
Experiments on Boosting with Noise

Dana Glasner and Sara Stolbach
dg2342@columbia.edu,ss3067@columbia.edu

December 12, 2006

Abstract

In this paper we discuss experiments and our results that we have ob-
tained on Boosting with Noise. A boosting algorithm is one that takes a
weak PAC learning algorithm and “boosts” it to achieve high accuracy. We
examine the Kalai and Servedio paper [1] as our focal point for boosting. We
will analyze in depth the algorithm mentioned in [1] known as MMM - Mod-
ified MM, which is based on the noise-free MM algorithm [2]. We then show
our results on implementation and experimentation of the MMM algorithm.

1

1 Introduction

Often we are given a algorithm that is “weak”, meaning it does not achieve
arbitrarily high accuracy on the concept at hand. This is where boosting
comes in to the picture. Boosting algorithms take a weak learner and create
a strong learner. There are many boosting algorithms available. However,
one of the major difficulties is learning with noise which the majority of
boosting algorithms do not address.

The standard PAC model does not take the presence of noise into account.
However, when dealing with real data, the presence of noise is a given. There-
fore, the PAC model has been extended to various different noise models. The
simplest noise model is the Random Classification Noise model which we will
examine in depth and is defined by having an oracle EX(c, D, η) which re-
turns an example (x, b) drawn from D such that b = c(x) with probability
1− η and b = 1− c(x) with probability η. Noise-tolerant boosters provide a
black-box method of transforming a noise-tolerant weak learner into a noise-
tolerant strong learner. Given a noise tolerant booster, one can convert a
learning algorithm with advantage slightly better than 1/2 into a learning
algorithm with arbitrarily high accuracy. Servedio and Kalai [1] have shown
that it is “hard” to boost a weak learning algorithm past the noise rate even
in the Random Classification Noise model. This means that if one-way func-
tions exist, true noise-tolerant boosters cannot exist. However, [1] do give a
method of boosting any noise-tolerant weak learner arbitrarily close to the
noise rate. This algorithm is called modified MM or MMM and is based on
Mansour and McAllester’s boosting algorithm (MM) [2] which works by cre-
ating a branching program where each node is a hypothesis h and an example
x is directed left when h(x) = 0 and right when h(x) = 1. [1] also define
an “okay”-learner, which is a slightly more powerful learner than the weak
learner that can be boosted to arbitrarily high accuracy even in the presence
of Random Classification Noise.

2 Definitions

Definition 1 Weak Learner [4] Algorithm A is a weak PAC learner for con-
cept class C with advantage τ if for any c ∈ C, for all D, for all 0 < δ < 1,
with probability ≥ 1− δ, A outputs h such that PrD[h(x) 6= c(x)] ≤ 1

2
− τ .

Definition 2 Boosting: [4] A Boosting Algorithm runs a weak learner A

2

multiple times using a sequence of carefully chosen different distributions
EX(c, D1), EX(c, D2), ldots, EX(c, DT) returning h1, h2, ldots, hT . It will
then combine the hypotheses h1, h2, ldots, hT to construct a final hypothesis h
with accuracy ε.

3 Intuition for why MM/MMM work

The key reason the MM/MMM boosters work is the simulation of the bal-
anced distribution at the leaves when instantiating the weak learner. Cre-
ating the balanced distribution forces “progress” since now the weak learner
cannot just return the trivial hypothesis of 0 or 1. This is because if it did
so, its error rate would be 1/2 with respect to the balanced distribution and
it would not satisfy the definition of a weak learner. The 0 or 1 hypothesis is
the output of the hypothesis of the parent leaf l on the examples that reach
leaf l0 and l1 respectively. Therefore, if the new hypotheses (at leaves l0 and
l1) would generate the trivial hypotheses, there would be no progress with
respect to the parent hypothesis. However, since the distribution is balanced,
the weak learner is forced to classify some of the examples classified as 0 by
the parent hypothesis as 1 or some of the examples classified as 1 by the par-
ent hypothesis as 0. This ensures that at each stage the hypothesis becomes
more refined, and the error drops. Therefore, under the original distribution,
the proportion of the examples that end up in the leaf corresponding to the
left child of l0 and have classification 0 will be higher than the proportion of
the examples that end up in leaf l0 and have classification 0.

4 MM Implementation

In order to gear the algorithm for our final goal of Boosting with Noise
(MMM), we have modified the algorithm to work by “boosting-by-filtering”
where we do not use a fixed sample. The MM algorithm constructs a branch-
ing program with each internal node v having an hypothesis hv generated by
the weak learner. Any instance x ∈ X gives a unique directed path from the
root to a leaf (external node) by following the hypothesis hv of each internal
node v [1].

Let f ∈ C be a fixed target function and D be a fixed distribution over
X where D|l denotes D conditioned on x ∈ L. Therefore, in the set L

3

of leaves l, each leaf l has probabilities al = PrD[x ∈ L and f(x) = 1] a
nd bl = PrD[x ∈ L and f(x) = 0]. pl = PrD[f(x) = 1|x ∈ l]. ul is the
uncertainty in leaf l and ul = 2

√
pl(1− pl) wl is the weight of leaf l and

wl = PrD[x ∈ l]. wlul gives the weighted uncertainty of leaf l with respect to
L. wlul can be rewritten in terms of al and bl as 2

√
albl.

The MM algorithm will split leaves to increase the accuracy of our clas-
sifier, and merge leaves to ensure that the branching program does not get
too large. (Kearns and Mansour show that without merges the resulting tree
could be exponentially large [5]). Merging leaves will decrease the accuracy
of the classifier. We will only perform merges if the cumulative uncertainty
increase is substantially less the the uncertainty decrease of the last split.
Therefore, we will make progress and the final output of the MM algorithm
will be the branching program.

MM Algorithm:
Input:

• desired final error level ε (0 < ε < 1)

• access to γ-weak learner A

• access to noise-free example oracle EX(f, D)

• delta δ for weak learner A

• instance space X we are trying to boost

• oracle simulator to balance the distribution and create EX(f, D̂|l)

Algorithm:

1. Start with trivial partition, L = {X}, so the branching program is a
single leaf. Generate 1/ε2 examples to create al and bl for the root
node.

2. Get the leaf lmax that will reduce the overall uncertainty the
most by constructing candidate splits and finding leaf with max {wlul−
wl0ul0 − w11ul1}.

3. perform the split on lmax. Let ∆S be the reduction for lmax = {wlul−
wl0ul0 − wl1ul1}.

4

4. Stop if the error of the current branching program ≤ η + τ where error
= Σlmin(al, bl)

5. Set ∆M := 0.

6. Get the two leaves la 6= lb that if merged will cause the mini-
mum increase incertainty by finding the hypothetically merged leaf
lmin with min {wlul − wlaulb − w1b

ulb}.

7. Let z = {wlul − wlaulb − w1b
ulb} of lmin.

8. Merge if safe: If ∆M + z < ∆S/2 then

• Merge leaves la and lb to create lmin in the branching program.

• Set ∆M := ∆M + z.

• Go to step 6.

9. Otherwise, go to step 2.

In step 2, we only examine the leaves where wlul > ε/(2L) since the total
contribution of those leaves would be at most ε

2
.

When we construct candidate splits in step 2, we store the hypothesis h,
al and bl that we get from running the weak learner A. This saves time on
future searches for constructing splits. In fact, at most we have to run the
weak learner t wice - on the two new leaves from the most recent split.

Additionally, in step 6 when we merge 2 leaves, we do not have to sample
the distribution to calculate the new al, bl for that leaf. Given ala , bla and
alb , blb , we can find al and bl since: al = ala + alb and bl = bla + blb . This
saves time since drawing enough examples that reach leaf l to achieve high
accuracy can take many draws from EX, especially when l has low weight.

We also input a smaller delta δweak to the weak learner based on the δ
passed into the booster since we must make sure that the failure rate of the
overall MM algorithm is bounded by δ.

By a union bound, the overall δ < δweak · N , where N is the number
of times the weak learner is instantiated. We cannot know ahead of time
exactly how many times the weak learner will be called, but we can bound
N from above.

By [1] Theorem 4, the maximum number of splits for MM is maxsplits =
144
γ4 log 2

εγ2 log 1
2ε

.

5

Since we only run the weak learner once on each leaf, the maximum
number of times the weak learner is instantiated is maxsplits + L where L
is the maximum number of leaves at any time.

Every time the weak learner is instantiated there is a δweak chance that it
will fail. Therefore, the probability that one of the maxsplits + L instantia-
tions will fail is δweak · (maxsplits + L). We want this to be ≤ δ. Therefore,
we set δweak = δ/(maxsplits + L).

5 MMM Implementation

Given the previous values defined in MM algorithm, we can modify them
for use in the MMM algorithm. The noisy probablity can be defined as
p̃l = Pr[label = 1|x ∈ l]. Since p̃l = pl(1 − η) + (1 − pl)η, then pl = p̃l−η

1−2η
.

MMM can therefore estimate pl within the additive error of c by estimating
p̃l within an additive c

1−2η
[1]. We also assume that we know the noise rate η.

If we did not know it, we could run the algorithm by going through possible
values for η, by starting with a small value and gradually increasing, and the
algorithm would succeed when we had used the proper η

MMM Algorithm:
Input:

• access to γ-weak learner A

• accuracy value τ > 0

• noise rate η, 0 < η < 1
2

• access to example oracle EX(f, D, η)

• delta δ for weak learner A

• instance space X we are trying to boost

• oracle simulator to balance the distribution and create EX(f, D̂|l, η)

Algorithm:

6

1. Start with trivial partition, L = {X}, so the branching program is a

single leaf. Generate 2 · log(40/δ)
τ2(1−2η)2

examples to create al and bl for the
root node.

2. Get the leaf lmax that will reduce the overall uncertainty the
most by constructing candidate splits and findi ng leaf with max
{wlul − wl0ul0 − w11ul1}. We achieve this by running the weak learner

using the balanced oracle EX(f, D̂|l, η).

3. perform the split on lmax. Let ∆S be the redution for lmax = {wlul−
wl0ul0 − wl1ul1}.

4. Stop if the error of the current branching program ≤ η + τ/2 where
error = Σlmin(al, bl)

5. Set ∆M := 0.

6. Get the two leaves la 6= lb that if merged will cause the min-
imum increase incertainty by finding the hypothe tically merged
leaf lmin with min {wlul − wlaulb − w1b

ulb}.

7. Let z = {wlul − wlaulb − w1b
ulb}.

8. Merge if safe: If ∆M + z < ∆S/2 then

• Merge leaves la and lb to create lmin in the branching program.

• Set ∆M := ∆M + z.

• Go to step 6.

9. Otherwise, go to step 2.

We use the same improvements mentioned in MM in MMM.
In addition, during both the splitting and merging process we need not

examine leaves where min{pl, 1 − pl} ≥ η + τ/2. This ensures that we can
efficiently simulate the noisy balanced oracle. If the leaf does not satisfy this
condition it may not be possible to do so [1].

Similarly to calculating δweak for MM, by [1] Theorem 6, the maximum
number of splits for MMM is: maxsplits = O(1

γ4 log 1
τγ

log 1
τ
). Clearly, the

number of leaves at a given time must be less than 2 · maxsplits so the

7

total number of times the weak learner is instantiated is O(1
γ4 log 1

τγ
log 1

τ
).

Therefore, we set δweak = δ/maxsplits.
Again, when we merge 2 leaves, we do not have to sample the distribution

to calculate the new al, bl, pl, wl for that leaf. Given ala , bla , wlb and alb , blb , wlb ,
we can find al, bl, wl, pl since: al = ala + alb , bl = bla + blb , wl = wla + wlb , pl =
al/wl.

6 Intuition of why it is hard to boost past the

noise rate

When boosting to the noise rate, if we encounter a leaf with a pl < η fraction
of positive (or negative) examples then we do not consider this leaf anymore.
However, if we are trying to boost past the noise rate, we would still have to
consider this leaf and be able to create a balanced distribution in order to get
any useful information from the weak learner. Otherwise the weak learner
could just output the trivial hypothesis of 0 (or 1), which would give no
additional information relative to the parent hypothesis. However, [1] show
that although creating a balanced distribution is necessary to ensure progress,
it is hard to create such a distribution when pl < η. This is because when pl <
η, a positively labeled random example is actually a true negative example
with probability > 1/2. This is because an example is labeled positive with
probability: (η)(1 − pl) + (1 − η)(pl). Therefore, the probability that an

example is a true positive given that it is labeled positive is: (1−η)(pl)
(η)(1−pl)+(1−η)(pl)

.

This is less than 1/2 whenever (1−η)(pl) < (η)(1−pl), which is true whenever
pl < η. So even if we rejected ALL the negatively labeled examples and kept
all of the positively labeled examples, we still would not have a balanced
distribution.

Additionally, this would mean that if we tried to follow the balanc-
ing method given for MMM above to get PrD[f(x) = 0∧ not rejected] =
PrD[f(x) = 1∧ not rejected] we would get (1 − pl)((1 − η)(1 − pr) + η) =
p(η(1− pr) + 1− η). Solving for pr (the probability of rejecting a negatively
labeled example), we get: pr = 1−2pl

1−pl−η
which is > 1 when pl < η.

If you tried randomly rejecting some of the positively labeled examples,
the proportion of true positives and true negatives would stay the same. So
it seems that in the case where pl < η the only way to effectively balance the
distribution is by knowing which examples that are labeled positive are true

8

positives and which are true negatives. But the booster cannot know this
since its only knowledge about the function comes from the classifications of
the instantiated weak learners.

When [1] prove that it is hard to boost past the noise rate, they use a
p-biased pseudorandom function family as the concept class the booster is
learning since this family is hard to learn. This way, they ensure that the
booster cannot learn the function on its own, without using the weak-learner.
p-biased pseudorandom function families exist based on the assumption that
one-way functions exist. Therefore, [1] show that if one-way functions exist
then black-box noise tolerant boosters do not exist.

7 Weak Learner Implementation

To test our boosting implementation, we used a strong learning algorithm for
the class of conjunctions over {0, 1}n with RCN that we discussed in class. We
used this learner to test our implementation of both the MM algorithm (by
setting η = 0) and also to test our implementation of the MMM algorithm.

Initially, we planned to use the strong learning algorithm to generate a
“weak” hypothesis by running the strong learning algorithm with a constant ε
close to .5. However, when running the strong learning algorithm, we noticed
that even when we set epsilon to be very close to .5, the hypothesis outputte
by the learner was the correct hypothesis with very high probability. In terms
of our booster implementation, this would mean that after generating only
the hypothesis for the root node the booster would already reach the desired
accuracy and we would not be able to meaningfully test our implementation.
Therefore, we randomized the hypothesis generated by the strong learner to
make sure that it was not better than some chosen accuracy acc so that we
could measure the effects of the booster.

Algorithm for learning conjunctions of size n with Random Classification
Noise [3]:

• pi = Pr[c(x) = 1|xi = 0] · Pr[xi = 0]

• qi = Pr[c(x) = 1|xi = 0]

• 3i = Pr[label = 1|xi = 0]

1. begin with a new hypothesis containing all n variables.

9

2. for i = 1 to n

• approximate Pr[xi = 0] to accuracy ε/4n with probability δ/n by

drawing 8 log(n/δ)·η2

ε2
examples.

• approximate 3i to accuracy ε/4n with probability δ/n by drawing
8 log(n/δ)·η2

ε2
examples.

• qi = 3i−η
1−2η

• pi = qi · Pr[xi = 0]

• if pi > ε/2n, remove i from the hypothesis.

To convert the strong hypothesis h into a weaker hypothesis hweak with
maximum accuracy acc, when evaluating hweak(x), return 0 or 1 randomly
with probability r = 2 · (1− acc). With probability 1− r return h(x).

8 Oracle Implementation

We created an example oracle EX(c, D) that takes a distribution and a
concept and draws examples randomly according to the inputted distribution.
Since we were dealing with a finite domain, the distribution is just an array
that maps each element in the domain to an integer. We can use this mapping
to find the weights of each element by viewing weightx = mapx/totalSum
where totalSum is the sum of all the entries in the array. We also have a
feature for generating an arbitrary distribution and for choosing a random
concept from the concept class.

To draw an example from the distribution, we first assigned the elements
xi in the domain consecutive disjoint ranges of values, where the size of the
range assigned to element xi is mapxi

. Then we choose a random number
uniformly from 0 to totalSum − 1 and check to see which element’s range
the random number fell in. We then return the corresponding element as the
randomly drawn element.

Our example oracle can also be used for a RCN example oracle EX(c, D, η).
This is simply done by keeping track of the noise rate η and with probability
η, flipping the label of the example before returning it from a draw. It is run
with η = 0 to simulate a non-noisy oracle.

We also created an example oracle that can make adversarial draws spe-
cific to our booster implementation. In adversarial noise, with probability η,

10

the adversary can decide whether or not to flip the label of an example. This
means that the probability that a label is flipped is at most η, but may be
less. In our implementation, the oracle takes the current branching program
as input and puts noise only examples x such that h(x) = 0, where h is the
hypothesis of the root node. This means that there is noise rate η on the left
branch of the root node and noise rate 0 on the right branch. This is unlike
the case of RCN where we were able to assume that the noise rate at each leaf
of the branching program was η. The oracle could also be modified to put
noise only on any other selection of target nodes in the branching program.
We chose this adversarial strategy because in the MMM boosting algorithm,
in order to create the balanced distribution and to decide which leaves to
split or merge effectively, it is necessary to know the noise rate at each leaf.
Therefore, a conceivable adversarial strategy against the MMM algorithm
would be to make it hard to effectively balance the distribution at each leaf
by varying the proportion of corrupted examples that reach different leaves.

We simulated the oracle as EX(c, D̂|l, η) by taking the current branch-
ing program and current leaf as input and creating a balanced distribution
(PrD[f(x) = 1] = PrD[f(x) = 0]) over the examples that end up in that
leaf. The way the balanced distribution is created is different when there is
no noise and when there is RCN.

The oracle EX(f, D̂l) is simulated by randomly flipping a coin before
drawing from EX(f, D). If the coin is heads, wait until a positive example
is drawn that reaches l. Otherwise, wait for a negative example to be drawn
that reaches l [1].

Algorithm for simulating EX(f, D̂l, η
′) given access to EX(f, D, η) [1]:

Given an example that reaches l:

1. If pl ≤ 1/2:

• Labeled 0: Reject with probability pr = 1−2pl

1−pl−η
, keep with prob-

ability 1− pr = pl−η
1−pl−η

.

• Labeled 1: Flip its label with probability pf = (1−2pl)η(1−η)
(1−pl−η)(pl+η−2plη)

,
don’t flip with probability 1− pf .

2. If pl > 1/2 then pl ← 1− pl

(flip the roles of 0 and 1 in the above algorithm)

11

• Labeled 1: Reject with probability pr = 1−2pl

1−pl−η
, keep with prob-

ability 1− pr = pl−η
1−pl−η

.

• Labeled 0: Flip its label with probability pf = (1−2pl)η(1−η)
(1−pl−η)(pl+η−2plη)

,
don’t flip with probability 1− pf .

The new noise rate η′ = 1
2
− pl−η

2(pl+η−2plη)
.

9 Experiments

Computer and OS used to run experiments on: IBM Thinkpad, T42 Kubuntu
Linux and Red Hat Linux 2.6.9-11.EL on Columbia clic machines.

9.1 MM

ε time (in seconds) no. splits no. merges errors (testing)
0.07 19.834 8.859 6.010 679.523
0.09 6.704 4.472 2.442 840.588
0.1 3.950 3.558 1.724 922.256
0.15 0.565 1.595 0.280 1172.380
0.2 0.130 1.175 0.085 1864.565
0.3 0.040 1.020 0.000 2049.515
0.5 0.045 1.000 0.000 2565.560

Table 1

We tested the MM algorithm on ε = .07 − .5. It was tested on 200
random monotone conjunctions where the size of the instance space, n = 5.
We ignore conjunctions which learn the concept right away (no splits and
merges) since they don’t teach us anything and overpower the statistics of
the other cases. We chose n = 5 since the concept is randomly chosen and
as n gets larger the probability of the concept being easier to learn increases.
This allows less merges and splits to occur on most cases whereas the cases
where many splits will occur will take more time and can be too much for a
standard desktop to handle.

The averages for each ε-value are listed in Table 1. As expected, the larger
the error margin, the faster it will run and the more errors the branching
program will make. It appears that when n = 5, as expected, as ε decreases,
average time increases error decreases. It is also interesting to note (See

12

Figure 1) that as the value of ε decreases, the difference between splits and
merges increases. Although it is not shown in the tables, as is expected, the
smaller the conjunction, the longer it takes to learn; i.e. x1 takes longer to
learn than x1 ∧ x2. This is in part due to the fact that it is more difficult for
the oracle to find examples that belong solely to x1 than to x1 ∧ x2.

Figure 1: Splits and Merges

9.2 MMM

η τ time (in seconds) no. splits no. merges errors (testing)
0.1 0.01 15.075 6.305 2.46 1028.49
0.1 0.03 2.17 2.885 0.715 1192.62
0.1 0.05 0.467 1.997 0.277 1350.616
0.2 0.01 3.18 2.84 0.47 1847.075
0.2 0.03 0.31 1.815 0.105 2034.14
0.2 0.05 0.13 1.42 0 2085.435

Table 2

We ran the MMM algorithm 200 times with n = 5, and ignore cases
without splits and merges (as in MM). each on reasonable τ and η values.
Based on the averages in Table 2 it is clear that the higher the value of τ , the
more errors that occur when testing the branching program. In addition, the
more noise there is the faster the program will run, but on the other hand
there will be significantly more errors when testing the branching program.

13

9.3 MMM without introducing extra noise

η τ time (in seconds) no. splits no. merges errors (testing)
0.1 0.01 15.37475 6.4569 2.516 1027.694389
0.1 0.03 1.73 3.005 0.75 1195.71
0.1 0.05 0.595 2.12 0.365 1309.13
0.2 0.01 3.85 2.76 0.465 1876.885
0.2 0.03 0.36 1.865 0.125 2034.91
0.2 0.05 0.085 1.065 0 2398.405

Table 3

Figure 2: Splits and Merges

When the oracle draws examples in the MMM algorithm, it introduces
extra noise in order to keep the noise rate on positive and negative examples
roughly equal. It seems that introducing extra noise would be counterintu-
itive to what the MMM algorithm tries to do. We ran the algorithm without
introducing extra noise (As before: 200 times, n = 5) . The averages are
listed in Table 3. The averages are virtually the same as with the extra
noise. Figure 2 plots the average splits and merges with and without the
extra noise. The only reason we would need to have the noise rate be the
same on positive and negative examples is in our conjunctions learner when
we calculate qi = 3i−η

1−2η
, we assume here that η is uniform over both positive

and negative examples. However, it seems that the slight variance in noise
rate in positive and negative examples is not enough to throw off our weak
learner and cause it to remove/not remove so many variables from the hy-
pothesis that its accuracy falls below 1/2. However, this experiment could

14

be repeated again with weak learners that are more sensitive to variations in
the noise rate.

9.4 The Merging Factor

We noticed that although it may seem like the booster would run faster
without merges, the merges can actually help the algorithm run faster. This
is because if the branching program is kept smaller, there are less leaves to
attempt to split (which entails running the weak learner) and also because
more splits cause the weight of the leaves to get smaller faster and it becomes
harder to simulate the balanced distribution at that leaf. The line in the
MM/MMM algorithm that determines how many merges occur is: Merge
if safe: If ∆M + z < ∆S/2.

An interesting evaluation is to see how the algorithm performs with dif-
ferent ratios besides for 1/2. We replaced the line above with Merge if safe:
If ∆M + z < ∆S/k, with varying k. If k is made larger, less merges should
occur and the branching program will become larger. If k is smaller, but
still greater than 1, then more merges will occur and overall progress may be
slower.

We ran the MM algorithm with k varying from 1.1 to 5 in increments of
.3: 20 times for each value of k and calculated average run-time, splits, and
merges for each k. Our results show that when k is very small, the booster
takes longer to run (see Figure 3 and Figure 4). However, run times seem to
vary in the middle.

Figure 3: Time

15

Figure 4: Merges and Splits

9.5 Boosting with Okay Learner

Figure 5: Time

When boosting an “okay” learner, a balanced distribution does not have
to be created. This is because progress is guaranteed even when a majority
of the examples are positive or negative. The trivial hypothesis of 0 or 1
is not valid for the “okay” learner since it must correctly classify a fraction
of both the positive and negative examples. Since a balanced distribution
does not have to be created, the proportion of corrupted examples at each
node does not have to be known. Therefore, we tried boosting an adversarial
noise-tolerant “okay” learner to the noise rate using the method given for
“okay” learners under RCN.

However, the proportion of corrupted examples at each leaf must be
known to be able to calculate pl for each leaf and determine the best splits
and merges. Since we were only boosting to the noise rate, we only calculated
p̂l and used it as an estimate for pl. Then we based our decision of which

16

Figure 6: Splits and Merges

leaves to split and merge based on the empirical value calculated for p̂l. Our
assumption was that if p̂l is high then the true pl is probably also high.

To create an adversarial noise-tolerant “okay”-learner, we cheated. The
hypothesis actually “knows” the concept that is to be learned. So on an
input x, the hypothesis can just evaluate the concept on x. If x evaluates
to 1, the hypothesis returns 1 with probability acc1 and if x evaluates to
0 the hypothesis returns 0 with probability acc2. Otherwise, it returns the
incorrect value.

Figure 7: Time

The following is the algorithm for boosting an “okay”-learner (with our
modification):

Modify the MM algorithm in the following ways:

• Estimate pl using p̂l

• In Step 2, run the adversarial noise-tolerant γ-okay learner using the
unbalanced conditional distribution EX(f, D|l, η).

17

We ran the boosting algorithm on this “okay”-learner with γ ranging from
.12 to .37 using the adversarial-noise oracle described above and running the
boosting algorithm 20 times for each value of γ. We plotted 1/γ vs. Time
and we were able to fit the curve with (1/γ)4. This shows that even when
estimating the best splits and merges using p̂l, the run-time of the algorithm
is still polynomial in 1/γ. See Figure 5, Figure 6, Figure 7 and Figure 8.

Figure 8: Splits and Merges

10 Future Work

The MMM algorithm has been setup so that it need not change regardless of
the Instance Space, Concept Class, Weak Learner, etc...that we are trying to
boost. We would like to perform tests on various concept classes other than
monotone conjunctions. It would be very interesting to see how the MMM
algorithm would fair with real world examples as well as larger instance
spaces and more data. One of the main problems with this is run-time.
Larger instance spaces and larger data tend to take too long for a standard
desktop. If we did not have the time-constraint we could test many more of
these scenario’s easily.

We would also like to explore various weak learners as opposed to our
strong learner disguised as a weak learner. In addition, we would like to see
how the MMM algorithm fairs on various noise models such as adversarial
and nasty noise [6]. We would also like to see how MMM compares to other
boosters.

18

11 Conclusion

We have analyzed the MM, MMM, and various experiments on them. It is
quite evident that the MMM algorithm works well as a noise booster. The
difficulty arises in the details and deciding what values to use for the various
inputs such as the accuracy, and the noise rate. We were not able to test our
experiments on as much data as we would have liked due to time constraints
and processor speed. In particular, the simulated oracle took an extreme
amount of time to find an example that reached the current leaf and such
examples had to be chosen for both running the weak learner and calculating
al and bl for each leaf. However, from our experiments we can determine some
general trends.

The MMM does fairly well when the correct values are chosen and is
a good choice to use to boost learning concepts where the data available
involves noise.

19

12 References

1. A. Kalai, R. Servedio. Boosting in the Presence of Noise. In Pro-
ceedings of the 35th Annual Symposium on the Theory of Computing
195-205, 2003.

2. Y. Mansour and D. McAllester. Boosting using branching programs.
Journal of Computer and System Sciences, 64(1):103-112, 2002.

3. R. Servedio, Monotonic Conjunctions. Columbia University, Class Lec-
ture, Fall 2006.

4. R. Servedio, Boosting. Columbia University, Class Lecture, Fall 2006.

5. N. H. Bshouty, N. Eiron, and E. Kushilevitz, PAC learning with nast
noise, Theoretical Computer Science 288 (2002), no. 2, 255-275.

20

