COMS-W6185

Intrusion and Anomaly Detection Systems

Fall 2009
(updated June 2009)
Tuesday 4:10PM-6:00PM
8 September – 8 December
Room: 545 MUDD

Class Picture1 and Picture2

Salvatore J. Stolfo
606 CEPSR
212.939.7080

Email: sal@cs.columbia.edu
URL of sal: http://www.cs.columbia.edu/~sal
URL of IDS Lab: http://www.cs.columbia.edu/ids
(Access provided if you are a registered student.)
This course is a work in progress since the adversaries are constantly inventing new attacks for us to detect. Thank you for experimenting with me while we develop and debug the course together.

Recommended Reading (not required to be purchased):

- *Security Engineering - The Book*
 Ross Anderson
 Wiley
 [FREE ONLINE VERSION]

- *Data Mining for Security Applications.*
 Jajodia and Barbara (Eds.)
 Kluwer 2002

- *The Art of Computer Virus Research and Defense*,
 Peter Szor
 Symantec Press

- *Crimeware, Understanding New Attacks and Defenses*
 Markus Jakobsson and Zulfikar Ramzan
 Symantec Press

- *Insider Attack and Cyber Security: Beyond the Hacker*
 Springer

- *Stealing the Network: How to Own the Box*
 Russell et al
 Syngress Publishing
 ISBN: 1-931836-87-6

Recommended Readings are available on this website appearing in the “Papers and Projects” Column.
Pre- or Co-requisite: CSW4180 Network Security

SYLLABUS:

- The state of threats against computers, and networked systems
- Overview of computer security solutions and why they fail
 - Vulnerability assessment, firewalls, VPN’s
- Overview of Intrusion Detection and Intrusion Prevention
 - Network and Host-based IDS
- Classes of attacks
 - Network layer: scans, denial of service, penetration
 - Application layer: software exploits, code injection
 - Human layer: identity theft, root access
- Classes of attackers
 - Kids/hackers/sophisticated groups
 - Automated: Drones, Worms, Viruses
- A General IDS model and taxonomy
- Signature-based Solutions, Snort, Snort rules
- Assignment #1: Familiarity with Snort
- Evaluation of IDS, Cost sensitive IDS
- Anomaly Detection Systems and Algorithms
- Network Behavior Based Anomaly Detectors (rate based)
- Host-based Anomaly Detectors
 - Software Vulnerabilities
 - State transition, Immunology, Payload Anomaly Detection
- Attack trees and Correlation of alerts
- Autopsy of Worms and Botnets
- Malware detection
 - Obfuscation, polymorphism
 - Document vectors
- Email/IM security issues
 - Viruses/Spam
 - From signatures to thumbprints to zero-day detection
- Insider Threat issues
 - Taxonomy
 - Masquerade and Impersonation
 - Traitors, Decoys and Deception
- Future: Collaborative Security

Materials:

A number of materials have been gathered from open sources on the internet and provided in this course. These include slide presentations from other faculty at other universities who made their source materials openly available. In some cases the style formats were changed, but not the contents. Likewise, papers are provided for background reading that are also openly available on the internet. They have been copied and stored locally for convenience.
GRADING POLICY: Do quality work, and don’t cheat, and you will get an A. If you cheat you will get an F. See the Department’s Academic Honesty Policy.

NO FINAL EXAMINATION.

DETAILED COURSE SCHEDULE:

<table>
<thead>
<tr>
<th>Session</th>
<th>Date</th>
<th>Topic/chapter</th>
<th>Papers and Projects</th>
</tr>
</thead>
</table>
| 1 | 9/8 | Overview of Course | Failure of Security – background (May 2006)
Introduction to IDS
CERT-Guidelines\CERT-CC Intruder Detection Checklist.htm
CERT-Guidelines\CERT®-CC Steps for Recovering from a UNIX or NT System Compromise.htm
CERT-Guidelines\List of Security Tools.htm
CERT-Vulnerability Stats
Common Exploited Ports: http://www.iss.net/security_center/advice/Exploits/Ports/default.htm
FBI reports Cybercrime eclipsed $200MM in 2007
Threat Reports (2007-2008):
Sans TOP 20 Threat Report
Symantec Security Threat Reports
P-Secure End of 2007 Report, The Storm Botnet
McAfee Report on Malicious Websites 2008
Verizon 2008 Data Breach Investigations Report
Verizon 2009 Data Breach Investigations Report
Sohpos 2008 Security Report
Cyberwar
Overview of network analytics circa 09 |
<p>| 2 | 9/15 | Failure of | Software_Vulnerabilities – Landwehr’s 1994 paper |</p>
<table>
<thead>
<tr>
<th>Week</th>
<th>Topic</th>
<th>Course Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 9/22</td>
<td>Snort Intro</td>
<td>http://www.snort.org/</td>
</tr>
<tr>
<td></td>
<td>Snort Installation</td>
<td>http://www.snort.org/dl/</td>
</tr>
<tr>
<td></td>
<td>TCP_Wrapper</td>
<td>Roesch paper on Snort</td>
</tr>
<tr>
<td></td>
<td>netfilter and iptables</td>
<td>Tcpdump pocket guide</td>
</tr>
<tr>
<td></td>
<td>General IDS Model and Evaluation of IDS’s</td>
<td>Project #1-snort/network project</td>
</tr>
<tr>
<td>4 9/29</td>
<td>General IDS Model and Evaluation of IDS’s</td>
<td>A Data Mining Framework for Constructing Features and Models for Intrusion Detection Systems</td>
</tr>
<tr>
<td></td>
<td>Automatically Computing IDS Models (Accuracy): Data Mining-based IDS</td>
<td>Data Mining-based Intrusion Detectors</td>
</tr>
<tr>
<td></td>
<td>Performance (Speed) Cost-sensitive IDS</td>
<td>Public Machine Learning Code: Weka</td>
</tr>
<tr>
<td></td>
<td>Scans/probes</td>
<td>Stealthy Surveillance Detection</td>
</tr>
<tr>
<td>5 10/6</td>
<td>Scans/probes</td>
<td>Defending Against Denial of Service Attacks in Scout 1999</td>
</tr>
<tr>
<td></td>
<td>Why 6?</td>
<td>Statistical Modeling background</td>
</tr>
<tr>
<td>Date</td>
<td>Topic</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>-------</td>
<td></td>
</tr>
</tbody>
</table>
| **6 10/13** | Sense of Self
Taint Analysis
Pointer Taint Analysis Fails
Project #1 Due |
| **6 10/13** | Unsupervised Anomaly Detection
Summary Unsupervised Anomaly Detection
Spectrogram
Network based Anomaly Detection (Ke’s list)
Unsupervised Anomaly Detection
NBAD
Modeling System Calls for Intrusion Detection with Dynamic Window Sizes
Project #2 – lipcap/winpcap/tcp_wrappers host project |
| **7 10/20** | Autopsy of network Worms
Worms and Payload AD/PAYL
Layered Defenses
Code Red Analysis
http://www.eeye.com/html/Research/Advisories/AL20010804.html
Spread of Sapphire/Slammer
Anatomy of the Network Worm
Flash and Stealthy Worms and the Warhol Worm
Abstract Payload Execution |
| **8 10/27** | GUEST LECTURE
Joel Rosenblatt, Manager Computer&Network Security, Columbia University
Security Metrics: A Solution in Search of a Problem
Security Models From Corporate to ISP: one size does not fit all |
| **9 11/4** | NO CLASS
Election Day |
| **10 11/10** | Advanced Threats
Mimicry Attack/Anagram
Futility of Modeling Polymorphic Shellcode
Anomaly Detection of Web-based Attacks
NIDAR |
<table>
<thead>
<tr>
<th>Training Strategy for AD: STAND</th>
<th>Signatures are Dead, Whitelisting is in Online Malware Sources</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polymorphic Threat</td>
<td>http://pandalabs.pandasecurity.com/archive/Another-trojan-creator_2E002E002E00_.aspx</td>
</tr>
<tr>
<td>Correlation (Alert Sharing, Attack Trees, Sensor Correlation)</td>
<td>http://www.offensivecomputing.net/</td>
</tr>
<tr>
<td>CV5</td>
<td>http://www.viruspool.net/virus.cms</td>
</tr>
<tr>
<td>Collaborative Security and Application Communities</td>
<td>http://vx.netlux.org/v1.php</td>
</tr>
<tr>
<td>Darpa Application Communities</td>
<td>Correlation Engine-SRI</td>
</tr>
<tr>
<td>Collaborative Distributed Intrusion Detection</td>
<td>Process Query System</td>
</tr>
<tr>
<td>Application Communities-Patching</td>
<td>BlackBook Chapter</td>
</tr>
<tr>
<td>Worminator</td>
<td>Collaboratively Fighting Fraud (FSTC with stats)</td>
</tr>
<tr>
<td>Project #2 DUE</td>
<td>Worminator</td>
</tr>
<tr>
<td>11/17</td>
<td>Collaboratively Fighting Fraud (FSTC with stats)</td>
</tr>
<tr>
<td>11/24</td>
<td>Worminator</td>
</tr>
<tr>
<td>Overview</td>
<td>Collaboratively Fighting Fraud (FSTC with stats)</td>
</tr>
<tr>
<td>Masqueraders, Impersonators</td>
<td>Worminator</td>
</tr>
<tr>
<td>(Goldring and Feature Sets)</td>
<td>Collaboratively Fighting Fraud (FSTC with stats)</td>
</tr>
<tr>
<td>One-class training Insider Taxonomy</td>
<td>Worminator</td>
</tr>
<tr>
<td>Masquerader Research (Core dump)</td>
<td>Collaboratively Fighting Fraud (FSTC with stats)</td>
</tr>
<tr>
<td>CMU/SEI Insider Threat Study 2005</td>
<td>Collaboratively Fighting Fraud (FSTC with stats)</td>
</tr>
<tr>
<td>US Navy report on Insider Attack of a Crypto System 2005</td>
<td>Collaboratively Fighting Fraud (FSTC with stats)</td>
</tr>
<tr>
<td>US Secret Service Insider Threat Study</td>
<td>Collaboratively Fighting Fraud (FSTC with stats)</td>
</tr>
<tr>
<td>Outside attack due to insider mistakes</td>
<td>Collaboratively Fighting Fraud (FSTC with stats)</td>
</tr>
<tr>
<td>Very close to home:</td>
<td>Collaboratively Fighting Fraud (FSTC with stats)</td>
</tr>
<tr>
<td>ATT Masquerade Schonlau Data set</td>
<td>Collaboratively Fighting Fraud (FSTC with stats)</td>
</tr>
<tr>
<td>Mitre’s ELICIT System – RAID 07</td>
<td>Collaboratively Fighting Fraud (FSTC with stats)</td>
</tr>
<tr>
<td>Date</td>
<td>Event</td>
</tr>
<tr>
<td>-------</td>
<td>--</td>
</tr>
<tr>
<td>12/1</td>
<td>Decoy Networking</td>
</tr>
<tr>
<td></td>
<td>Insider Threat overtakes Virus Threat Sep 07</td>
</tr>
<tr>
<td></td>
<td>Project# 3 - decoys and deception</td>
</tr>
<tr>
<td></td>
<td>Host Sensor Download Site for Project#3</td>
</tr>
<tr>
<td></td>
<td>Background on Modeling</td>
</tr>
<tr>
<td>12/8</td>
<td>LAST CLASS EPILOGUE:</td>
</tr>
<tr>
<td></td>
<td>Security in 30 minutes</td>
</tr>
<tr>
<td></td>
<td>Advanced Malware Threats-2008</td>
</tr>
<tr>
<td></td>
<td>Issues Regarding Law and Privacy</td>
</tr>
<tr>
<td></td>
<td>Large Corporate Risk Management Process</td>
</tr>
<tr>
<td></td>
<td>IT Security: Law Enforcement Response</td>
</tr>
<tr>
<td></td>
<td>Crime Does not Pay: Hacker, Counterfeiter Comes Clean Ahead of Prison Stint</td>
</tr>
<tr>
<td></td>
<td>Final Paper – **The Field of Cyber Security Circa 2005</td>
</tr>
<tr>
<td>12/11</td>
<td>FINAL PROJECT DUE</td>
</tr>
</tbody>
</table>

TA DETAILS: TBA

Name: YINGBO SONG
Office: 604 CEPSR
Phone:
E-mail: yingbo@cs.columbia.edu
URL: www.cs.columbia.edu/~yingbo
TA office hours: TBA

GRADE DISTRIBUTION:

Final grades are curved. The distribution is

```
   HW/Test Percentage
Project #1  33%  
Project #2  33%  
Project #3  34%  
```