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Abstract. We are interested in supervised ranking with the following
twist: our goal is to design algorithms that perform especially well near
the top of the ranked list, and are only required to perform sufficiently
well on the rest of the list. Towards this goal, we provide a general form
of convex objective that gives high-scoring examples more importance.
This “push” near the top of the list can be chosen to be arbitrarily large
or small. We choose �p-norms to provide a specific type of push; as p
becomes large, the algorithm concentrates harder near the top of the
list. We derive a generalization bound based on the p-norm objective.
We then derive a corresponding boosting-style algorithm, and illustrate
the usefulness of the algorithm through experiments on UCI data. We
prove that the minimizer of the objective is unique in a specific sense.

1 Introduction

The problem of supervised ranking is useful in many application domains, e.g.,
document processing, customer service routing, and drug discovery. Many of
these domains require the construction of a ranked list, yet often, only the top
portion of the list is used in practice. For instance, in the setting of supervised
movie ranking, the learning algorithm provides the user (an avid movie-goer)
with a ranked list of movies based on preference data. We expect the user to
examine the top portion of the list as a recommendation. It is possible that she
never looks at the rest of the list, or examines it only briefly. Thus, we wish to
make sure that the top portion of the list is correctly constructed. This is the
problem on which we concentrate.

Naturally, the design of these rankings requires a tradeoff. Given the option,
we would correct a misrank towards the top of the list at the expense of possibly
making a new misrank towards the bottom. This type of sacrifice will have to be
made; assuming a learning machine with finite capacity, the best total ranking
will not often correspond to the best ranking near the top of the list. The trick is
to design an algorithm that knows when a misrank occurs at the top and forces
us to pay a high price for it, relative to other misranks.

We have developed a somewhat general and fairly flexible technique for solving
these types of problems. In our framework, a specific price is assigned for each
misrank; the misranks at the top are given higher prices, and the ones towards
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the bottom are less expensive. Thus, the choice of these prices determines how
much emphasis (or “push”) is placed closer to the top. We may only desire to
incorporate a small push; it is possible, for example, that our movie-goer has
seen all of the movies near the top of the list and needs to look farther down in
order to find a movie she has not seen. It is important that the rest of the list be
sufficiently well-constructed in this case. The desired size of the push might be
anywhere between very large and very small depending on the application. There
is simply a tradeoff between the size of the push and the sacrifice made farther
down the list. As mentioned, some sacrifice must always be made since, as usual,
we take our algorithm to have limited capacity in order to enable generalization
ability. Using the form of ranking objective introduced in Section 2, one can
make the prices very high for misranking near the top (a big push), moderately
high (a little push), or somewhere in between.

The algorithms we develop are motivated in the usual setting of supervised
bipartite ranking. In this setting, each training instance has a label of +1 or -1,
i.e., each movie is either a good movie or a bad movie. Here, we want to push the
bad movies away from the top of the list where the good movies are desired. The
quality of the ranking can be determined by examining the Receiver Operator
Characteristic (ROC) curve. In the setting where all misranks are equally priced
(no push), the AUC (Area Under the ROC Curve) is precisely a constant times
one minus the total standard misranking error (see [4]). However, the quantity we
measure in our problem is different. We care mostly about the leftmost portion
of the ROC curve for this problem, corresponding to the top of the ranked list.
This is precisely the sacrifice we must make; in order make the leftmost portion
of the curve higher, we must sacrifice on the total area underneath the curve.

This problem is highly asymmetric with respect to the positive and negative
classes. It is interesting to consider generalization bounds for such an asymmet-
ric problem; we should not rely on a symmetrization step which requires natural
symmetry. The generalization bound presented here holds even under such asym-
metric conditions. The measure of complexity is the L∞ covering number.

Recently, there has been a large amount of interest in the supervised ranking
problem, and especially in the bipartite problem. Freund et al. have developed
the RankBoost algorithm for the general setting [8]. We inherit the setup of
RankBoost, since our algorithms will also be boosting-style algorithms. Oddly,
there is a recent theoretical proof that Freund and Schapire’s classification algo-
rithm called AdaBoost [9] performs just as well for bipartite ranking as Rank-
Boost; i.e., both algorithms achieve equally good values of the AUC [13, 14].
There are a number of algorithms designed to maximize variations of the AUC,
for instance Mozer et al. [11] aim to manipulate specific points of the ROC
curve in order to study “churn” in the telecommunications industry. Perhaps
the closest algorithm to ours is the one proposed by Dekel et al. [6], who have
used a similar form of objective with different specifics for the score to achieve
a different goal, namely to rank labels. The work of Yan et al. [17] contains a
brief mention of a method that optimizes the lower left corner of the ROC curve
with a multi-layer perceptron approach that is highly non-convex. There is much
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recent work on generalization bounds for supervised ranking [8, 2, 1, 16, 13], tho-
ugh only the covering number bounds [13] can be naturally adapted to this
setting due to the asymmetry of the problem.

In Section 2, we present a general form of objective function, allowing us
to incorporate a push near the top of the ranked list. One must choose a loss
function � and a convex price function g to specify the objective function. If the
price function is steep (e.g., the power law g(r) = rp), then the push near the top
is very strong. In Section 3, we provide a generalization bound for the objective
function, for the “0-1” loss and the power law price function. In Section 4, we
derive the “P-Norm Push” Algorithm, which is a coordinate descent algorithm
based on the objective function. In Section 5, we prove that the minimizer of the
algorithm’s objective function is unique in a specific sense. This result is based
on conjugate duality and the theory of Bregman distances [7], and is analogous
to the result of Collins et al. [3] for AdaBoost. In Section 6, we demonstrate the
P-Norm Push algorithm on UCI data. In Section 7, we use the generalization
bound of Section 3 to indicate the limit of the algorithm’s problem domain; we
aim to find when the algorithm should (and should not) be used.

2 A General Objective for Ranking with a Push

The set of instances with positive labels is {xi}i=1,...,I , where xi ∈ X . The
negative instances are {x̃k}k=1,...,K , where x̃k ∈ X . We always use i for the index
over positive instances and k over negative instances. Our goal is to construct
a ranking function f : X → R, f ∈ F that gives a score to each instance
in X . Unlike in classification, we do not care about the exact values of each
instance, only the relative values; for positive-negative pair xi, x̃k, we do not
care if f(xi) = .4 and f(x̃k) = .1, but we do care that f(xi) > f(x̃k), or that
f(xi) − f(x̃k) = .3.

Let us now derive the general form of objective function as promised in the
introduction. For a particular negative example, we wish to reduce its Height,
i.e., the number of positive examples that are ranked beneath it. That is, for
each k, we wish to make Height(k) small, where:

Height(k) :=
I∑

i=1

1[f(xi)≤f(x̃k)].

Let us now add the push. We want to concentrate harder on negative examples
with large Height’s; we want to push these examples down from the top. Thus,
for convex, non-negative, monotonically increasing function g : R+ → R+, we
place the price g(Height(k)) on negative example k. If g is very steep, we pay
an extremely large price for a high-ranked negative example. Examples of steep
functions include g(r) = exp(r) and g(r) = rp for p large; the latter price
function will be used for the P-Norm Push. Thus we have derived an objective
to minimize:

Rg,1(f) :=
K∑

k=1

g

(
I∑

i=1

1[f(xi)≤f(x̃k)]

)
.
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If Rg,1(f) is small, then no negative example is ranked very highly; this is exactly
our design. It is hard to minimize Rg,1 directly due to the 0-1 loss in the inner
sum. Instead, we minimize an upper bound, Rg,�, which incorporates � : R →
R+, a convex, non-negative, monotonically decreasing upper bound on the 0-1
loss. Popular loss functions include the exponential, logistic, and hinge losses.
We can now define the general form of objective:

Rg,�(f) :=
K∑

k=1

g

(
I∑

i=1

�(f(xi) − f(x̃k))

)
.

To construct a specific version of this objective, one chooses the loss �, the price
function g, and an appropriate hypothesis space F over which to minimize Rg,�.

For the moment, assume we care only about the very top of the list, that is,
we wish to push the most offending negative example as far down the list as
possible. Equivalently, we wish to minimize Rmax, the number of positives below
the highest ranked negative example: Rmax(f) := maxk Height(k). It is hard to
minimize Rmax(f) directly, but Rg,� can give us some control over this quantity.
Namely, the following relationships exist between Rg,�, Rg,1 and Rmax.

Theorem 1

Kg

(
1
K

Rmax(f)
)

≤ Rg,1(f) ≤ Rg,�(f) and Rg,1(f) ≤ Kg(Rmax(f)).

The proof uses Jensen’s inequality for convex function g, monotonicity of g, and
the fact that � is an upper bound on the 0-1 loss. Theorem 1 suggests that Rg,�

is a reasonable quantity to minimize in order to incorporate a push at the top,
e.g., in order to diminish Rmax. If g is especially steep, e.g., g(r) = rp for p

large, then g−1(
∑K

k=1 g(rk)) ≈ maxk rk, i.e., g−1(Rg,1) ≈ Rmax. From now on,
we specifically consider the power law (or “p-norm”) objectives. Since the user
controls p, the amount of push can be specified to match the application.

3 A Generalization Bound for the p-Norm Objective

This bound is an adaptation of previous work [14, 13] inspired by works of
Koltchinskii and Panchenko [10] and Cucker and Smale [5]. Assume that the
positive instances {xi ∈ X}i=1,...,I are chosen independently and at random
(iid) from a fixed but unknown probability distribution D+ on X . The negative
instances {x̃k ∈ X}k=1,...,K are chosen iid from D−. The notation x ∼ D means
x is chosen randomly according to D. The notation S+ ∼ DI

+ means each of the
I elements of the training set S+ are chosen iid according to D+. Similarly for
S− ∼ DK− . We now define the “true” objective function for which our algorithm
has been designed. Our goal is to make this quantity small:

Rp
D+D−

1f :=
(
Ex−∼D−(Ex+∼D+1[f(x+)−f(x−)≤0])p

)1/p

= ‖Px+∼D+(f(x+) − f(x−) ≤ 0|x−)‖Lp(X ,D−) .
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The empirical loss associated with Rp
D+D−

1f is:

Rp
S+,S−

1f :=

(
1
K

K∑

k=1

(
1
I

I∑

i=1

1[f(xi)−f(x̃k)≤0]

)p)1/p

.

Here, for a particular x̃k, Rp
S+,S−

1f takes into account the average number of
positive examples that have scores below x̃k. It is a monotonic function of Rg,1.
To make this notion more general, consider the average number of positive ex-
amples that have scores close to or below x̃k, namely:

Rp
S+,S−

1θ
f :=

(
1
K

K∑

k=1

(
1
I

I∑

i=1

1[f(xi)−f(x̃k)≤θ]

)p)1/p

.

This terminology incorporates the “margin” value θ. Now we can state our gen-
eralization bound:

Theorem 2. For all ε > 0, θ > 0, and f ∈ F :

PS+∼DI
+,S−∼DK

−

[
Rp

D+D−
1f ≤ Rp

S+,S−
1θ

f + ε
]

≥ 1 − 2N
(

F ,
εθ

8

) [
exp

[
−2

( ε

4

)2p

K

]
+ exp

[
− ε2

8
I

]]
.

Here N (F , ε) is the L∞ covering number for F . The theorem says that if I and
K are large, then with high probability, the true error Rp

D+D−
1f is not too much

more than the empirical error Rp
S+,S−

1θ
f . The proof is in Appendix A.

As noted, this is a generalization bound for a compulsorily asymmetric prob-
lem. It is important to note the implications of this bound for scalability. Since
we are concentrating on the negative examples near the top of the ranked list
(corresponding to a small chunk of negative input space), we must require more
negative examples to achieve high accuracy, as we discuss in Section 7.

Theorem 2 provides a theoretical justification for our choice of objective. Let
us now write an algorithm for minimizing that objective.

4 A Boosting-Style Algorithm

We choose a specific form for Rg,� by specifying � as the exponential loss, �(r) =
exp(−r). One could easily choose another loss; we chose the exponential loss in
order to compare with RankBoost, which corresponds to the p = 1 case for our
price function g(r) = rp. Our family of objective functions is thus:

Fp(f) :=
K∑

k=1

(
I∑

i=1

exp[−f(xi) + f(x̃k)]

)p

.
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Note that Fp is not normalized to approximate Rp
D+D−

1f , but this can easily be
accomplished via 1

I(K)1/p (Fp(f))1/p, which is monotonically related to Fp(f).
Now we describe our boosting-style approach. The hypothesis space F is the

class of linear combinations of “weak” rankers {hj}j=1,...,n, where hj : X → [0, 1].
The function f is constructed as: f =

∑
j λjhj , where λ ∈ Rn. At iteration t, the

coefficient vector (denoted by λt) is updated. To describe how each individual
weak ranker j ranks each positive-negative pair i, k, we use a structure M defined
element-wise by: Mikj := hj(xi) − hj(x̃k). Thus, Mikj ∈ [−1, 1]. To define right
multiplication, we write the product element-wise as: (Mλ)ik :=

∑n
j=1 Mikjλj =∑n

j=1 λjhj(xi)−λjhj(x̃k) for λ ∈ Rn. Thus, �(f(xi)−f(x̃k)) can now be written
as exp(−Mλ)ik. By construction, Fp is convex in λ (but not strictly convex).

We now derive a boosting-style coordinate descent algorithm for minimiz-
ing Fp as a function of λ, notating Fp now as Fp(λ). We start with the ob-

jective at iteration t: Fp(λt) :=
∑K

k=1

(∑I
i=1 exp[(−Mλt)ik]

)p

. We then com-
pute the variational derivative along each “direction”, and choose weak ranker
jt to have largest variational derivative. Define the vector qt on pairs i, k as:
qt,ik := exp[(−Mλt)ik], and dt as: dt,ik := qt,ik/

∑
ik qt,ik. Let the vector ej be

1 in position j and 0 elsewhere. Then jt becomes:

jt∈ argmax
j

[
−dFp(λt + αej)

dα

∣∣∣
α=0

]
=argmax

j

⎡

⎣
K∑

k=1

⎡

⎣
(

I∑

i=1

dt,ik

)p−1 I∑

i=1

dt,ikMikj

⎤

⎦

⎤

⎦.

To update the coefficient of weak ranker jt, we now perform a linesearch for the
minimum of Fp along the jth

t direction. The distance to travel in the jth
t direction,

denoted αt, solves 0 = dFp(λt+αejt )
dα

∣∣∣
αt

, or incorporating normalization,

0 =
K∑

k=1

⎡

⎣
(

I∑

i=1

dt,ik exp[−αtMikjt ]

)p−1 (
I∑

i=1

Mikjtdt,ik exp[−αtMikjt ]

)⎤

⎦ . (1)

The value of αt can be computed analytically in special cases, but more generally,
we use a linesearch to solve for αt. The full algorithm is shown in Figure 1.

5 Uniqueness of the Minimizer

One might hope that a function f =
∑

j λjhj (or limit of functions) minimizing
our objective is unique in some sense. Since M is not required to be invertible
(and often is not), a minimizing λ may not be unique. Furthermore, elements
of λt and Mλt may approach ±∞ or ∞ respectively, so it would seem difficult
to prove (or even define) uniqueness. It is useful to consider the set Q′ := {q′ ∈
RIK

+ |q′ik = e−(Mλ)ik for some λ ∈ Rn}; with the help of convex analysis, we
show that our objective function yields a unique minimizer in the closure of Q′.
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1. Input: {xi}i=1,...,I positive examples, {x̃k}k=1,...,K negative examples,
{hj}j=1,...,n weak classifiers, tmax number of iterations, p power.

2. Initialize: λ1,j = 0 for j = 1, ..., n, d1,ik = 1/IK for i = 1, ..., I , k = 1, ..., K
Mikj = hj(xi) − hj(x̃k) for all i, k, j

3. Loop for t = 1, ..., tmax

(a) jt ∈ argmaxj

��K
k=1

���I
i=1 dt,ik

�p−1�I
i=1 dt,ikMikj

��
.

(b) Find a value αt that solves (1). That is, perform a linesearch for αt.
(c) λt+1 = λt + αtejt , where ejt is 1 in position jt and 0 elsewhere.
(d) zt =

�
ik dt,ik exp[−αtMikjt ]

(e) dt+1,ik = dt,ik exp[−αtMikjt ]/zt for i = 1, ..., I , k = 1, ..., K

4. Output: λtmax

Fig. 1. Pseudocode for the “P-Norm Push Algorithm”

Theorem 3. Define Q′ := {q′ ∈ RIK
+ |q′ik = e−(Mλ)ik for some λ ∈ Rn} and

define closure(Q′) as the closure of Q′ in RIK . Then, q′∗ ∈ closure(Q′) is
uniquely determined by:

q′∗ = argminq′∈closure(Q′)

∑

k

(
∑

i

q′ik

)p

.

Our uniqueness proof (in Appendix B) depends mainly on the theory of convex
duality for a class of Bregman distances, as defined by Della Pietra et al. [7].
This proof is inspired by Collins et al. [3] who have proved uniqueness of this
type for AdaBoost. In the case of AdaBoost, the primal optimization problem
corresponds to a minimization over relative entropy. In our case, the primal is
not a common function.

6 Experiments

We will now show the effect of adding a push by examining the leftmost portion
of the ROC curve. Our goal is to illustrate the effect of the price g on the quality
of the solution; the choice of g as a power law allows us to explore this effect.
We hope that Rmax, or more generally, the leftmost portion of the ROC curve,
increases steadily with p. Our demonstration shows this firmly; Rmax does often
increase (fairly dramatically) with p, for both training and testing.

Data for these experiments were obtained from the UCI machine learning
repository [15]. Settings chosen were: pima-indians-diabetes with threshold
features (Figure 2), wdbc - Wisconsin Breast Cancer (Figure 3) and hous-
ing (Figure 4). The (normalized) features themselves were used as the weak
rankers. Results from other datasets can be found in the longer version of this
paper [12]. The linesearch for αt was performed using matlab’s ‘fminunc’ sub-
routine. The total number of iterations, tmax, was fixed at 200. In agreement



596 C. Rudin

a) b)

0 2 4 6 8

20

30

40

50

60

False Positives

T
ru

e
 P

o
si

tiv
e

s

p=1
p=2
p=4
p=8
p=16
p=64

0 50 100 150

20

40

60

80

100

False Positives

T
ru

e 
P

os
iti

ve
s

c) d)

0 2 4 6 8 10

15

20

25

30

35

False Positives

Tr
ue

 P
os

iti
ve

s

g

p=64

p=16

p=4
p=8

p=1
p=2

0 50 100 150 200 250 300

50

100

150

False Positives

T
ru

e
 P

o
s
it
iv

e
s

g

Fig. 2. pima-indians-diabetes with threshold features: 4 threshold features were
obtained from each real valued feature, via hthresh(x) = 1 iff h(x) > thresh, and
hthresh(x) = 0 otherwise. Thresholds used were chosen so that no two threshold features
would be equivalent with respect to the training data. Of 768 examples, 300 randomly
chosen examples were used for training, and the rest for testing. (a) Leftmost portion
of scaled ROC curve for training, up to and including the crossover point where the
sacrifice begins. (b) Full scaled ROC training curve. (c) Leftmost portion of scaled
ROC curve for testing. (d) Full scaled ROC testing curve.

with our algorithm’s derivation, a larger push (p large) causes the algorithm
to perform better near the top of the ranked list. As discussed, this ability to
correct the top of the list is not without sacrifice; we do sacrifice the ranks of
items farther down on the list, but we have made this choice on purpose. We
believe it is important to show this sacrifice explicitly, thus full ROC curves
have been included for all experiments. The housing setting yields the clearest
view of the effect of the algorithm. The trend in Rmax from p = 1 to p = 64
is clearly present and close to monotonic. There is a distinct crossover region,
showing exactly what parts of the ROC curve are gained and what parts are
sacrificed.

7 Limitations

We have included this section in order to more explicitly describe the prob-
lem domain for which the algorithm is useful. As no one algorithm is the best
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Fig. 3. wdbc (Wisconsin Breast Cancer): 569 total examples, 200 used for train-
ing. To ensure the algorithm would not achieve a separable solution, only the first
six features (columns 3-8) were used. All features were normalized to [0, 1]. (a) Left-
most portion of scaled ROC curve for training (b) Full scaled ROC training curve. (c)
Leftmost portion of scaled ROC curve for testing. (d) Full scaled ROC testing curve.

for every problem setting, we wish to make as clear as possible the settings
in which our algorithm is meant to succeed, and in which domains it is not
meant to be used. The most definitive boundary of the problem domain in-
volves the sample size. The generalization bound of Theorem 2 indicates that
for larger values of p, many more examples are needed in order to allow gen-
eralization ability; we are concentrating on a smaller region of the probability
distribution, so this is natural. When the sample size is too small, the algorithm
may still be able to generalize for smaller values of p, but for larger values,
we cannot expect the training curve to represent the testing curve. For the
settings shown in Section 6, we have used a few hundred examples per exper-
iment, which is enough to allow the algorithm to generalize. In contrast, we
now present a setting that compliments our theoretical prediction; the setting is
the pima-indian-diabetes dataset with normalized real-valued features, but only
50 training examples. Above a certain p value, the performance degrades as p
increases as shown in Figure 5. This shows (what we believe is) the main cau-
tionary note to experimentalists when using this algorithm, and for that matter,
when using any other algorithm that concentrates on a small part of the input
space.
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Fig. 4. housing (Boston Housing): 506 total examples, 300 used for training, 13
(normalized) features. The fourth column (which is binary) was used as the label y. The
label specifies whether a tract bounds the Charles River. Since there is some correlation
between the label and the features, it is reasonable for our learning algorithm to predict
whether a tract bounds the river. This data set is skewed; there are significantly fewer
positive examples than negative examples. (a) Full scaled ROC training curve. (b)
Leftmost portion of scaled ROC curve for testing. (c) Full scaled ROC testing curve.

8 Discussion and Open Problems

In Section 6, we have shown that an increase in p tends to increase Rmax, but
how severe is the sacrifice that we make farther down the ranked list? All of the
full ROC training curves in Section 6 (with perhaps the exception of housing)
do not show any significant sacrifice, even between the p = 1 and p = 64 curves.
To explain this observation, recall that we are working with learning machines
of very limited capacity. The number of real valued features has not exceeded
13, i.e., there is not too much flexibility in the set of solutions that yield good
rankings; the algorithm chooses the best solution from this limited choice. A high
capacity learning machine generally is able to produce a consistent (or nearly
consistent) ranking, so it is a delicate matter to find a dataset and hypothesis
space such that an increase in p causes a dramatic change in the full ROC curve.
It is an open problem to find such a dataset and function space.

Another important direction for future research is the choice of loss function
� and price function g. The choice of loss function is a thoroughly-studied topic,
however, the choice of price function adds a new dimension to this problem.
One appealing possibility is to choose a non-monotonic function for g. The only
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Fig. 5. The pima-indians-diabetes dataset with only 50 training examples. The algo-
rithm is able to generalize for early values of p, but it does not generalize for large
values of p. This underscores the need for a sufficiently large training set for large p
values. (a) Full training ROC curve. (b) Leftmost portion of ROC testing curve. (c)
Full ROC testing curve.

algorithmic requirement is that g be convex. Also, it is possible to use varia-
tions of our basic derivation in Section 2 to derive other specialized objectives.
Of our experiments, the algorithm’s most dramatic effect was arguably seen
on the housing dataset, which is a very uneven dataset. It would be interest-
ing to understand the algorithm’s effect as a function of the unevenness of the
data.

9 Conclusions

We have provided a method for constructing a ranked list where correctness
at the top of the list is most important. Our main contribution is a general
set of convex objective functions determined by a loss � and price function g.
A boosting-style algorithm based on a specific family of these objectives is de-
rived. We have demonstrated the effect of a number of different price functions,
and it is clear, both theoretically and empirically, that a steeper price function
concentrates harder at the top of the list.

Acknowledgements. Thanks to Rob Schapire, Sinan Güntürk, and Eero Si-
moncelli. Funding for this research is provided by an NSF postdoctoral fellowship.
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A Proof of Theorem 2

We follow the outline of Rudin et al. [13]. Define a Lipschitz function φ :
R → R (with Lipschitz constant Lip(φ)). Later we use a piecewise linear φ
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(see [10]), but for now, take 0 ≤ φ(z) ≤ 1 ∀z and φ(z) = 1 for z < 0. Since
φ(z) ≥ 1[z≤0], we have an upper bound on Rp

D+D−
1f , namely, Rp

D+D−
φf :=

(
Ex−∼D−(Ex+∼D+φ(f(x+) − f(x−)))p

)1/p
. The empirical error is thus:

Rp
S+,S−

φf :=

(
1
K

K∑

k=1

(
1
I

I∑

i=1

φ(f(xi) − f(x̃k))

)p)1/p

.

First, we upper bound Rp
D+D−

φf by two terms: the empirical error term
Rp

S+,S−
φf , and a term characterizing the deviation of Rp

S+,S−
φf from Rp

D+D−
φf

uniformly:

Rp
D+D−

1f ≤ Rp
D+D−

φf ≤ sup
f̄∈F

(Rp
D+D−

φf̄ − Rp
S+,S−

φf̄ ) + Rp
S+,S−

φf .

The proof involves an upper bound on the first term. Let L(f) := Rp
D+D−

φf −
Rp

S+,S−
φf . The following lemma is true for every training set S:

Lemma 1. For any two functions f1, f2 ∈ L∞(X ), L(f1)−L(f2) ≤ 4Lip(φ)||f1−
f2||∞.

The proof uses Minkowski’s inequality twice and some algebraic manipulation.
The following step is due to Cucker and Smale [5]. Let �ε := N

(
F , ε

8Lip(φ)

)
,

the covering number of F by L∞ disks of radius ε
8Lip(φ) . Define f1, f2, ..., f�ε to

be the centers of such a cover, i.e., the collection of L∞ disks Br centered at fr

and with radius ε
8Lip(φ) is a cover for F . The center of each disk will act as a

representative for the whole disk. Now, the following lemma is not difficult to
prove (see [5] or [13]).

Lemma 2. For all ε > 0,

PS+∼DI
+,S−∼DK

−
{ sup

f∈Br

L(f) ≥ ε} ≤ PS+∼DI
+,S−∼DK

−
{L(fr) ≥ ε

2
}.

Here is a small lemma from calculus that will be useful in the next proof.

Lemma 3. For a, b ∈ R+, it is true that |a1/p − b1/p| ≤ |a − b|1/p.

We now incorporate the fact that the training set is chosen randomly.

Lemma 4. For all ε1 > 0,

PS+∼DI
+,S−∼DK

−
(L(f) ≥ ε1) ≤ 2 exp

[
−2

(ε1
2

)2p

K

]
+ 2 exp

[
− ε21

2
I

]
.

Proof. Define Rp
S+,D−

φf :=
(
Ex−∼D−

(
1
I

∑I
i=1 φ(f(xi) − f(x−))

)p)1/p

. Now,

PS+∼DI
+,S−∼DK

−
(L(f) ≥ ε1) ≤ PS+∼DI

+

(
Rp

D+D−
φf − Rp

S+,D−
φf ≥ ε1

2

)

+ PS+∼DI
+,S−∼DK

−

(
Rp

S+,D−
φf − Rp

S+,S−
φf ≥ ε1

2

)

=: term1 + term2. (2)



602 C. Rudin

Let us bound term2. Since φf is bounded between 0 and 1, the largest possi-
ble change in (Rp

S+,S−
φf )p that one negative example can cause is 1/K. Thus,

McDiarmid’s Inequality applied to the negative examples implies that for all
ε2 > 0:

PS−∼DK
−

[∣∣∣∣∣Ex−∼D−

(
1
I

I∑

i=1

φ(f(xi)−f(x−))

)p

− 1
K

K∑

k=1

(
1
I

I∑

i=1

φ(f(xi)−f(x̃k))

)p∣∣∣∣∣≥ε2

]

≤ 2 exp
[ −2ε22

K 1
K2

]
= 2 exp

[
−2ε22K

]
. (3)

The following is true for any S+, due to Lemma 3 above:

Rp
S+,D−

φf−Rp
S+,S−

φf

≤
∣∣∣∣∣Ex−∼D−

(
1
I

I∑

i=1

φ(f(xi)−f(x−))

)p

− 1
K

K∑

k=1

(
1
I

I∑

i=1

φ(f(xi)−f(x̃k))

)p∣∣∣∣∣

1/p

. (4)

Combining (3) and (4) yields a bound on term2. Namely, for all ε3 > 0:

PS−∼DK
−

(
Rp

S+,D−
φf − Rp

S+,S−
φf ≥ ε3

)
≤ 2 exp

[
−2ε2p

3 K
]
. (5)

Letting ε3 := ε1/2 finishes our work on term2. Now we consider term1 of (2).

PS+∼DI
+

�
Rp

D+D−
φf − Rp

S+,D−
φf ≥ ε1

2

�

=PS+∼DI
+

�
����Ex+∼D+φ(f(x+)−f(·))

���
Lp(X ,D−)

−
�����1

I

I	
i=1

φ(f(xi)−f(·))
�����

Lp(X ,D−)

≥ ε1
2



�

≤ PS+∼DI
+

�
�
�����Ex+∼D+φ(f(x+) − f(·)) − 1

I

I	
i=1

φ(f(xi) − f(·))
�����

L∞(X ,D−)

≥ ε1
2



� .

We use McDiarmid’s Inequality again to complete the proof. The largest possi-
ble change in 1

I

∑I
i=1 φ(f(xi) − f(x−)) due to the replacement of one positive

example is 1/I. Thus, for all x−,

PS+∼DI
+

�




Ex+∼D+φ(f(x+)−f(x−))−1
I

I	
i=1

φ(f(xi)−f(x−))






≥ ε1
2

�
≤ 2 exp

�
− ε21I

2

�
.

Combining this result with (2) and (5) yields the statement of Lemma 4. ��

Proof. (Of Theorem 2) First applying the union bound over balls, then applying
Lemma 2, and then Lemma 4 (as in [13]), we find:

P
S+∼DI ,S−∼DK

�
sup
f∈F

L(f) ≥ ε

�
≤ N

�
F ,

ε

8Lip(φ)

��
2 exp

�
−2

�
ε

4

�2p

K

�
+ 2 exp

�
− ε2

8
I

��
.
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Now we put everything together. With probability at least:

1 − N
(

F ,
ε

8Lip(φ)

) [
2 exp

[
−2

( ε

4

)2p

K

]
+ 2 exp

[
− ε2

8
I

]]
, we have:

Rp
D+D−

1f ≤ Rp
S+,S−

φf + ε. (6)

Let us choose φ(z) = 1 for z ≤ 0, φ(z) = 0 for z ≥ θ, and linear in between,
with slope −1/θ. Thus, Lip(φ) = 1/θ. Since φ(z) ≤ 1 for z ≤ θ, we have
Rp

S+,S−
φf ≤ Rp

S+,S−
1θ

f . Incorporating this into equation (6) finishes the proof
of the theorem. ��

B Proof of Theorem 3

We will use a theorem of Della Pietra et al. [7], and follow their definitions leading
to this theorem. Consider function φ : S ⊂ RIK → [−∞, ∞] which is Legendre
(see [7]). The effective domain of φ, denoted Δφ, is the set of points where φ is
finite. The Bregman Distance associated with φ is Bφ : Δφ × int(Δφ) → [0, ∞]
defined as:

Bφ(p,q) := φ(p) − φ(q)− < ∇φ(q),p − q > .

(Do not confuse the vector p ∈ Rik with the scalar power p.) The Legendre-
Bregman Conjugate associated with φ is �φ defined as: �φ(q,v) := supp∈Δφ

(<
v,p > −Bφ(p,q)). For fixed q, the Legendre-Bregman conjugate is the con-
vex conjugate of Bφ(·,q). The Legendre-Bregman Projection is the argument of
the sup whenever it is well-defined, Lφ : int(Δφ) × RIK → Δφ, Lφ(q,v) :=
argmaxp∈Δφ

(< v,p > −Bφ(p,q)). Della Pietra et al. [7] showed that equiva-
lently, Lφ(q,v) = (∇φ)−1(∇φ(q) + v).

The domains of the primal and dual problems will be defined with respect
to a matrix M ∈ RIK×n, and vectors q0,p0 ∈ Δφ. The domain of the primal
problem is: P = {p ∈ RIK |pT M = pT

0 M}. The domain of the dual problem is:

Q(q0,M) := {q ∈ Δφ|q = Lφ(q0, −Mλ) for some λ ∈ Rn}.

The following theorem will give us uniqueness within the closure of Q.

Theorem 4. (from Proposition 3.2 of [7]) Let φ satisfy the technical conditions
A1.-A5. of [7] and suppose there is p0 and q0 ∈ Δφ with Bφ(p0,q0) < ∞. Then
there exists a unique q∗ ∈ Δφ satisfying:

1. q∗ = argminp∈PBφ(p,q0) (primal problem)
2. q∗ = argminq∈closure(Q)Bφ(p0,q) (dual problem)

If we can prove that our objective function fits into this framework, this theorem
will provide uniqueness in the closure of Q, which is related to Q′. Let us now
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do this. Consider function φ : RIK
>0 → [−∞, ∞], which is Legendre (see [12] for

details):

φ(q) :=
∑

ik

qikg(qik,q), where g(qik,q) := ln
(

qik

p1/p(
∑

i′ qi′k)(p−1)/p

)
.

Reducing carefully, one can show: Lφ(q,v)ik = evikqik (
∑

i′ evi′kqi′k)(p−1)

1
(
	

i′ qi′k)(p−1) . Choosing q0 to be constant, q0ik = q0 for all i, k, we can now
obtain Q:

Q(q0,M)=

⎧
⎨

⎩q∈Δφ

∣∣∣q=e−(Mλ)ik

(
∑

i′

e−(Mλ)i′k

)(p−1)
q0

I(p−1) for someλ∈Rn

⎫
⎬

⎭.

In order to make the last fraction 1, let q0 = I(p−1). The domain for the primal
problem is fixed by choosing p0 = 0, namely P = {p ∈ RIK |pT M = 0}. The
dual objective is Bφ(0,q). If q ∈ Q, i.e., qik = e−(Mλ)ik

(∑
i′ e−(Mλ)i′k

)(p−1)
,

then simplifying yields:

Bφ(0,q) = (1/p)Fp(λ).

Thus, we have arrived at exactly the objective function for our algorithm. That
is, φ was carefully chosen so the dual objective would be exactly as we wished,
modulo the constant 1/p which does not affect minimization. The technical con-
ditions A1.-A5. are verified in [12]. Part (2) of Theorem 4 states that the ob-
jective function has a unique minimizer in closure(Q). It is not difficult to show
that a vector in closure(Q) corresponds uniquely to a vector in closure(Q′). This
finishes the proof. ��

It was unnecessary to state the primary objective Bφ(p,q0) explicitly to prove
the theorem, however, we state it (details omitted) in order to compare with the
relative entropy case where p = 1.

Bφ(p,q0) =
∑

ik

pik ln
[

pik

p1/p(
∑

i′ pi′k)(p−1)/p

]
− 1

p
(1 − ln p)

∑

ik

pik +
1
p
IpK

By inspection, one can see that for p = 1 this reduces to the relative entropy
case.

One interesting note is how to find a function φ to suit such a problem. We
discovered the function φ again via convex duality. We knew the desired dual
problem was precisely our objective Fp, thus, we were able to recover the primal
problem and thus φ by convex conjugation.
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