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Definition
 In Active Learning the user is given 

unlabelled examples where it is possible 
to get any label but it can be costly.

 Pool-Based active learning is when the 
user can request the label of any 
example.

 We want to label the examples that will
give us the most information. i.e. 
learn the concept in the shortest amount 
of time.

General Learning Model

Active Learning Model



Pool-Based Active Learning Models
 Bayesian Assumptions - knowledge of a prior upon 

which the generalization bound is based
 Query By Committee [F,S,S,T 1997]

 Generalized Binary Search
 Greedy Active Learning [Dasgupta 2004]

 Opportunistic Priors or algorithmic luckiness
 a uniform bet over all H leads to standard VC 

generalization bounds 

 if more weight is placed on a certain hypothesis then it 
could be excellent if guessed right but worse than usual 
if guessed wrong,



Query By Committee[F,S,S,T 1997]



Query By Committee
 Gibbs Prediction Rule – Gibbs(V,x) predicts the label of 

example x by randomly choosing h 2 C over D, restricted to 
V ½ C, and labeling x according to it.

 Two calls to Gibbs(V,x) can give different predictions.
 It is easy to show that if QBC ever stops then the error of 

the resulting hypothesis is small with high probability. The 
real question is will the QBC algorithm stop.
 It will stop if the number of examples that are rejected 

between consecutive queries increases with the number of 
queries (constant improvement) 

 The probability of accepting a query or making a prediction 
mistake is exponentially small compared to the number of 
queries asked.



Greedy Active Learning[Dasgupta,2004]

 Given unlabeled examples, 

a simple binary search can 

be used when d=1 to find the transition from 0 to 1

 Only log m labels are required to infer the rest of the labels.

 Exponential improvement! 

 What about in the generalized case? H can classify m 
points in O(md) possibilities; How many labels are needed? 

 If binary search were possible, just O(d log m) labels would 
be needed.

**picture taken from Dasgupta’s paper, “Greedy Active Learning”



Greedy Active Learning
 Always ask for the label which most evenly divides the current 

effective version space. 
 The expected number of labels needed by this strategy is at most 

O(ln |Ĥ|) times that of any other strategy. 
 A query tree structure is used; there is not always a tree of 

average depth O(m). 
 The best hope is to come close to minimizing the number of 

queries and this is done by a greedy approach:  
 Algorithm:

 Let S  µ Ĥ be the current version space. 
 For each unlabeled xi, let Si

+ be the hypothesis which label xi
positive and Si

- the ones which label it negative. 
 Pick the xi for which the positive and negative are most nearly equal 

in weight; in other words min{(Si
+), (Si

-)} is largest.



Active Learning and Noise
 In active learning labels are queried to try to find the 

optimal separation. The most informative examples 
tend to be the most noise-prone.

 QBC

 Greedy Active Learning

 It can not be hoped to achieve speedups when is 
large. 

 Kaariainen shows a lower bound of ( 2/ 2) on the 
sample complexity of any active learner



Comparison of Active Noisy Models
Agnostic Active Learning

Active Learning using 
Teaching Dimension

 Arbitrary classification noise

 Data sampled i.i.d over some 
distribution D.

 Algorithm is shown  to be 
successful for certain 
applications using any , but 
exponential improvement if 

< /16

 Arbitrary persistent
classification noise

 Data sampled i.i.d over some 
distribution DXY.

 Algorithm is successful for 
any application using noise 
rate v · ; not necessarily 
successful otherwise.



Agnostic Active Learning [B,B,L 2006]



Agnostic Active Learning
 The A2 algorithm uses an 

UB and LB subroutine on 
a subset of examples to 
calculate the disagreement 
of a region. 

 The disagreement of a region
is Prx 2 D[9 h1, h 2 2 Hi : h1(x) h2(x)]. 

 If all h 2 Hi agree on some region it can be safely eliminated thereby reducing 
the region of uncertainty. 

 This eliminates all hypotheses whose lower bound is greater than the minimum 
upper bound. 

 Each round completes when Si is large enough to reduce half of its region of 
uncertainty which bounds the number of rounds by log(½)

 A2 returns h = argmin(minh 2 H’i
UB(S, h, )).

**picture taken from “Agnostic Active Learning” [B,B,L, 2006]



Active Learning &TD [Hanneke 2007]

 Based upon the exact 
learning MembHalving
algorithm  [Hegedüs] 
which uses majority vote of 
h to continuously minimize 
V

 Reduce repeatedly gets the 
min specifying set of the 
subsequence for hmaj and V’ 
is all h 2 V that did not 
produce the same outcome 
of the Oracle in all of the 
runs. Returns all V/V’

 Label gets the minimal 
specifying set as in reduce 
and labels those points. It 
labels the rest of the points 
which agree on h, hmaj and 
the Oracle using the 
majority value. 



An application of Active Learning
 Active learning has been frequently 

examined using linear separators 
when the data is distributed 
uniformly over the unit sphere in Rd.

 Definition: X is the set of all data 
s.t. X = {x 2 Rd : ||x|| = 1}. 

 The data-points lie on the surface 
area of the sphere.

 The distribution, D, on X is uniform. 

 H is the class of linear separators 
through the origin.

 Any h 2 H is a homogeneous hyper-
plane. 



Comparing the Models



Extended Teaching Dimension

 The teaching dimension is the minimum number of 
instances a teacher must reveal to uniquely identify 
any target concept chosen from the class. 

 The extended teaching dimension is a more 
restrictive form; The function of the minimal subset, 
f(R), can be satisfied by only one hypothesis, h(R), and 
the size of the subset is at most the size of XTD.



TDA Bounds

 It is known that the TD for linear separators is 2d

[A,B,S 1995].

 The linear separator goes through the origin, therefore 
only the points lying near it need to be taught. This is 
roughly a TD of 2d /√d.

 The XTD is even more restrictive so it is probably 
worse.



Comparing the Models



Open Questions
 What are the bounds of A2 for axis-aligned rectangles?

 Can the concept of Reduce and Label in TDA be used 
to write an algorithm that does not rely on the exact 
teaching dimension? 

 Can a general algorithm be written which would 
produce reasonable results in all the applications. 

 Can general bounds be created for A2?


