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Abstract. We give new algorithms for learning halfspaces in the challenging
malicious noisemodel, where an adversary may corrupt both the labels and the
underlying distribution of examples. Our algorithms can tolerate malicious noise
rates exponentially larger than previous work in terms of the dependence on the
dimensionn, and succeed for the fairly broad class of all isotropic log-concave
distributions.
We give poly(n, 1/ǫ)-time algorithms for solving the following problems to ac-
curacyǫ:

– Learning origin-centered halfspaces inR
n with respect to the uniform dis-

tribution on the unit ball with malicious noise rateη = Ω(ǫ2/ log(n/ǫ)).
(The best previous result wasΩ(ǫ/(n log(n/ǫ))1/4).)

– Learning origin-centered halfspaces with respect to any isotropic log-concave
distribution onRn with malicious noise rateη = Ω(ǫ3/ log(n/ǫ)). This is
the first efficient algorithm for learning under isotropic log-concave distribu-
tions in the presence of malicious noise.

We also give a poly(n, 1/ǫ)-time algorithm for learning origin-centered half-
spaces under any isotropic log-concave distribution onR

n in the presence of
adversarial label noiseat rateη = Ω(ǫ3/ log(1/ǫ)). In the adversarial label
noise setting (or agnostic model), labels can be noisy, but not example points
themselves. Previous results could handleη = Ω(ǫ) but had running time expo-
nential in an unspecified function of1/ǫ.
Our analysis crucially exploits both concentration and anti-concentration prop-
erties of isotropic log-concave distributions. Our algorithms combine an itera-
tive outlier removal procedure using Principal Component Analysis together with
“smooth” boosting.

1 Introduction

A halfspaceis a Boolean-valued function of the formf = sign(
∑n

i=1 wixi − θ).
Learning halfspaces in the presence of noisy data is a fundamental problem in ma-
chine learning. In addition to its practical relevance, theproblem has connections to
many well-studied topics such as kernel methods [26], cryptographic hardness of learn-
ing [15], hardness of approximation [6, 9], learning Boolean circuits [2], and addi-
tive/multiplicative update learning algorithms [17, 7].

Learning an unknown halfspace from correctly labeled (non-noisy) examples is one
of the best-understood problems in learning theory, with work dating back to the famous
Perceptron algorithm of the 1950s [21] and a range of efficient algorithms known for
different settings [20, 16, 3, 18]. Much less is known, however, about the more difficult
problem of learning halfspaces in the presence of noise.



Important progress was made by Blumet al. [2] who gave a polynomial-time al-
gorithm for learning a halfspace underclassification noise. In this model each label
presented to the learner is flipped independently with some fixed probability; the noise
does not affect the actual example points themselves, whichare generated according to
an arbitrary probability distribution overRn.

In the current paper we consider a much more challengingmalicious noisemodel.
In this model, introduced by Valiant [27] (see also [12]), there is an unknown target
functionf and distributionD over examples. Each time the learner receives an example,
independently with probability1−η it is drawn fromD and labeled correctly according
to f , but with probabilityη it is an arbitrary pair(x, y) which may be generated by an
omniscient adversary. The parameterη is known as the “noise rate.”

Malicious noise is a notoriously difficult model with few positive results. It was al-
ready shown in [12] that for essentially all concept classes, it is information-theoretically
impossible to learn to accuracy1− ǫ if the noise rateη is greater thanǫ/(1+ ǫ). Indeed,
known algorithms for learning halfspaces [25, 11] or even simpler target functions [19]
with malicious noise typically make strong assumptions about the underlying distribu-
tion D, and can learn to accuracy1 − ǫ only for noise ratesη much smaller thanǫ. We
describe the most closely related work that we know of in Section 1.2.

In this paper we consider learning under the uniform distribution on the unit ball
in R

n, and more generally under any isotropic log-concave distribution. The latter is
a fairly broad class of distributions that includes spherical Gaussians and uniform dis-
tributions over a wide range of convex sets. Our algorithms can learn from malicious
noise rates that are quite high, as we now describe.

1.1 Main Results

Our first result is an algorithm for learning halfspaces in the malicious noise model with
respect to the uniform distribution on then-dimensional unit ball:

Theorem 1. There is apoly(n, 1/ǫ)-time algorithm that learns origin-centered half-
spaces to accuracy1 − ǫ with respect to the uniform distribution on the unit ball inn
dimensions in the presence of malicious noise at rateη = Ω(ǫ2/ log(n/ǫ)).

Via a more sophisticated algorithm, we can learn in the presence of malicious noise
under any isotropic log-concave distribution:

Theorem 2. There is apoly(n, 1/ǫ)-time algorithm that learns origin-centered half-
spaces to accuracy1− ǫ with respect to any isotropic log-concave distribution over R

n

and can tolerate malicious noise at rateη = Ω(ǫ3/ log(n/ǫ)).

We are not aware of any previous polynomial-time algorithmsfor learning under
isotropic log-concave distributions in the presence of malicious noise.

Finally, we also consider a somewhat relaxed noise model known asadversarial
label noise. In this model there is a fixed probability distributionP overRn × {−1, 1}
(i.e. over labeled examples) for which a1 − η fraction of draws are labeled according
to an unknown halfspace. The marginal distribution overR

n is assumed to be isotropic
log-concave; so the idea is that an “adversary” chooses anη fraction of examples to
mislabel, but unlike the malicious noise model she cannot change the (isotropic log-
concave) distribution of the actual example points inR

n. For this model we prove:



Theorem 3. There is apoly(n, 1/ǫ)-time algorithm that learns origin-centered half-
spaces to accuracy1− ǫ with respect to any isotropic log-concave distribution over R

n

and can tolerate adversarial label noise at rateη = Ω(ǫ3/ log(1/ǫ)).

1.2 Previous Work

Here is some of the most closely related previous work.

Malicious noise.General-purpose tools developed by Kearns and Li [12, 13] directly
imply that halfspaces can be learned for any distribution over the domain in randomized
poly(n,1/ǫ) time with malicious noise at a rateΩ(ǫ/n); the algorithm repeatedly picks
a random subsample of the training data, hoping to miss all the noisy examples. Kannan
(see [1]) devised a deterministic algorithm with aΩ(ǫ/n) bound that repeatedly finds a
group ofn+1 examples that includes a noisy example, then removes the group. Kalai, et
al [11] showed that the poly(n,1/ǫ)-time the averaging algorithm [24] tolerates noise at
a rateΩ(ǫ/

√
n) when the distribution is uniform. They also described an improvement

to Ω̃(ǫ/n1/4) based on the observation that uniform examples will tend to be well-
separated, so that pairs of examples that are too close to oneanother can be removed.

Adversarial label noise.Kalai, et al showed that if the distribution over the instances
is uniform over the unit ball, the averaging algorithm tolerates adversarial label noise
at a rateO(ǫ/

√
log(1/ǫ)) in poly(n,1/ǫ) time. (In that paper, adversarial label noise

was called “agnostic learning”.) They also described an algorithm that fits low-degree
polynomials that tolerates noise at a rate within an additive ǫ of the accuracy, but in

poly
(
n1/ǫ4

)
time; for log-concave distributions, their algorithm tookpoly

(
nd(1/ǫ)

)

time, for an unspecified functiond. The latter algorithm does not require that the distri-
bution is isotropic, as ours does.

Robust PCA. Independently of this work, Xu et al [28] designed and analyzed an al-
gorithm that performs principal component analysis when some of the examples are
corrupted arbitrarily, as in the malicious noise model studied here.

1.3 Techniques

Outlier Removal. Consider first the simplest problem of learning an origin-centered
halfspace with respect to the uniform distribution on then-dimensional ball. A natural
idea is to use a simple “averaging” algorithm that takes the vector average of the positive
examples it receives and uses this as the normal vector of itshypothesis halfspace.
Servedio [24] analyzed this algorithm for the random classification noise model, and
Kalai et al. [11] extended the analysis to the adversarial label noise model.

Intuitively the “averaging” algorithm can only tolerate low malicious noise rates
because the adversary can generate noisy examples which “pull” the average vector far
from its true location. Our main insight is that the adversary does this most effectively
when the noisy examples are coordinated to pull in roughly the same direction. We
use a form of outlier detection based on Principal ComponentAnalysis to detect such
coordination. This is done by computing the directionw of maximal variance of the
data set; if the variance in directionw is suspiciously large, we remove from the sample
all pointsx for which (w · x)2 is large. Our analysis shows that this causes many noisy
examples, and only a few non-noisy examples, to be removed.



We repeat this process until the variance in every directionis not too large. (This
cannot take too many stages since many noisy examples are removed in each stage.)
While some noisy examples may remain, we show that their scattered effects cannot
hurt the algorithm much.

Thus, in a nutshell, our overall algorithm for the uniform distribution is to first do
outlier removal1 by an iterated PCA-type procedure, and then simply run the averaging
algorithm on the remaining “cleaned-up” data set.

Extending to Log-Concave Distributions via Smooth Boosting. We are able to show
that the iterative outlier removal procedure described above is useful for isotropic log-
concave distributions as well as the uniform distribution:if examples are removed in a
given stage, then many of the removed examples are noisy and only a few are non-noisy
(the analysis here uses concentration bounds for isotropiclog-concave distributions).
However, even if there were no noise in the data, the average of the positive examples
under an isotropic log-concave distribution need not give ahigh-accuracy hypothesis.
Thus the averaging algorithm alone will not suffice after outlier removal.

To get around this, we show that after outlier removal the average of the positive
examples gives a (real-valued)weakhypothesis that has some nontrivial predictive ac-
curacy. (Interestingly, the proof of this relies heavily onanti-concentration properties
of isotropic log-concave distributions!) A natural approach is then to use a boosting
algorithm to convert this weak learner into a strong learner. This is not entirely straight-
forward because boosting “skews” the distribution of examples; this has the undesirable
effects of both increasing the effective malicious noise rate, and causing the distribu-
tion to no longer be isotropic log-concave. However, by using a “smooth” boosting
algorithm [25] that skews the distribution as little as possible, we are able to control
these undesirable effects and make the analysis go through.(The extra factor ofǫ in the
bound of Theorem 2 compared with Theorem 1 comes from the factthat the boosting
algorithm constructs “1/ǫ-skewed” distributions.)

We note that our approach of using smooth boosting is reminiscent of [23, 25], but
the current algorithm goes well beyond that earlier work. [23] did not consider a noisy
scenario, and [25] only considered the averaging algorithmwithout any outlier removal
as the weak learner (and thus could only handle quite low rates of malicious noise in
our isotropic log-concave setting).

Finally, our results for learning under isotropic log-concave distributions with ad-
versarial label noise are obtained using a similar approach. The algorithm here is in
fact simpler than the malicious noise algorithm: since the adversarial label noise model
does not allow the adversary to alter the distribution of theexamples inRn, we can
dispense with the outlier removal and simply use smooth boosting with the averaging
algorithm as the weak learner. (This is why we get a slightly better quantitative bound
in Theorem 3 than Theorem 2).
Organization. We present the simpler and more easily understood uniform distribution
analysis first, proving Theorem 1 in Section 2. The proof of Theorem 2, which builds

1 We note briefly that the sophisticated outlier removal techniques of [2, 5] do not seem to be
useful in our setting; those works deal with a strong notion of outliers, which is such that
no point on the unit ball can be an outlier if a significant fraction of points are uniformly
distributed on the unit ball.



on the ideas of Theorem 1, is sketched in Section 3. In Section1.2, we described some
of the most closely related previous work. Because of space constraints the proof of
Theorem 3 is omitted here and is given in the full version [14].

2 The uniform distribution and malicious noise

In this section we prove Theorem 1. As described above, our algorithm first does outlier
removal using PCA and then applies the “averaging algorithm.”

We may assume throughout that the noise rateη is smaller than some absolute con-
stant, and that the dimensionn is larger than some absolute constant.

2.1 The Algorithm: Removing Outliers and Averaging

Consider the following AlgorithmAmu:

1. Draw a sampleS of m = poly(n/ǫ) many examples from the malicious oracle.
2. Identify the directionw ∈ S

n−1 that maximizes

σ2
w

def
=

∑
(x,y)∈S

(w · x)2.

If σ2
w

< 10m log m
n then go to Step 4 otherwise go to Step 3.

3. Remove fromS every example that has(w · x)2 ≥ 10 log m
n . Go to Step 2.

4. For the examplesS that remain letv = 1
|S|
∑

(x,y)∈S yx and output the linear
classifierhv defined byhv(x) = sgn(v · x).

We first observe that Step 2 can be carried out in polynomial time:

Lemma 1. There is a polynomial-time algorithm that, given a finite collection S of
points inR

n, outputsw ∈ S
n−1 that maximizes

∑
x∈S(w · x)2.

Proof. By applying Lagrange multipliers, we can see that the optimal w is an eigen-
vector ofA =

∑
x∈S xxT . Further, ifλ is the eigenvalue ofw, then

∑
x∈S(w · x)2 =

w
T Aw = w

T (λw) = λ. The eigenvectorw with the largest eigenvalue can be found
in polynomial time (see e.g. [10]). ⊓⊔

Before embarking on the analysis we establish a terminological convention. Much
of our analysis deals with high-probability statements over the draw of them-element
sampleS; it is straightforward but quite cumbersome to explicitly keep track of all of
the failure probabilities. Thus we write “with high probability” (or “w.h.p.”) in various
places below as a shorthand for “with probability at least1 − 1/poly(n/ǫ).” The inter-
ested reader can easily verify that an appropriatepoly(n/ǫ) choice ofm makes all the
failure probabilities small enough so that the entire algorithm succeeds with probability
at least1/2 as required.

2.2 Properties of the clean examples

In this subsection we establish properties of the clean examples that were sampled in
Step 1 ofAmu. The first says that no direction has much more variance than the expected
variance of1/n. Its proof, which uses standard tools from VC theory, is omitted due to
space constraints.



Lemma 2. W.h.p. over a random draw ofℓ clean examplesSclean, we have

max
a∈Sn−1

{
1

ℓ

∑
(x,y)∈Sclean

(a · x)2

}
≤ 1

n
+

√
O(n) log m

ℓ
.

The next lemma says that in fact no direction has too many clean examples lying
far out in that direction. Its proof, which uses Lemma 7 of [4], is omitted due to space
constraints.

Lemma 3. For anyβ > 0 andκ > 1, if Sclean is a random set ofℓ ≥ O(1)·n2β2eβ2n/2

(1+κ) ln(1+κ)

clean examples then w.h.p. we have

max
a∈Sn−1

{
1

ℓ

∑
x∈Sclean

1(a·x)2>β2

}
≤ (1 + κ)e−β2n/2.

2.3 What is removed

In this section, we provide bounds on the number of clean and dirty examples removed
in Step 3.

The first bound is a Corollary of Lemma 3.

Corollary 1. W.h.p. over the random draw of them-element sampleS, the number of
clean examples removed during the any execution of Step 3 inAmu is at most6n logm.

Proof.Since the noise rateη is sufficiently small, w.h.p. the numberℓ of clean examples
is at least (say)m/2. We would like to apply Lemma 3 withκ = 5ℓ4n log ℓ andβ =√

10 log m
n , and indeed we may do this because we have

O(1) · n2β2eβ2n/2

(1 + κ) ln(1 + κ)
≤ O(1) · n(log m)m5

(1 + κ) ln(1 + κ)
≤ O

(
m

log m

)
≤ m

2
≤ ℓ

for n sufficiently large. Since clean points are only removed if they have(a · x)2 > β2,
Lemma 3 gives us that the number of clean points removed is at most

m(1 + κ)e−β2n/2 ≤ 6m5n log(ℓ)/m5 ≤ 6n log m.

⊓⊔
The counterpart to Corollary 1 is the following lemma. It tells us that if examples

are removed in Step 3, then there must be manydirty examples removed. It exploits the
fact that Lemma 2 bounds the variance inall directionsa, so that it can be reused to
reason about what happens in different executions of step 3.

Lemma 4. W.h.p. over the random draw ofS, wheneverAmu executes step 3, it re-
moves at least4m log m

n noisy examples fromSdirty, the set of dirty examples inS.

Proof. As stated earlier we may assume thatη ≤ 1/4. This implies that w.h.p. the
fractionη̂ of noisy examples in the initial setS is at most1/2. Finally, Lemma 2 implies



that m = Ω̃(n2) suffices for it to be the case that w.h.p., for alla ∈ S
n−1, for the

original multisetSclean of clean examples drawn in step 1, we have

∑
(x,y)∈Sclean

(a · x)2 ≤ 2m

n
. (1)

We shall say that a random sampleS that satisfies all these requirements is “reason-
able”. We will show that for any reasonable dataset, the number of noisy examples
removed during the execution of step 3 ofAmu is at least4m log m

n .
If we remove examples using directionw then it means

∑
(x,y)∈S(w · x)2 ≥

10m log m
n . SinceS is reasonable, by (1) the contribution to the sum from the clean

examples that survived to the current stage is at most2m/n so we must have
∑

(x,y)∈Sdirty

(w · x)2 ≥ 10m log(m)/n − 2m/n > 9m log(m)/n.

Let us decomposeSdirty into N ∪ F whereN (“near”) consists of those pointsx
s.t. (w · x)2 ≤ 10 log(m)/n and F (“far”) is the remaining points for which(w ·
x)2 > 10 log(m)/n. Since |N | ≤ |Sdirty| ≤ η̂m, (any dirty examples removed
in earlier rounds will only reduce the size ofSdirty) we have

∑
(x,y)∈N(w · x)2 ≤

(η̂m)10 log(m)/n and so

|F | ≥ ∑
(x,y)∈F

(w · x)2 ≥ 9m log(m)/n − (η̂m)10 log(m)/n ≥ 4m log(m)/n

(the last line used the fact thatη̂ < 1/2). Since the points inF are removed in Step 3,
the lemma is proved. ⊓⊔

2.4 Exploiting limited variance in any direction

In this section, we show that if all directional variances are small, then the algorithm’s
final hypothesis will have high accuracy.

We first recall a simple lemma which shows that a sample of “clean” examples
results in a high-accuracy hypothesis for the averaging algorithm:

Lemma 5 ([24]).Supposex1, ...,xm are chosen uniformly at random fromSn−1, and
a target weight vectoru ∈ S

n−1 produces labelsy1 = sign(u · x1), ..., ym = sign(u ·
xm). Let v = 1

m

∑m
t=1 ytxt. Then w.h.p. the component ofv in the direction ofu

satisfiesu ·v = Ω( 1√
n
), while the rest ofv satisfies||v−(u ·v)u|| = O(

√
log(n)/m).

Now we can state Lemma 6.

Lemma 6. LetS = Sclean ∪ Sdirty be the sample ofm examples drawn from the noisy
oracleEXη(f,U). Let

– S′
clean be those clean examples that were never removed during step 3of Amu,

– S′
dirty be those dirty examples that were never removed during step 3of Amu,

– η′ =
|S′

dirty|
|S′

clean
∪S′

dirty
| , i.e. the fraction of dirty examples among the examples that

survive step 3, and



– α =
|Sclean−S′

clean|
|S′

clean
∪S′

dirty
| , the ratio of the number of clean points that were erroneously

removed to the size of the final surviving data set.

LetS′ def
= S′

clean ∪ S′
dirty. Suppose that , for every directionw ∈ S

n−1 we have

σ2
w

def
=

∑

(x,y)∈S′

(w · x)2 ≤ 10m logm

n
.

Then w.h.p. over the draw ofS, the halfspace with normal vectorv
def
= 1

|S′|
∑

(x,y)∈S′ yx

has error rate

O

(
√

η′ log m + α
√

n +

√
n log n

m

)
.

Proof.The claimed bound is trivial unlessη′ ≤ o(1)/ log m andα ≤ o(1)/
√

n, so we
shall freely use these bounds in what follows.

Let u be the unit length normal vector for the target halfspace. Let vclean be the
average ofall the clean examples,v′

dirty be the average of the dirty (noisy) examples
that were not deleted (i.e. the examples inS′

dirty), andvdel be the average of the clean
examples that were deleted. Then

v =
1

|S′
clean ∪ S′

dirty|
∑

(x,y)∈S′

clean
∪S′

dirty

yx

=
1

|S′
clean ∪ S′

dirty|

((
∑

(x,y)∈Sclean

yx

)
+

(
∑

(x,y)∈S′

dirty

yx

)
−
(

∑
(x,y)∈Sclean−S′

clean

yx

))

v = (1 − η′ + α)vclean + η′
v
′
dirty − αvdel. (2)

Let us begin by exploiting the bound on the variance in every direction to bound the
length ofv′

dirty. For anyw ∈ S
n−1 we know that

∑
(x,y)∈S′

(w · x)2 ≤ 10m logm

n
, and hence

∑
(x,y)∈S′

dirty

(w · x)2 ≤ 10m logm

n

sinceS′
dirty ⊆ S′. The Cauchy-Schwarz inequality now gives

∑
(x,y)∈S′

dirty

|w · x| ≤

√
10m|S′

dirty| log m

n
.

Takingw to be the unit vector in the direction ofv′
dirty, we have‖v′

dirty‖ =

w · v′
dirty = w · 1

|S′
dirty|

∑
(x,y)∈S′

dirty

yx ≤ 1

|S′
dirty|

∑
(x,y)∈S′

dirty

|w · x| ≤
√

10m logm

|S′
dirty|n

.

(3)



Because the domain distribution is uniform, the error ofhv is proportional to the
angle betweenv andu, in particular,

Pr[hv 6= f ] =
1

π
arctan

( ||v − (v · u)u||
u · v

)
≤ (1/π)

||v − (v · u)u||
u · v . (4)

We have that||v − (v · u)u|| equals

||(1 − η′ + α)(vclean − (vclean · u)u) + η′(v′
dirty − (v′

dirty · u)u) − α(vdel − (vdel · u)u)||
≤ 2||vclean − (vclean · u)u|| + η′||v′

dirty|| + α||vdel||

where we have used the triangle inequality and the fact thatα, η are “small.” Lemma 5
lets us bound the first term in the sum byO(

√
log(n)/m), and the fact thatvdel is

an average of vectors of length 1 lets us bound the third byα. For the second term,
Equation (3) gives us

η′‖v′
dirty‖ ≤

√
10m(η′)2 log m

|S′
dirty|n

=

√
10mη′ log m

|S′|n ≤
√

20η′ log m

n
,

where for the last equality we used|S′| ≥ m/2 (which is an easy consequence of
Corollary 1 and the fact that w.h.p.|Sclean| ≥ 3m/4). We thus get

||v − (v · u)u|| ≤ O
(√

log(n)/m
)

+
√

20η′ log(m)/n + α. (5)

Now we consider the denominator of (4). We have

u · v = (1 − η′ + α)(u · vclean) + η′
u · v′

dirty − αu · vdel.

Similar to the above analysis, we again use Lemma 5 (but now the lower boundu ·v ≥
Ω(1/

√
n), Equation (3), and the fact that||vdel|| ≤ 1. Sinceα andη′ are “small,” we

get that there is an absolute constantc such thatu ·v ≥ c/
√

n−
√

20η′ log(m)/n−α.
Combining this with (5) and (4), we get

Pr[hv 6= f ] ≤
O

(√
log n

m

)
+
√

20η′ log m
n + α

c√
n
−
√

20η′ log m
n − α

= O

(√
n logn

m
+
√

η′ log m + α
√

n

)
.

⊓⊔

2.5 Proof of Theorem 1

By Corollary 1, with high probability, each outlier removalstage removes at most
6n logm clean points.

Since each outlier removal stage removes at least4m log m
n noisy examples, there

must be at mostO(n/(log m)) such stages. Consequently the total number of clean
examples removed across all stages isO(n2). Since w.h.p. the initial number of clean
examples is at leastm/2, this means that the final data set (on which the averaging



algorithm is run) contains at leastm/2 − O(n2) clean examples, and hence at least
m/2 − O(n2) examples in total. Consequently the value ofα from Lemma 6 after the
final outlier removal stage (the ratio of the total number of clean examples deleted, to
the total number of surviving examples) is at most2n2

m/2−n2 .
The standard Hoeffding bound implies that w.h.p. the actualfraction of noisy exam-

ples in the original sampleS is at mostη +
√

O(log m)/m. It is easy to see that w.h.p.
the fraction of dirty examples does not increase (since eachstage of outlier removal re-
moves more dirty points than clean points, for a suitably largepoly(n/ǫ) value ofm),
and thus the fractionη′ of dirty examples among the remaining examples after the final
outlier removal stage is at mostη +

√
O(log m)/m. Applying Lemma 6, for a suitably

large valuem = poly(n/ǫ), we obtainPr[hv 6= f ] ≤ O
(√

η log m
)
. Rearranging this

bound, we can learn to accuracyǫ even forη = Ω(ǫ2/ log(n/ǫ)). This completes the
proof of the theorem. ⊓⊔

3 Isotropic log-concave distributions and malicious noise

Our algorithmAmlc that works for arbitrary log-concave distributions uses smooth
boosting.

3.1 Smooth Boosting

A boosting algorithm uses a subroutine, called aweak learner, that is only guaran-
teed to output hypotheses with a non-negligible advantage over random guessing.2 The
boosting algorithm that we consider uses aconfidence-ratedweak learner [22], which
predicts{−1, 1} labels using continuous values in[−1, 1]. Formally, theadvantageof
a hypothesish′ with respect to a distributionD′ is defined to beEx∼D′[h′(x)f(x)],
wheref is the target function.

For the purposes of this paper, a boosting algorithm makes use of the weak learner,
an example oracle (possibly corrupted with noise), a desired accuracyǫ, and a boundγ
on the advantage of the hypothesis output by the weak learner.

A boosting algorithm that is trying to learn an unknown target functionf with re-
spect to some distributionD repeatedly simulates a (possibly noisy) example oracle
for f with respect to some other distributionD′ calls a subroutineAweak with respect
to this oracle, receiving aweak hypothesis, which mapsRn to the continuous interval
[−1, 1].

After repeating this for some number of stages, the boostingalgorithm combines
the weak hypotheses generated during its various calls to the weak learner into a final
aggregate hypothesis which it outputs.

LetD,D′ be two distributions overRn. We say thatD′ is (1/ǫ)-smooth with respect
toD if D(x) ≤ (1/ǫ)D′(x) for all x ∈ R

n.
The following lemma from [25] (similar results can be readily found elsewhere,

see e.g. [8]) identifies the properties that we need from a boosting algorithm for our
analysis.

2 For simplicity of presentation we ignore the confidence parameter of the weak learner in our
discussion; this can be handled in an entirely standard way.



Lemma 7 ([25]). There is a boosting algorithmB and a polynomialp such that, for
any ǫ, γ > 0, the following properties hold. When learning a target function f us-
ing EXη(f,D), we have: (a) If each call toAweak takes timet, thenB takes time
p(t, 1/γ, 1/ǫ). (b) The weak learner is always called with an oracleEXη′(f,D′) where
D′ is (1/ǫ)-smooth with respect toD andη′ ≤ η/ǫ. (c) Suppose that for each distri-
butionEXη′(f,D′) passed toAweak byB, the output ofAweak has advantageγ. Then
the final outputh of B satisfiesPrx∈D[h(x) 6= f(x)] ≤ ǫ.

3.2 The Algorithm

Our algorithm for learning under isotropic log-concave distributions with malicious
noise, AlgorithmAmlc, applies the smooth booster from Lemma 7 with the following
weak learner, which we call AlgorithmAmlcw. (The valuec0 is an absolute constant
that will emerge from our analysis.)

1. Drawm = poly(n/ǫ) examples from the oracleEXη′(f,D′).
2. Remove all those examples(x, y) for which ||x|| >

√
3n logm.

3. Repeatedly
– find a direction (unit vector)w that maximizes

∑
(x,y)∈S(w · x)2 (see

Lemma 1)
– if

∑
(x,y)∈S(w ·x)2 ≤ c0m log(n/ǫ) then move on to Step 4, and otherwise

– remove fromS all examples(x, y) for which (w · x)2 > c0 log(n/ǫ), and
iterate again.

4. Letv = 1
|S|
∑

(x,y)∈S yx, and returnh defined byh(x) = v·x
3n log m , if |v · x| ≤

3n logm, andh(x) = sgn(v · x) otherwise.

Our main task is to analyze the weak learner. Given the following Lemma, Theo-
rem 2 will be an immediate consequence of Lemma 7. The proof isomitted due to space
constraints.

Lemma 8. Suppose AlgorithmAmlcw is run usingEXη′(f,D′) wheref is an origin-
centered halfspace,D′ is (1/ǫ)-smooth w.r.t. an isotropic log-concave distributionD,
η′ ≤ η/ǫ, andη ≤ Ω(ǫ3/ log(n/ǫ)). Then w.h.p. the hypothesish returned byAmlcw

has advantageΩ
(

ǫ2

n log(n/ǫ)

)
.

Proof Sketch.We exploit the fact that isotropic logconcave distributions are notvery
concentrated to show that clean examples tend to be classified correctly by a large mar-
gin. We then use concentration bounds to prove analogs of Lemmas 2 and 3, and put
them together in a roughly similar way. ⊓⊔
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