A Survey on Specific Domain Languages for
Network Interface Cards

Apostolos Manolitzas

Abstract— This article explains the main motivation of this
project, presents the problem and discusses different ap-
proaches and solutions. Also it introduces a number of so-
lutions that claim of solving the problems of writing device
drivers.

I. INTRODUCTION

EELING the heat of their competitors, hardware com-

panies create new products with a phrenetic pace.
Those devices need the support of drivers which should be
developed, debugged and tested in the most limited time in
order to follow this pace. Although device drivers play the
most critical part in the terms of performance, time pres-
sure doesn’t allow extensive testing. In combination with
the assembly language, the low-level programming and the
bits operations increase the error possibility and decrease
the productivity. Not to mention the errant nature of that
kind of programming.

We support that the most efficient solution to those prob-
lems would be the complete abstraction from the lower pro-
gramming levels and the use of language, in which by pro-
viding the contents of the specification data sheet, a lan-
guage generator should create the major part of the driver.
This approach is not utopia, but requires intelligent, spe-
cialized compilers and rich libraries that would encapsulate
more of the hardware knowledge. Some small steps have
be made towards this approach and are presented in the
article.

Furthermore, the different OS platforms provide another
Sisyphean labor in writing device drivers, because the de-
veloper has to create multiple different instances of the
same driver to support those differentiations. Attempts
have been made to provide a unified interface that would
encapsulate the different architecture of every device. From
our point of view, we support that the solution will be given
by using SDL(specific domain languages) with high level of
abstractions, that could generate a specialized output ad-
justed even to the OS platform.

In this article we present analytically the main techno-
logical trends on writing high performance device drivers
easily which are portable, easy to maintain and to reuse.

II. RELATED WORK

Several approaches have tried to provide some solution
to the problems that we mentioned before. Every approach
has a different motivation and a particular range of appli-
cations. Some solutions was planed to provide an absolute
solution to the complete set of device drivers and others

A.Manolitzas is a graduate student in the Department of Electrical
Engineering in Columbia University of New York.

are attempting to provide tools only for a small subset of
drivers. Thus, there is no standard tool for writing device
drivers, it means that the absolute solution haven’t been
found yet.

A. GAL

The GAL [3] (Graphics Adaptor Language) consists a
novel attempt of using a specific domain language to sup-
port generation of device drivers by providing only device’s
description. In the description are specified the registers,
the ports,the clocks and the most basic actions’ sequence.

In their paper they describe in details the procedure fol-
lowed and the issues that had to be dealed with so as to
create a compiler generator specifically for device drivers.
In general,they present the appropriate framework for the
development of that type of software.

In order to support their idea, they implement a driver
for graphics devices of the S3 chips series using their lan-
guage. The generated driver is compared with the current
hand-crafted implementation of the S3 drivers. In the re-
sults of the comparison they point out that the performance
of their driver surpasses in performance the original, imple-
mented in C, driver in some cases. In addition they claim
that their code is very easy to write, to maintain and to
reuse it. Justifying the essentiality for code reuse, they
present the argument that code development is mostly re-
development and the new code is a modification on the
existing one adjusted to new requirements. With their lan-
guage this can be done easily.

Another interesting idea, that worths exploring, is com-
pilation in several independent stages. On every stage, ad-
ditional information can be added to finalize their output.
But the magic of the conception involves the differentiation
of information that can be added to produce an output
dedicated to a specific problem. This approach is called
partial evaluation and it is a method which evaluates parts
of a program in advance so as the code generated will be
more efficient and dedicated to a specific application.

We support that approach and our research is based on
the procedure described in their paper. We believe that
writing device drivers should be more efficient, with less
pain and the code should be easy to reuse so as to increase
productivity. Such an approach is showing the path to so-
lution. The carriage to that solution is the specific domain
languages.

But GAL is not panacea. It is too specialized and re-
quires much effort to support that specialization. The au-
thors presented only the creation of device drivers for a
small group selected chips of the same series. That visual-



ize the difficulty of the approach.

B. Deuvil

The same research team, identified the problems of the
previous solution and they decided to solve them with a
more generic language that would apply to the entire range
of drivers. So the proposed Devil [1], is a language or better
a supplement tool for the developer that would help him
avoid common mistakes and increase his productivity.

They claim that they created a compiler that checks
safety critical properties and generates robust hardware
operating code. They used Interface Definition Languages
(IDL) to describe the hardware and its functionality. It
provides the programmer with abstractions and syntactic
constructs that are specific for describing devices. Par-
ticularly, Devil is a compiler that generates automatically
stubs which provide an interface to the device. The in-
terface is mostly consisted of macros and nicely defined
registers. Such an approach allows logical error checking
during the compilation in order to avoid the tedious real-
time debugging.

One of their main consideration was the property veri-
fication. They support the principle that a large portion
of errors are caused be mistyping, wrong type matching
and type overlapping. Their argument is completely jus-
tifiable, because most drivers actions are interaction with
the hardware which involves reading and writing to device
registers. Those actions are pure bit operations which are
high errant actions.

The paper insists on the necessity of fast error-detection
and compiling checking. To support the validity of their
language,they rewrote the device drivers for an IDE device,
for a mouse and for a NE2000 Ethernet. They presented
some comparisons based on error evaluation between the
rewritten code with the use of Devil and the hand crafted-
code. The results show that the possibility of error is re-
duced with the use of Devil. Specifically, the tests are based
on the mutation analysis technique, which main objective
is to expose errors that occur by inserting, replacing or re-
moving a character from a token. Another remark is for
the performance of the driver that remains as high as the
hand-crafted drivers.

In conclusion we can say that this language provides a
formal way to define safely macros and registers. Of course
the attempt can be characterized more the positive in terms
of properties checking, but defining macros and registers is
a technique that a decent, self-respect developer does. Also
they didn’t deal at all with the problem of multiple oper-
ating system portability. We believe that this approach is
helpful but doesn’t provide a clear total solution.

C. UDI

Another critical issue that device writer faces is the
portability of the driver to the different OS. There are many
differences among current operating systems that influence
the environment for device drivers and other kernel mod-
ules. Some support kernel threads; others do not. Some
support preemption; others do not. Some support dynam-

ically loadable kernel modules; other do not. Variations
in memory management and synchronization models also
impinge upon the device driver environment.

In order to support that difficulty, UDI [2] (Uniform
Driver Interface) provides a common framework for drivers
of many different types. This makes it easy to write new
types of drivers, since all drivers share a common look and
feel. Tt also allows flexibility in hardware and software con-
figurations, since any driver can potentially communicate
with any other driver.

Certainly, this approach is a solution to the portability
problem but requires programmers cooperation. The main
disadvantage is that every developer should be responsi-
ble for following that environment. Also that environment
doesn’t provide him type checking and type verification as
the other attempts did. UDI focuses mainly, only on the
high level part of the drivers and their interaction with the
operating system.

D. Flick

In this paper, they suggest a compiler, named Flick [4]
that is used for compiling IDLs. Although,it has nothing
to do with device drivers, they analyze a very interesting
technique that should be used in our project.

IDL compilers, generally, generate stubs and skeletons,
which are by their nature header files, with limited func-
tionality. The stubs provide an interface for method invo-
cation. Usually, stubs contain the mapping of the IDL to
the desired language as C,C++, JAVA etc. Their mapping
is based on simple rules with no intelligence, optimization
or efficiency.

In their proposal, they suggest the use of common com-
pilation techniques to optimize the generated code. That
type of compilation is consisted by three phases. In each
phase they create a representation of the interfaced defined
by the IDL input. This representation contains a different
level of specialization and it’s completely independent from
the previous stages . So for example, the first level is just
an abstract representation and the last the code specialized
for CORBA requests with TCP/IP.

Following this idea, the device driver compiler should
have the qualifications of creating an initial abstract rep-
resentation of the driver and in every step to add special
components, eventually from a large library of code, that
would lead to the generation of code specialized for a cer-
tain chip and OS.

E. Tools

Several others attempts have been made to make easier
the life of the device driver programmer. Libraries [6] have
been built and Toolkits like WinDK [5] have been created,
but they don’t deal with the whole range of the problem.
A very prominence attempt is a commercial product called
jungo [7]. By plugging the device hardware in a computer
slot, their diagnostics scan it and they create a framework
based on the characteristic read. Following,the developer
provides the specification of the device through an inter-
active dialog and finally the program generates the driver



for the device. Of course this is a very limited environment
without giving any freedom to the developer.

III. SDL FOR NETWORK CARDS

Through the survey we found some exciting ideas, but
our belief is that only by defining an SDL language for every
device family, we will manage to solve the largest portion
of the problem. Following this essential idea, we are going
to propose a specific domain language for network interface
cards.

The methodology of our research follows the common-
ality analysis. Based on that method we are going to de-
fine network cards families and network cards operations.
In practice, commonality analysis is done by experts and
experienced developers, but within the borders of this at-
tempt we will go through the analysis for the drivers of
one operating system. Our study will focus on ISA and
PCI network cards, and their corresponding Linux 2.4.10
drivers.

Briefly we can identify 3 patterns which appear in the ex-
isting drivers that could be used for our guideline: The op-
eration pattern which is code fragments that are repeated
in the driver and differs only by data, the combination
of operation patterns which are combination as operations
and the last is the control pattern in which a decision is
made concerning which operation pattern to be used.

Hopefully, based on those patterns, we expect to define
the specific domain language.

REFERENCES

[1] Fabrice Merillon,Laurent Reveillere,Charles Consel,Renaud Mar-
let, Gilles Muller. Devil: An IDL for Hardware Programming.
OSDI 2000, pages 17-30, San Diego, October 2000.

[2] Project UDI. UDI Specifications, Version 1.0, September, 1999.
URL: www.project-udi.org.

[3] S. Thibault, R. Marlet, and C. Consel. Domain-specific lan-
guages: from design to implementation - application to video
device drivers generation. IEEE Transactions on Software Engi-
neering, 25(3):363-377,May-June 1999.

[4] E. Eide,K. Frei,B. Ford,J. Lepreau,G. Lindstrom. Flick: A Flex-
ible, Optimizing IDL Compiler. Proceedings of the ACM SIG-
PLAN ’97 Conference on Programming Language Design and
Implementation (PLDI), Las Vegas,NV, June 15-18,1997.

[5] BlueWater Systems, Inc. WinDK Users Manual. URL:
www.bsquare.com

[6] Compuware NuMega. DriverWorks User’s Guide. URL:
http://www.compuware.com/products/numega/drivercentral /

[7] Jungo Ltd. WinDriver V5 User s Guide. URL: www.jungo.com



