanding real-time requirements.

RTLinux

RTLinux belongsto the dassof operating
systems that attempt to adapt a general-purpose
operating system to handle real-time
requirements. The RTLinux operating system
works by emulating interrupt control for the
Linux kernel. TheLinux kerne simply runs as
the lowest priority RTLinux process Most
services are till provided by the Linux kernel.
Theintention isto have the RTLinux kernel
provide only the services that Linux cannot
provide.

Pr ocess M anagement

The RTLinux scheduler is purely priority driven.
Theis smply ensures that the highest priority
thread is sheduled to run. The run order of two
standard threads at the same priority is
undefined. RTLinux supports POSIX Pthreads
API with an extension for threadsto be
scheduled based on arequired period. The
RTLinux documentation does not spedfy how
many levels of priority it supports. Sinceit
claimsto support POSIX.1b threads it must
support at least 32 priority levels.

RTLinux defines two types of interrupts: hard
and soft. Only hard interrupts are appropriate for
real-time applications snce soft interrupts are
handled just like Linux interrupts. This ensures
that the only resourcethat isreliably shared is
the CPU.

I nter pr ocess Communication

RTLinux supports its own gueue mechanism
caled RT_FIFO' s and its own shared memory
routines. It also supports POSIX mutexs, and
semaphores. RT_FIFO's are part of the Linux
kernel’s memory and are never paged to disk.
While ommunication with Linux threadsis
posshble, it is generally not safe because the
Linux kernel disablesinterruptsto provide
synchronization.

Memory M anagement

RTLinux does not provide any dynamic memory
for itsthreads. Each thread isloaded into its
own address pace Y odaiken and Barabanov [5]
say that this enforces the basic approach that
more sophisticated tasks sould be left to Linux
proceses. The lack of virtual memory ensures
that page faults never occur.

pSOS+

The pSOS+ operating system is considered a
traditional Real-Time Operating System. The
major difference between pSOS+ and the general
purpose operating systemsisthat pSOS+ will not
attempt to provide unlimited resources. The
number of operating systems resourcesis fixed
at compiletime. Any attempt to exceal the
finite resources will generate erors. While
pSOS+ does provide support for more @mmon
API' slike POSIX and the standard C library,
these are largely present for the sake of
portability (information in this sdion comes
from the pSOS+ manuals [10]).



Pr ocess M anagement

pSOS+ employs a priority-based, preamptive
scheduling algorithm. Unlike Windows NT or
Linux, it does not attempt to be fair, and will
ensure that the task with the highest priority is
running. The scheduler defines 256 priority
levels. Level 256isthe highest. Sincethe
pSOS+ kernel has no threads of its own,
preanption only occurs when a thread makes a
system call. Littleis documented about how
pSOS+ handlesinterrupts. Interrupt handlersare
not all owed to use unbounded blocking
operations, such as an indefinite wait on amutex.

I nter pr ocess Communication

Asof version 2.5 pSOS+, supports many 1PC
and synchronization medanismsincluding
mutexes, semaphores, condition variables,
message queue, etc. These arerecent additi ons
that are a vast improvement over previous
releases. In order to perform synchronization,
threads used to have to disable interrupts. With
the new additi ons, pSOS+ added support for
priority inheritance

The method for waiting on queues or mutexesis
either priority based or FIFO. The method is
dedded by the application. pSOS+ supports
high resolution timers and clocks. The
documentation claimsits proprietary timing and
scheduling algorithm guarantees constant time
operations.

Memory M anagement

pSOS+ organizes memory into multiple regions.
Regions are further broken into segments. The
exact organizdion isleft tothe application. Only
one region must be aeated and it isreserved for
the operating system. Thisregion is called
spedal region 0. Memory may be all ocated from
this region through the use of the standard
C/C++ routines. pSOS+ all ows an appli cation to
manage its own memory. It provides no virtual
memory management.

Suggested API

The suggested APl comes from a synthesis of the
surveyed operating systems. The esential
services that are avail able in most of the
operating systems are part of this API. Services
that were present in one or two gperating
systems, but offered enhanced functionality are
also present. Services that did not med the
reviewed guddines have been left out. The API
isminimalist. It attempts only to addressneeds
of real-time applications. Other services would

need to be included to make thisafully
functional API. Higher-level functionality, such
as C libraries and networking, have been
ignored.

Pr ocess M anagement

The processmanagement sedion al ows for the
management of concurrency. Here, applications
can define and start different threads of control.
It also all ows appli cations to install i nterrupt
Services.

Suggested functions

ThreadCreate: Dedares and starts a thread in
the system. The appli cation would need to
spedfy priority, period, scheduling algorithm,
and starting address Return thread id.
ThreadWait: Blocks athread until its next
period of exeaution. Only used internally to the
thread. Works from within current thread.
Timing is st up when thread is created.
ThreadDestroy: Forceully ends the thread.
The scheduler will not consider the thread again.
ThreadJoin: Allows athread to Hock until
another thread has exited.

ISRCreate: Ingtalls a handler for a spedfied
interrupt. Application must spedfy start address
and priority.

ISRDestroy: Removes handler for spedfied
interrupt. Must spedfy ISR id.

Suggested | mplementation

The scheduler need not be omplex. All that is
needed isapriority based preemptive scheduler.
The scheduler should not disable interrupts. For
flexibility the scheduler should support at least
256levels of priority. Both application installed
and system level interrupt handlers sould be as
short as posshle.

I nter pr ocess Communication

The interprocesscommunication sedion defines
medanisms for synchronization and
communication between threads.

Suggested functions

MutexCreate: Creates a new mutex. Options
include using Priority Inheritance and type of
waiting queue. The waiting queue may either be
priority or FIFO.

MutexAcquire: Acquiresthelock on this
mutex. Must spedfy mutex id. May spedfy
timeout.

MutexRelease: Releasesthelock on this mutex.
Must spedfy mutex id.



MutexDestroy: Removes a mutex from the
system. Must spedfy mutex id.

CVCreate: Creates anew condition variable.
Spedfy type of waiting queue, either priority or
FIFO.

CVWait: Blocks athread until the cndition
variableis sgnaled. May spedfy timeout. Must
spedfy cvid.

CVSignal: Signalsthreads waiting on this
condition variable. May spedfy to signal one
thread or all threads. Must spedfy cv id.
CVDestroy: Removes a conditi on variable from
the system. Must spedfy cv id.

QueueCr eate: Creates a new FIFO queue.
Queue depth may be fixed or variable. Options
include priority inheritance, and type of waiting
gueue.

QueueEnqueue: Places anew item at the end of
the queue. Must spedfy item and queueid. May
spedfy timeout.

QeuueDequeue: Removestheitem at the head
of the queue. Blocks until an item is avail able.
Must spedfy queueid. May spedfy timeout.
QeuueDestroy: Removes a queue from the
system. Must spedfy queueid.

Sleep: Blocksthe exeaution of athread for a
period of time. Thetime must be spedfied.
Affedsthe arrent thread.

Suggested | mplementation

It isimportant that the operation of the
synchronization and communication medanisms
ispredictable. Thetimers used must be accurate
with very small amounts of jitter. The order in
which locks are acquired must be deterministic.

Memory M anagement

The Memory Management sedion gives control
to the appli cation to manage its own memory
with minimal involvement from the operating
system.

Suggested functions

SegmentCreate: Reserve a new memory
segment for use. Must spedfy range.
SegmentDestroy: Gives control of a memory
segment back to the operating system. Must
spedfy the segment id.

MemoryAllocate: Bind ablock of memory to a
variable. Must spedfy the size of the block and
the segment id the block belongs to.
MemoryDeallocate: Unbind a block of
memory. Must spedfy the block’s garting
address

Suggested | mplementation

The operating system should all ow appli cations
to control their own memory. This means that
virtual memory should either not be
implemented or the appli cation must be able to
lock pagesinto memory. Using the spedfied
functions, the appli cation should be able to
construct its own memory management scheme.

Conclusions

The requirements for an operating system to
support real-time operation are well understood.
The most important issues addresshow
deterministic the operating system is.

Windows and Linux support only soft real-time
because they are not deterministic enough.
RTLinux support for hard real-timeislimited if
the non-deterministic Linux services are used.
The most deterministic operating system, pSOS+
supyports hard real-time.

A real-time API can provide most services that
are present in a general purpose operating
system. The most important factor in designing
such an API isto give the appli cation as much
control as posshble over how it is sheduled.
Increasing control is accompli shed by all owing
the appli cation to determineits priority and to
choose how long it waits for resources. Thislets
the appli cation bound the amount of time that it
is blocked.

Whil e the APIs of an OS are very important to a
developer’s dedsion to use a particular OS for
his/her appli cation, there are many factors, which
should be mnsidered before implementation
begins. Each operating system compared in this
survey fits a particular set of problems.
Window’ s huge user install base makes it an
attractive alternative. Linux and RTLinux share
the advantages of open source easy
modification, and memory foatprint scaling.
Unpredictable Devicedrivers reducethe
determinism of Windows and Linux. The
limitations of RTLinux makeit ideal only for
small and simple hard real-time tasks in a Linux
environment. Devel opers who want only hard
real-time c@pabiliti es with predictable device
drivers and more appli cation control should
consider pSOS+. When a small memory
foatprint is necessary, pSOS+ is also a good
candidate.



Future work would include implementing an
operating system with the suggested API. This
prototype OS could be used for experimentsin
improving algorithms and fine-tuning the
suggested API. A follow up to this paper would
addressadmisson control and negotiations with
the operating system a desired leve of service

References:

[1] Obenland, Kevin M. POSIX in Real-Time.
Embedded Systems Programming, Vol. No. 4,
April 2001

[2] Kartik Gopalan, Real-Time Support in
General Purpose Operating Systems, Research
Proficiency Exam Report, Dept. of Computer
Science, State University of New York, Stony
Brook, NY, January 2001

[3] Epplin, Jerry. Linux asan Embedded
Operating System . EmbeddedSystems
Programming 1Q(10), October 1997.

[4] Barabanov, Michadl and Y odaiken, Victor.
Linux Means Business Introducing Real-Time
Linux. Linux Journal. February 01, 1997
http://mww.li nuxjournal.com/article.php?sid=02
32

[5] Victor Yodaiken and Michael Barabanov. A
Real- Time Linux. In Procealings of the Linux
Appli cations Devel opment and Depl oyment
Conference (USELINUX), Anaheim, CA,
January 1997 The USENIX Association.

[6] Garnett, Nick. EL/IX Base APl Spedfication
DRAFT - V1.2. Red Hat Inc. September 18,
2000

[7] Ramamritham, Krithi, Shen, Chia, Gonzd ez,
Oscar, Sen, Subharata, and Shirgurkar,
Shreedhar. Using Windows NT for Real-Time
Applications: Experimental Observations and
Recmmmendation. In IEEEReal-Time
Tedhnology and Appli cations Symposium. 1998

[8] Timmerman, Martin, and Monfret, Jean-
Christophe. Windows as a Real-Time OS. Real-
TimeMagazne p6-13, 2Q97 .

[9] Microsoft Platform Software Devel opment
Kit. January 2001

[10] pSOSystem System Concepts. Integrated
Systems Inc. 1999



