Literature Survey for COMS W4995-2 Project Benjamin Ip

Introduction

This paper presents the review of several performance measurement methoddogies used to benchmark the
VxWorks and RTLinux red-time operating systems. Whil e various approachesto achieve fair and accurate
metric have been suggested, only effedive methods should be chosen to assert the RTOS suitabili ty of
running RT applicaions. This survey beginswith a brief overview of the two operating systems foll owed
by the examination of different metric used to evaluate them, and concluded with the challenges faceto
adhieve the project goal.

Background

VxWorksis by far the most widely adopted commercial RTOS in the embedded industry. It is developed
from WindRiver with the intention to design an OS with fagt, efficient, and deterministic context switching.
The Wind micro-kernel can suppart preemptive and round robin scheduling pdliciesand maintain unlimited
number of tasks with a maximum of 256 priority levels. VxWorksis also well known for itsrich todl chain
and runtime library that significantly reduce the amount of time for appli cation development. Despite the
comprehensive feaures from VxWorks, it bares a high premium for royalty fee

Unlike Linux, RTLinux provides hard read-time capdility. It has a hybrid kernel architecture with a small
red-time kernel coexists with the Linux kernel running as the lowest priority task. This combination
allows RTLinux to provide highly optimized, time-shared services in parallel with the red-time,
predictable, and low-latency execution. Besides this unique feature, RTLinux isfredy available to the
publict. Asmore development todls are geared towards RTLinux, it will become a dominant player in the
embedded market.

Performance Metric & Measurement Approach

This sedion describes some of the traditiond performance metric that this projed will use for evaluating
the above two OSes.

Context Switch

Red-time systems are typically implemented with multi ple asynchronous tasks of execution. Because of
this charaderistic, a RTOS scheduler is usually designed to suppart multitasking. During task scheduling,
acontext switch isneedel to sugpend one task and immedately resume the other. Therefore, it is
important to minimize the average cortext switch latency. Levine [1] proposed threemetric: the Suspend-
Resume, Yield, and Synchronized Suspend-Resume tests to benchmark context switch time. The Yield test
cannot be run on VxWorks because it does not suppart an immediate task yield without delaying for a non-
zeotimeinterval [1]. On the other hand, the yield function in RTLinux always causes a schedule
recdculation of al runnable processes[1]. Even using the remaining two tests till requires taking multiple
measurements to obtain reliable result.

Priority Inversion

Priority Inversion occurs when a high-priority task is blocked waiting for alow-priority task to release a
resourcerequired by thehigh priority task. Priority inversion must be eliminated and modern RTOSes
often incorporate their own priority inversion protocols. Levine’s[1] method on deted¢ing and observing
priority inversionis complicated. A straightforward way to crede a priority inversion scerario is to hawe
threetasks running at low, medium, and high prioriti es, with the low and high priority tasks competing for
the same resource[4]. Thetime between the high priority task requesting the resourceand the low priority
task releasing the resource will approximately indicate the effedivenessof ead of the protocol [4].

! RTLinux is distributed by Finite State Machine



Interrupt Latency

Interrupt Latency is defined as the sum of the interrupt blocking time during which the kernel cannot
respond to the interrupt and the dispatching overhead due to context saving, determination of interrupt
source, and invoking the interrupt handler. For a particular interrupt, the latency also includes the
exeaution time of other nested interrupt handlers. Sihol [3] took both the aralytical and empirical
approaches for measuring interrupt latency. Although, he has spent much time on elaborating the

diff erences between the two approaches, only brief amount of text is dedicated toill ustratethe
measurement process Sun’s [4] fully dedicated his article on describing how to measure laency in the
Linux environment. Since RTLinux isavariant form of Linux, Sun’'s example must be tuned for
measuring RTLinux interrupt latency. Little reseacch has been dane publi cly to measure VxWorks
interrupt latency. Nevertheless a FAQ that maintained by WindRiver [5] presented latency figures
performed on a different but limited hardware datforms. Red-Time Magazine [6] does provide test plan
enumerating the procedures for latency measurement generic to examine both RTOSes.

Synchronization

Synchronization is required for ared-time system when it is executing multi ple tasks and ead of them try
to share and accessthe same resources. Both VxWorks and RTLinux provide afull suite of
synchronizaion methods, but using these libraries do incur penalty. Obenland’ § 7] tedhnique to measure
semaphore overhead include two independent tests for subtrading the semaphore system cdl overhea to
cdculate the net latency incurred during semaphore credion.

I nter-Process Communications

Modern red-time applications are constructed as a set of independent, cooperative tasks. While
semaphores provide a high-spead mechanism for task g/nchronization and interlocking, often ahigher-level
medhanism is neaessary to all ow cooperating tasks to communicate with ead other. Message queueis one
of the many waysto provide abstradion of inter-task communications.. Accordingto Obenland’s[7]
article, message queue overheal is the time between a task request sending a message and another task
receving that message. Obenland emphasized that prior to the test exeaution, the message queue must be
creaed with no messge pending and the recaving task must be blocked waiting for the message.

Timing M easur ement

Measuring the above netric requirescertain degreeof resolution, acarracy, and granularity. Steward’s
article [2] provides an excdl ent tutorial on how to seled different timing measurement methods. He and
the author from Red-Time Magazne [6] pointed out that software analyzer tods that come with the
RTOSes must be exercised carefully becaise thes tods varies grealy in timing resolution. Steward also
identified that a good software aralyzer should provide means to measure small segment of code, time tace
to show processexecution time, and minimal measurement overhead. Steward, however, suggested that
the best tool to obtain acairate measurement isto use alogic aralyzer becase it gives very fine resolution
and least obtrusion on red-time code. There aietwo approades to usngalogic analyzer. Oneway isto
hook up the analyzer probeto the CPU pins. Ancther way is 1o send a pattern of signalsto an output port,
which areread by the analyzerasevents. Finally, Steward disaussed other approachessuch as using the
clock function and the Prof /Grof profili ng todl as other means for measurement; however, they offer less
granularity than the methods aforementioned.

Operating System Over head

The context switch overhead includes time for RTOS to perform scheduling. Often, the time for
scheduling is afunction of the number of tasks on the ready queue. Therefore, the effed of RTOS
overhead for context switching and scheduling must be considered if acarate measurements are reedel.
Steward [2] ill ustrates a general but detail ed example on how to minimizethe overhead.

Challenge and Future Work

In the remainder of the semester, I'll try to addresskolve the foll owing issuies/questions:
e Should different metric be measured with a system load or without any background task?



e Should test code be developed entirely myself or obtained from third party? Should | use tods
that come with the RTOSes, or simply use logic analyzer and small test code written to achieve
timing measurements? Choaosing a particular dfort will significantly aff ect devel opment time.

For the rest of this semester, I'll dedicate more time on configuring the target and the host, and proceed to

generate a thorough test plan for ead of the test metric. Efforts gent on implementing test functions will
vary gredly depending on the diredion that | take as describedealier.

References

[1] D. Levine, S. Flores-Gaitan, C. D. Dill, and D. C. Schmidt, “Measuring OS Suppart for Red-Time
CORBA ORBs’, in 4™ |IEEE International Workshop on Objed-oriented Red-Time Dependeble
Systems 00, Santa Babara, California, Jan. 27-29.

[2] D. Stewart, “Measuring Exeaution Time and Red-Time Rerformance”, Embedded System
Conference Spring 2001

[3] V. Sohal, “How To Redly Measure Real-Time”, Embedded System Conference, Spring 2001

[4] Jun Sun, " Interrupt Latency”, Monta Vista Software, http://www.mvista.com/redtime/latency/

[5] “VxWorks FAQ", http://www.xs4all .nl/~borkhuisivxworks/vxworks.html

(6] Red Time magazne, “Evaluation Report Definition”, http://www.realtime-info.be, March 1999

[7] K. Obenland, “Red-Time Performance of Standards Based Commercial Operating Systems”

Additional References

[7] Intelligraphics, “Performance Utili zation and Performance Benchmarking in Embedded Systems”,
http://www.intelligraphics.com/articles/EmbeddedBenchmarking_article.html

[8] R. Appleton, “Understanding a Context Switch Benchmark”, Linux Journal
http://www2.linuxjournal.com/lj-issues/issue57/2941html, Jan. 1997

[9] Victor Yodaiken, “The RTLunix Approach to Hard Red-Time”,
http://rtli nux.org/documents/papers/whitepaper.html, Oct. 1997

[10] V. Yodaiken, “The RTLinux Manifesto”,
http://rtli nux.org/documents/papers/rtmanifesto/rtlmanifesto.html

[11 M. Barabanovand V. Yodaiken, “Red-Time Linux’, http://rtlinux.org/documents/papers/lj.pdf,
Mar. 1996

[12] V. Yodaiken, “An Introduction to Red-Time Linux”,
http://www.rtli nux.org/documents/RTLinux.ppt

[13] P. Wilshire, “Ingtalling RTLinux’, http://rtlinux.org/documents/install ation_june 2000.html, 2000

[14] T.C. Siering, “RTLinux Installation Tips’, http:/rtli nux.org/documents/install ation_ndes.html,
2000

[15] M. Barabanov, V. Yodaiken, and E. Hilton, “RTLinux FAQ”,
http://wwwv.rtli nux.org/documents/fag.html, 2001




[16]

[17]
[18]

[18]
[19]
[20]
[21]

[22]

[23]

[24]

R. Lehrbaum, “Using Linux in Embedded and Red Time Systems”,
http://embedded.linuxjournal.com/resources/|j/li75/3980.php

A. Ivchenko, “Red-Time Linux”, Embedded System Programming Magazne, May 2001

A. Ivchenko , “Applicaion Code and RTLinux’, Embedded System Programming Magazne, Jun.
2001

M. Bunrell, “ Solving the Embeddded Linux Challenges’, http://www.lynuxworks.com

D. Bovet and M. Cesati, Understandng the Linux Kernel. Sebastopd, CA: O'Reilly, 2001
comp.os.linux.embedded

WindRiver Systems Inc, TornadoUser’s Guide, Alameda,CA: WindRiver Systems, Inc, 1999

WindRiver Systems Inc, VxWorks Programmer’ s Guide, Alameda,CA: WindRiver Systems, Inc,
1999

WindRiver Systems Inc, TornadoTraining Workshop, Alameda,CA: WindRiver Systems, Inc,
1999

comp.os.vxworks



