
Abstract – Real time applications have time requirements to
be accomplished. The missing of those deadlines make the
system incur in fatal errors. Many operative systems(OS)
have been upgraded to achieve preemption in order to offer
applications the capability of meeting their deadlines. Linux,
with its open source philosophy and robustness offers the
opportunity of kernel code manipulation, as well as straight
forward testing with the modules idea. This paper presents a
real-time application implementation using a real time Linux
kernel. The main goal is that of testing how well the real time
OS does in confront to a non-preemptive OS. The real time
application will control the lighting of eight leds designing
models in a 3D space.

1. INTRODUCTION

A real time system is one capable of guaranteeing timing
requirements of the processes under its control. It must be
fast and predictable. Fast meaning low latency, that is,
responds to external asynchronous events in a short time.
The lower the latency, the better the system will respond to
events which require immediate attention. Predictable so as
to be able to determine the task’s completion time with
certainty. A typical real time task will have timing
constraints, resource requirements, communication
requirements and concurrency constraints, all of which has
to be treated.
Linux is a POSIX 1003 compliant OS. Processes can be
locked into memory to prevent being paged to hard disk.
But a Linux kernel does not provide the required event
priorization and preemption functions needed by a real time
process.
[2][6] and [9] deal with the implementation of real time
Linux kernels. The preemption improvements approach,
makes modifications in the original native Linux code so as
to reduce the time spent by the kernel in non-preemptive
sections of code. But, this approach only affords soft real
time since when Linux interruptions are disabled by
processes, no effective response is guaranteed. The
interrupt abstractions approach defines a two layer system
where the standard Linux is run as a low priority process
along with all the RT high priority preemptive processes,
that are run in kernel space. The RT kernel will handle all
the interruptions directly.

II . RELATED WORK

Linux distributions differ not in the main kernel, which is
common and unique for all of them, but in the applications
they include, their graphical environments and other extras.
Open source implementations are being used by companies
to offer complemented-payable-kernels coupled with a
varied range of tools. The open source philosophy makes
Linux world more active and rich in developments.

Some real-time open source Linux kernels, like
RTLinux[9] or RTAI[2], work on the philosophy of
modules. Its main feature is that RT processes are
considered as loadable modules. Those OS achieve
response times of 15 µsecs. This is obtained through
running the RT processes in the kernel space. In order to
avoid possible memory intrusions, both offer the possibili ty
of user space execution. Both real time versions emulate
standard Linux interrupts enable/disable so as to avoid the
priority inversion problem between non-preemptive and
preemptive RT processes.
[5] offers a more detailed and clear two layer system
description known as HAL (Hardware Abstraction Layer).
It supports five core loadable modules which provide the
desired on-demand, real time capabili ty. Those implement
the scheduler, memory sharing, clocks control and FIFOs
implementation. This will be our base system.

III . SIGNAL CONTROL SYSTEM IMPLEMENTATION

[1] and [3] offer descriptions of real time modules ranging
from the simple control of a port dealing with real time
signals to the whole implementation of the control for a
PUMA robotic arm, including identification of RT threads
and RT Linux processes.
Our real time signal control system will develop a loadable
module for the RTAI kernel[2]. The application will t ake
control of a real time input complex signal coming from the
serial port and will implement a feedback control on it. The
actual system will control the lighting of eight leds
designing models in a 3D space.
[7] does a comparative study of the output of an audio
process (soft real time) in a preemptive and non-preemptive
OS, pinpointing the failures in the last one. We will follow
a similar study on the output of our system.

IV.REFERENCES

[1] Andris, P. Robot Control using Real Time Linux. In
International Workshop on Robotics, Slovenia, 2000.
[2] Dipartimento di Ingegneria Aerospaziale, Politecnico di
Milano, RTAI, www.rtai.org
[3] Kupper, J.The serial port driver of real time Linux.
Institut fur Physicalysche Chemic, Frankfurt, 2000.
[4] Lineo, www.lineo.com
[5] Mantegazza P.DIAPM-RTAI:why’s, what’s and how’s.
Proceedings of the Real Time Linux Workshop. Vienna,
Austria, 1999.
[6] Montavista, www.mvista.com
[7] Morgan, K. in Linux Devices, www.linuxdevices.org
[8] Real Time Linux website, www.realtimelinux.org
[9] RTLinux, www.rtlinux.org

Implementation of a Signal Control System in a Real Time Environment

Vanessa Frías-Martínez
Computer Science Department

 Columbia University
110 Amsterdam Avenue, New York, NY 10027

e-mail: vf2001@cs.columbia.edu

