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ABSTRACT
For S ⊆ {0, 1}n, a Boolean function f : S → {−1, 1} is
a halfspace over S if there exist w ∈ Rn and θ ∈ R such
that f(x) = sign(w · x − θ) for all x ∈ S. We give bounds
on the size of integer weights w1, . . . , wn ∈ Z that are re-
quired to represent halfspaces over Hamming balls centered

at 0n, i.e. halfspaces over S = {0, 1}n≤k
def
= {x ∈ {0, 1}n :

x1 + · · ·+ xn ≤ k}. Such weight bounds for halfspaces over
Hamming balls have immediate consequences for the per-
formance of learning algorithms in the increasingly common
scenario of learning from very high-dimensional categorical
examples which are such that only a small number of fea-
tures are active in each example.

We give upper and lower bounds on weight both for ex-
act representation (when sign(w ·x− θ) must equal f(x) for
every x ∈ S) and for ε-approximate representation (when
sign(w · x − θ) may disagree with f(x) for up to an ε frac-
tion of points x ∈ S). Our results show that extremal
bounds for exact representation are qualitatively rather sim-
ilar whether the domain is all of {0, 1}n or the Hamming
ball {0, 1}n≤k, but extremal bounds for approximate repre-
sentation are qualitatively very different between these two
domains.

Categories and Subject Descriptors
F.1.3 [Theory of Computation]: Computation by Ab-
stract Devices—Complexity measures and classes

General Terms
Theory
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Linear threshold functions, halfspaces, Boolean functions,
Boolean hypercube
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1. INTRODUCTION AND MOTIVATION
Many machine learning problems involve data with Boolean

features. For example, news articles may be classified based
on which words they contain, and analogous “bag of visual
words” representations have become popular for image clas-
sification as well. In many such modern machine learning
problems, the set of all possible features is extremely large
but each example has only a small number of active fea-
tures. For example, in a search engine scenario the set of all
possible features might be the set of all words that appear
in any query, while the active features in a given example
might be the much smaller set of words appearing in that
query. In such a setting, the space of all possible examples is
contained in a Hamming ball centered at the origin {0, 1}n≤k
where k � n. It is intuitively clear that limiting the domain
in this way may make learning easier; studying the complex-
ity of learning over such domains can potentially lend insight
useful for the design of practical algorithms for learning in
such settings.

Let S be a subset of the Boolean hypercube {0, 1}n. We
say that a Boolean function f : S → {−1, 1} is a halfspace
over S if there exist w ∈ Rn and θ ∈ R such that f(x) =
sign(w · x − θ) for all x ∈ S. The pair (w, θ) is an integer
representation of f if w ∈ Zn. The weight of an integer
representation is maxi=1,...,n |wi|. The weight of a halfspace
f over S is the smallest weight of any integer representation
which computes f correctly on all x ∈ S.

In this paper we give a detailed study of the weight of
halfspaces, both exact and approximate, over Hamming balls
of radius k, i.e. we study halfspaces over the domain

S = {0, 1}n≤k
def
= {x ∈ {0, 1}n : x1 + · · ·+ xn ≤ k}.

The weight of an integer halfspace is closely related to the
“margin” by which it classifies examples in S. Since halfs-
paces play a central role in machine learning, and the mar-
gin of a halfspace H is an important measure of the difficulty
of learning H, we are naturally motivated to understand the
weight of halfspaces over Hamming balls as an initial step
toward understanding the impact of sparsity in feature vec-
tors on learning complexity.

Many researchers have studied the weight of halfspaces
over the entire Boolean cube (corresponding to taking S =
{0, 1}n), see e.g. [10, 9, 12, 4, 13, 11, 14, 8, 6, 1, 16, 3].
Upper and lower bounds have been obtained both for exact
representation as described above, and for a relaxed scenario
in which the integer-weight halfspace sign(w·x−θ) need only
ε-approximate the function f (i.e. we allow Prx∈S [sign(w ·
x−θ) 6= f(x)] to be at most ε for some given approximation



parameter ε > 0). We describe these previous results in
detail in Section 1.1.

1.1 Previous Work and Our Results
In this section we review prior work on the weight of

halfspaces (all of the previous work that we are aware of
deals with halfspaces over the entire Boolean cube {0, 1}n),
and state our results for halfspaces over the Hamming ball
{0, 1}n≤k.

Prior work on exact representation of halfspaces over
{0, 1}n. It has been known at least since the 1960s [10] that

every halfspace over {0, 1}n has weight at most nO(n) (this
fact has been rediscovered several times, see e.g. [7, 12]).

Since there are 2Ω(n2) halfspaces over {0, 1}n a counting ar-
gument shows that there exist halfspaces over {0, 1}n that

require weight 2Ω(n), and specific halfspaces that require
weight 2Ω(n) have been known for decades [9, 5]. [6] ex-

hibited a specific halfspace that has weight nΩ(n) and his
construction was subsequently refined by [1]. So the weight
of exact representations of halfspaces over all of {0, 1}n is
by now quite well understood.

Our results on exact representation of halfspaces
over {0, 1}n≤k. We give an essentially complete picture of
the weight of halfspaces over Hamming balls {0, 1}n≤k for all
values of k. First, it is easy to see that for k ∈ {0, 1} ev-
ery halfspace over {0, 1}n≤k has an integer representation of
weight 1. For k = 2, by analyzing a greedy construction
we show (Theorem 2) that every halfspace over {0, 1}n≤2 has
weight O(n), and we observe that a simple explicit halfspace
has weight Θ(n).

Things get more interesting beyond k = 2. Using a linear
programming argument, we show (Theorem 1) that for every
k ≥ 3, every halfspace over {0, 1}n≤k has an integer represen-

tation of weight (k+2)(n+1)/2, and we show that already for
k = 3 there is a simple explicit halfspace for which any inte-
ger representation must have weight 2Ω(n). Our main lower
bound result for exact representation (Theorem 4) is a gen-
eral lower bound showing that for every k ≥ 3, there is an
explicit halfspace over {0, 1}n≤k that requires integer weight

kΩ(n). This is established via a construction that carefully
combines H̊astad’s halfspace [6] with a “decision list” type
construction. Our lower bound shows that our upper bound
on the weight of halfspaces over {0, 1}n≤k is essentially the
best possible.

Prior work on approximation over {0, 1}n. The lower
bound of [6] immediately implies that there is an n-variable
halfspace f over {0, 1}n which is such that any halfspace
sign(w ·x−θ) which satisfies Prx∈{0,1}n [sign(w ·x) 6= f(x)] ≤
ε must have weight 1/εΩ(log log(1/ε)). [16] showed that every
n-variable halfspace over {0, 1}n can be ε-approximated by a

halfspace of weight
√
n·2Õ(1/ε2), and showed an Ω(

√
n) lower

bound for constant ε. The upper bound was subsequently

improved (as a function of ε) to weight n3/2 · 2Õ(1/ε2/3) by
[3], and very recently [2] have further improved the upper

bound to
√
n · (1/ε)O(log2(1/ε)).

Our results on approximation over {0, 1}n≤k. We study
the weight required to ε-approximate halfspaces over {0, 1}n≤k,
i.e. given a halfspace f we now allow the integer-weight half-
space sign(w · x− θ) to disagree with f(x) on an ε fraction

of all points in {0, 1}n≤k. (For the informal discussion here k
should be viewed as “small” compared to n; precise bounds
on k are given in the actual detailed theorem statements.)
As our main positive result (Theorem 5), we show that for
every halfspace f over {0, 1}n≤k there is a halfspace that ε-
approximates f and has integer weights each of which is at
most kO(k/ε), independent of n. This proof combines lin-
ear programming arguments with upper bounds on the edge
boundary of monotone Boolean-valued functions over the
discrete domain {1, . . . , t}k.

As our main negative result (Theorem 7), we show that
for any constant k ≥ 3 there is a simple explicit halfspace f
(the “decision list” halfspace, which we denote DL) which is
such that any ε-approximator of f over {0, 1}n≤k must have

weight kΩ(1/ε1/(k−1)). This shows that an inverse exponen-
tial dependence on 1/ε is necessary in any upper bound.

Finally, we give a detailed analysis of the specific “deci-
sion list” halfspace DL and show (Theorem 8) that for this
particular function the general weight upper bound of The-

orem 5 can be strengthened to kO(k/
√
ε). This shows that

strengthening the analysis of theDL function that is given in
Theorem 7 will not be enough to improve that lower bound
to match the general upper bound of Theorem 5.

Discussion. Our results show that (as long as k ≥ 3) the
extremal bounds on the weights required for exact repre-
sentation of halfspaces are fairly similar whether the do-
main is {0, 1}n≤k or {0, 1}n; in the former case the “right”

weight bound is kΘ(n), while in the latter case it is nΘ(n).
For ε-approximate representation, though, our results show
that there are two interesting qualitative differences between
the “right” weight bounds for the two domains. First, our
kO(k/ε) upper bound (independent of n) for {0, 1}n≤k stands
in contrast with the Ω(

√
n) lower bound of [16] for {0, 1}n;

so for Hamming balls no dependence on n is necessary in the
weights, whereas for the Boolean cube a polynomial depen-

dence is required. Second, our kΩ(1/ε1/(k−1)) lower bound
shows that for any fixed constant k, some halfspaces over
{0, 1}n≤k require any ε-approximator to have weights that
are exponential in 1/ε. This is in sharp contrast with the
recent [2] upper bound, which shows that over {0, 1}n it is
always possible to construct an ε-approximating halfspace
with integer weights that are only quasipolynomial in 1/ε.

Preliminaries. Note that under the correspondence −1↔
0, 1 ↔ 1 an integer-weight halfspace sign(w · x − θ) over
the hypercube {−1, 1}n corresponds to an integer-weight
halfspace sign(2w · x − (θ + w1 + · · · + wn)) over the hy-
percube {0, 1}n. So we may work either over the Hamming
ball {0, 1}n≤k = {x ∈ {0, 1}n : x1 + · · · + xk ≤ k} of the
0/1 hypercube, or over the Hamming ball {−1, 1}n≤k = {x ∈
{−1, 1}n : x1 + · · · + xk ≤ −n + 2k} of the +1/ − 1 hyper-
cube; weight bounds obtained for one domain will carry over
to the other one with at most a factor of 2 difference. Simi-
larly we may also work over {−1, 1}n≥n−k = {x ∈ {−1, 1}n :
x1 + · · · + xk ≥ n − 2k}; sometimes this will be the most
convenient.

Some more useful observations: If sign(w ·x− θ) is a half-
space with integer coefficients over any subset S ⊆ {−1, 1}n
or S ⊆ {0, 1}n, then it is easy to see that w.l.o.g. we may
modify the threshold θ to be of the form (integer + 1

2
). We

also note that if sign(w · x − θ) is an integer-weight half-
space with such a threshold that computes a function f



over {−1, 1}n≤k, then sign(−w · x + θ) is a halfspace of the
same weight computing −f over {−1, 1}n≤k; so to bound the
weight of f over {−1, 1}n≤k it is enough to bound the weight
of −f .

Finally, we establish some useful notation. We write [n]
to denote the set {1, . . . , n}. For i ∈ [n] we write ei to de-
note the unit vector in Rn whose only nonzero entry is a 1
in the i-th coordinate. We let DL(x) denote the “decision
list” halfspace over {0, 1}n that is defined as follows: DL(x)
equals (−1)i, where i is the largest index such that xi = 1.
To see that DL(x) is a halfspace, we observe that it can be
represented as DL(x) = sign(

∑n
i=1(−2)ixi).

2. UPPER BOUNDS FOR EXACT REPRE-
SENTATION

We start with a general upper bound. The proof (see
Appendix A) is a straightforward modification of standard
integer weight upper bound arguments for halfspaces over
{0, 1}n (see e.g. [10, 6]) adapted to the domain {0, 1}n≤k.

Theorem 1. For 3 ≤ k ≤ n, every halfspace over {0, 1}n≤k
has weight at most (k + 2)(n+1)/2.

We note that the proof given above actually holds for all
k ≥ 1 (not just k ≥ 3 as in the theorem statement), but
much stronger bounds are possible for k = 1, 2. For k = 1,
it is easy to see that every halfspace over {0, 1}n≤1 has an
integer representation of weight 1. For k = 2 Theorem 1
only gives an upper bound that is exponential in n, but the
true upper bound for k = 2 is actually linear in n:

Theorem 2. Every halfspace f over {0, 1}n≤2 has weight
O(n).

The proof of Theorem 2 is in Appendix B. Before giving
the proof, here is some some high-level intuition. Since we
are working over {0, 1}n≤2, intuitively in order to set the
weight vj of variable xj correctly the “only constraint that
matters” is how many of the other n − 1 variables xi are
such that f(ei + ej) = 1. The proof shows that a suitable
greedy approach of setting the weights can satisfy all these
constraints taking all the weights to be O(n) in absolute
value.

We note that for odd n the decision list halfspace DL(x) =
sign(

∑n
i=1(−2)ixi) requires integer weight at least (n−1)/2

over {0, 1}n≤2, and thus the O(n) upper bound of Theorem 2
is tight up to a constant factor. To see this, suppose that
sign(v ·x−θ) has integer weights and computes DL correctly
over {0, 1}n≤2. By considering inputs of the form ei where i
ranges from 1 to n we see that vi ≥ θ for i even and vi < θ
for i odd. By considering inputs of the form ei + ei+1 we
see that v1 > v3 > v5 > · · · > vn and v2 < v4 < v6 < · · · <
vn−1, so there are n distinct integer weights and the largest
magnitude weight must be at least (n− 1)/2 as claimed.

3. LOWER BOUNDS FOR EXACT REPRE-
SENTATION

In this section we give lower bounds on the weight required
to exactly represent various halfspaces over {−1, 1}n≤k for
k ≥ 3. We first note that simple counting arguments do not
give very good lower bounds (see Appendix C for details).
An exponential lower bound for a simple function.
We now observe that even for k = 3 a simple halfspace gives
an exponential lower bound. In Appendix C we prove:

Proposition 3. The function DL(x) has weight 2Ω(n)

over {0, 1}n≤3.

Proposition 3 gives an exponential lower bound but in
general it does not match the kO(n) upper bound provided
by Theorem 1, since the DL function has weight 2n over the
whole boolean cube. As our main lower bound result for ex-
act representation we match the upper bound of Theorem 1
(up to an absolute constant in the exponent) and prove the
following:

Theorem 4. Let k be an integer of the form k = 2`, and
let n = rk + 1 for some integer r. There is a halfspace G
(defined explicitly below) over {−1, 1}n≥n−2k−1 for which the
weight of any integer representation over {−1, 1}n≥n−2k−1 is

at least 2(n log k)/2−O(n), i.e. kΩ(n).

We recall that in [6] H̊astad gave an explicit halfspace
over {−1, 1}k and proved that its weight over {−1, 1}k is

kΘ(k). Our construction builds on his construction; indeed
our n = (rk+1)-variable halfspace may be viewed as r copies
of H̊astad’s halfspace “concatenated” in a careful way (the
exact meaning of this will be clearer when we describe our
construction in detail below).

Setup. First some notational preliminaries: since k = 2`

we may view a k-bit string as a function from {−1, 1}` to
{−1, 1}, and for f a k-bit string and j ∈ {0, . . . , k − 1} we
write f(j) to denote the j-th coordinate of such a string.
For f, g ∈ {−1, 1}k we write (f, g) to denote the inner prod-

uct
∑k−1
j=0 f(j)g(j). Note that for f, g ∈ {−1, 1}k we have

|(f, g)| ≤ k.
Following the notation from [6], for α ⊆ [`] = {1, . . . , `}

let ϕα denote the parity function ϕα(x) =
∏
i∈α xi over the

variables in α. Again following [6], let α0, . . . , αk−1 be an
ordering of subsets of [`] such that |αi| ≤ |αi+1| and the
symmetric difference αi∆αi+1 always satisfies |αi∆αi+1| ≤
2. Note that α0 is the empty set and thus ϕα0 is the k-bit
string consisting of all 1’s, while for each j = 1, . . . , k− 1 we
have that ϕαj is a k-bit string with exactly half of its entries
−1.

Writing f : {−1, 1}` → {−1, 1} in terms of its Fourier

representation as f(j) =
∑k−1
i=0 f̂(αi)ϕαi(j) we see that

(f, ϕαi) = kf̂(αi),

so we may view each inner product (f, ϕαi) as a scaled
Fourier coefficient of f.

For f ∈ {−1, 1}n we decompose f by writing it as

(b, f1, . . . , fr)

where b ∈ {−1, 1} and each f i is a k-bit string. We some-
times refer to f i as the “i-th block” of f and we write f i(j)
to denote the j-th coordinate of the i-th block of f.

The construction. Let G : {−1, 1}n≥n−2k−1 → {−1, 1}
denote the n-variable function

G(b, f1, . . . , fr)
def
= sign

(
b+

r∑
i=1

k−1∑
j=1

(k + 1)k(i−1)+j(f i, ϕαj )

)
.

(Note that the inner sum starts with j = 1 and not 0;
this will be important later.) Since each (f i, ϕαj ) is a (±1)-

weighted sum of the coordinates of f i, it is clear that G



is a halfspace with weight at most kO(n). We will show
that any integer-weight halfspace for G over {−1, 1}n≤n−2k−1

must have some weight that is at least kΩ(n).
To get some more intuition for the function G, note that

for a block f i we have that (f i, ϕα1) = · · · = (f i, ϕαk−1) =

0 if and only if f i is one of the two inputs (1, . . . , 1) or
(−1, . . . ,−1) (this is because the constant +1 function and
the constant −1 function are the only two Boolean functions
that have all nonconstant Fourier coefficients equal to zero).
So in words, given an input f = (b, f1, . . . , fr) the value
G(f) is obtained as follows: If any block is neither constantly
+1 nor constantly −1, let i be the largest such block, and

output the sign of the Fourier coefficient f̂ i(αj) where j is

the largest index such that f̂ i(αj) is nonzero. Otherwise
output the bit b.

The high-level intuition behind the lower bound is as fol-
lows. Consider a single block i and fix all other bits in
other blocks i′ 6= i to be 1. By fixing the bit b appropri-
ately, the function G computes exactly H̊astad’s halfspace
over the k variables in block i. (We recall that H̊astad’s k-
variable halfspace F over a k-bit input string f ∈ {−1, 1}k
is F (f) = sign((f, ϕαj )) where j is the largest index such
that (f, ϕαj ) 6= 0; equivalently,

F (f) = sign

(
k−1∑
i=0

(k + 1)i(f, ϕαi)

)
gives an explicit representation of the halfspace F.) So ap-
plying H̊astad’s weight lower bound for his halfspace F , intu-
itively the variables in block i should require integer weights
growing as kΩ(k). Since higher blocks dominate lower blocks
in G and there are r = (n− 1)/k blocks, intuitively a kΩ(k)

growth factor within each of (n − 1)/k blocks means that

overall the weights should grow as (kΩ(k))(n−1)/k = kΩ(n).
Unfortunately, this simple reasoning is not quite right

when applied to the actual weights wij of the input vari-

ables f i(j). This is because in H̊astad’s halfspace all integer
coefficients must be large but they do not actually increase
by much; in fact, the integer coefficients of all k variables in
H̊astad’s function can be taken to be within a factor of 2 of
each other. But as we shall see the reasoning of the previ-
ous paragraph is essentially correct when a different repre-
sentation is used, namely when it is applied to the “Fourier
transformed” weights vij that are the coefficients of (f i, ϕαj )
(see Equation (10) below), and this suffices to give the de-
sired overall weight bound. We will show that the vij ’s must

grow very rapidly, and hence some vij must be large, and

consequently some wij must be large.
The analysis. See Appendix D for the actual analysis

and proof of Theorem 4.

4. PRELIMINARIES ON APPROXIMATING
HALFSPACES OVER HAMMING BALLS

Let f be a halfspace over a domain S. We say that f has
an ε-approximator of weight W over S if there is an integer
vector (v1, . . . , vn) ∈ Zn with maxi |vi| ≤W and a threshold
θ ∈ R such that

Pr
x∈S

[sign(v · x− θ) 6= f(x)] ≤ ε,

where the probability is with respect to a uniform choice of
x from S. In the rest of this paper we prove upper and lower

bounds on the weight of ε-approximators over the Hamming
ball {0, 1}n≤k, where k is viewed as “small” compared to n.

Related work. In [3] it was shown that for any fixed
p ∈ (0, 1) and any halfspace f over {0, 1}n, there is an ε-

approximating halfspace sign(w ·x−θ) of weight n ·2Õp(1/ε2)

for f with respect to the product distribution Dp, i.e.

Pr
x∼Dp

[sign(w · x− θ) 6= f(x)] ≤ ε.

Here the distribution Dp is the product distribution over
{0, 1}n such that each coordinate xi of a draw from Dp is

independently set to be 1 with probability p. The “Õp” in
the exponent of the weight bound hides a dependence on p.

For constant p ∈ (0, 1/2) the distribution Dp is somewhat
similar to the uniform distribution on {0, 1}n≤pn since both
distributions are spread much of their weight equally over
strings of weight pn. In contrast, we give upper and lower
bounds that depend only on k and ε, independent of n, but
our bounds require that k be “small” relative to n. Thus
the main difference seems to be that the [3] results may be
viewed as addressing the case where k is “large” (linear in
n) while our results may be viewed as addressing the case
where k is “small.”

In proving our upper and lower bounds it will often be
simpler for us to work with “nice” distributions which are
close to the uniform distribution over {0, 1}n≤k. In Ap-
pendix E we prove some simple observations which we will
use in the following sections:

Observation 1. Let D denote the uniform distribution
over {0, 1}n≤k and let D1 denote the uniform distribution
over {0, 1}n=k, the set of all strings with exactly k ones. The
total variation distance ‖D − D1‖1 between D and D1 is at
most 4k/n.

Moreover, let D2 denote the distribution over [k]n defined
as follows: a draw of x ∼ D2 is obtained by taking x to be
ei1 + ei2 + · · · + eik where each of i1, . . . , ik is drawn inde-
pendently and uniformly from [n]. Then the total variation
distance ‖D −D2‖1 is at most (k2 + 4k)/n.

We close this section with the following notation which
will be useful later. Let Zn,k denote the set

Zn,k = {x = (x1, . . . , xn) ∈ Zn : xi ≥ 0

for all i and x1 + · · ·+ xn = k}.

Let Φ : [n]k → Zn,k denote the mapping Φ(a) =
∑k
i=1 eai .

Thus a draw of x ∼ D2 is obtained by drawing a uniformly
from [n]k and setting x = Φ(a).

5. UPPER BOUND FOR APPROXIMATING
HALFSPACES

In this section we prove our main positive result on ap-
proximating halfspaces over {0, 1}n≤k using small weights,
which is the following:

Theorem 5. Let f be any halfspace over {0, 1}n≤k. Let

ε, k satisfy k2

n
≤ cε where c > 0 is a (small) universal con-

stant. Then there is an ε-approximator for f over {0, 1}n≤k
that has weight kO(k/ε).

As noted in the introduction, it is easy to see that there
are halfspaces over the entire Boolean cube {0, 1}n that re-
quire weight Ω(

√
n) for ε-approximation even when ε is (say)



1/5; an example of such a halfspace is sign(x1 + x2 + · · · +
xn−1 +nxn) (see [16] for the proof). In contrast, Theorem 5
shows that over Hamming balls of any constant radius, ev-
ery halfspace can be approximated to any constant accuracy
using weights that are independent of n.

Here is some intuition before the formal proof. The proof
works by showing that every halfspace can be approximated
to within ε/2 with respect to the distribution D2 (this is
sufficient to establish the theorem by Observation 1). To
ε/2-approximate an arbitrary halfspace f with respect to
D2, the argument proceeds as follows. After sorting the
weights, we first define a collection of t = O(k/ε) “key co-
ordinates” in {1, . . . , n} (these are just t coordinates which
are evenly spaced out in {1, . . . , n}). Then we define a set
S ⊂ Zn,k of “key inputs,” which are the elements of Zn,k
that have nonzero entries only in the key coordinates. Us-
ing a linear programming argument, we show that there is a
halfspace h′ that depends only on the t key coordinates, has
weight kO(t), and agrees with f on all key inputs. An ad-
ditional crucial property of h′ is that its weights are sorted
in the same order as the weights of f . We then define an n-
variable halfspace h by basing the weights of the other n− t
non-key coordinates in a natural way on the weights that h
assigns to the key coordinates. We use the sortedness of the
weights of h′ to characterize the error points of h. Finally,
we upper bound the error of h by using this characterization
together with a simple upper bound on the edge-boundary
of monotone Boolean-valued functions over the domain [t]k.

Proof of Theorem 5. We first note that if k ∈ {0, 1}
then there is a weight-1 exact representation of f , so we
henceforth assume that k ≥ 2.

Let w1, . . . , wn, θ
′ be a weight representation of f over

{0, 1}n≤k, so f(x) = sign(w · x− θ′) for all x ∈ {0, 1}n≤k. We
may assume that each wi is an integer and that θ′ is of the
form (integer +1/2). Additionally, we may assume that the
weights are sorted w1 ≤ · · · ≤ wn, since if this is not the
case we can rename variables to make this condition hold.
We use the representation w, θ′ to extend the domain of f
to all of Rn, i.e. we define f(x) = sign(w · x − θ′) for all
x ∈ Rn.

Key coordinates and key inputs. Let t = O(k/ε).
Note that if t ≥ n then by Theorem 1 in fact there is an exact
representation for f over {0, 1}n≤k that has weight kO(k/ε);
thus we may assume that t < n. In fact, by the assumptions
on ε, k and n in the statement of the theorem we may assume
that k ≤ n/t; this will be useful later.

We define the set KC ⊂ [n], |KC| = t of “key coordinates”
to be a fixed set

KC = {key1 = 1, key2, . . . , keyt = n}

of values in [n] that are equally spaced as much as possible,
i.e. for all j, j′ ∈ [t− 1] we have keyj+1 − keyj = keyj′+1 −
keyj′ ± 1.

We next define the set KI ⊂ Zn,k of “key inputs” as

KI = {x ∈ Zn,k : for all i, if xi > 0 then i ∈ KC},

so x ∈ Zn,k is a key input if and only if all of its nonzero
coordinates are key coordinates.

A low-weight halfspace h that agrees with f on all
key inputs. Our next step is to establish the existence of
a low-weight halfspace that depends only on the key coordi-
nates and agrees with f on all key inputs. This is done via

a linear programming argument quite similar to the proof of
Theorem 1.

Lemma 6. There is a halfspace h′(x) = sign(v′·x−θ) with
the following properties: (1) For each i /∈ KC we have v′i = 0
(so h depends only on the key coordinates); (2) For each

i ∈ KC we have that v′i is an integer satisfying |v′i| ≤ kO(t);
(3) For each j ∈ [t − 1] we have v′keyj

≤ v′keyj+1
; and (4)

h′(x) = f(x) for every key input x ∈ KI.
Proof. We obtained the desired integer weights (v′i)i∈KC

and the threshold θ as the solution to a linear program,
which we now describe. Each key input x ∈ KI defines
a linear constraint f(x) ·

(∑
i∈KC v

′
ixi − θ

)
≥ 1 over the

t+ 1 variables (v′i)i∈KC , θ. The linear program additionally
contains t− 1 constraints of the form v′keyj

≤ v′keyj+1
for all

j ∈ [t − 1]. This is a feasible linear program, since taking
v′i = 2wi for all i ∈ KC, v′i = 0 for all i /∈ KC, and θ = 2θ′

is a feasible solution. (To see that this works, observe that
for any x ∈ KI the total value of w ·x is entirely contributed
by coordinates in KC.) It is clear that any feasible solution
satisfies items (1), (3) and (4) of the Lemma, so it remains
only to show that there is a feasible solution satisfying the
weight bound (2). This follows from the same arguments
used in the proof of Theorem 1 with trivial modifications
(the fact that there are now t + 1 unknowns in the linear

program leads to the claimed bound of kO(t) rather than
kO(n) as was the case in Theorem 1).

Filling in the other weights. We now define the half-
space h that has weights for all coordinates (not just the
key coordinates). The halfspace h is defined as h(x) =
sign(v · x − θ) in a very natural way as follows: for each
key coordinate i ∈ KC we take vi = v′i. For each non-key
coordinate i /∈ KC, let j be such that keyj−1 < i < keyj , i.e.
keyj is the first key coordinate immediately after i; we take

vi = v′keyj
. For example, if v′ = (1/4, 0, 0, 1/3, 0, 1/2) then

v = (1/4, 1/3, 1/3, 1/3, 1/2, 1/2). Note that the weights vi
satisfy v1 ≤ v2 ≤ · · · ≤ vn; this will be useful later.

We will show that this halfspace h(x) is the ε-approximator
for f claimed in the theorem statement. It is clear that
the weight of h is at most kO(t) = kO(k/ε) as desired; it
remains to show that Prx∼D2 [h(x) 6= f(x)] ≤ ε/2, or equiv-
alently, that at most an ε/2 fraction of points a ∈ [n]k have
h(Φ(a)) 6= f(Φ(a)).

Bounding Pra∈[n]k [h(Φ(a)) 6= f(Φ(a))].We define a func-
tion up : [n− 1]→ KC as follows: up(i) = keyj where keyj
is the smallest element of KC satisfying i < keyj . Similarly
we define down : [n − 1] → KC as down(i) = keyj where
keyj is the largest element of KC satisfying keyj ≤ i. Each
i ∈ [n− 1] has up(i) = down(i) + 1.

For any a ∈ [n − 1]k we define the “upper key neighbor”
of a and “downward key neighbor” of a as

ukn(a) = (up(a1), . . . , up(ak)) ∈ (KC)k,

dkn(a) = (down(a1), . . . , down(ak)) ∈ (KC)k

respectively. It is easy to see that for each a ∈ [n−1]k, both
Φ(ukn(a)) and Φ(dkn(a)) are key inputs. Thus Lemma 6
ensures that sign(v ·Φ(ukn(a))−θ) = sign(w ·Φ(ukn(a))−θ′)
for all a ∈ [n− 1]k, and likewise for Φ(dkn(a)).

We next observe that by the monotonicity of the weights
v1, . . . , vn, we have that every a ∈ [n− 1]k satisfies

v · Φ(dkn(a)) ≤ v · Φ(a) ≤ v · Φ(ukn(a)).



Consequently if a ∈ [n−1]k is such that sign(v ·Φ(dkn(a))−
θ) = sign(v · Φ(ukn(a)) − θ), then sign(v · Φ(a) − θ) must
equal the same value, and hence for such an a we have

sign(w · Φ(dkn(a))− θ′)
= sign(v · Φ(dkn(a))− θ) = sign(v · Φ(a)− θ)
= sign(v · Φ(ukn(a))− θ) = sign(w · Φ(ukn(a))− θ′).(1)

By monotonicity of the weights w1, . . . , wn we have that
w · Φ(dkn(a)) ≤ w · Φ(a) ≤ w · Φ(ukn(a)), so, if (1) holds,
all the quantities in (1) above are also equal to sign(w ·
Φ(a)− θ′). Thus we have shown that if a ∈ [n− 1]k is such
that sign(v · Φ(dkn(a))− θ) = sign(v · Φ(ukn(a))− θ), then
sign(v·Φ(a)−θ) = sign(w·Φ(a)−θ′), i.e. h(Φ(a)) = f(Φ(a)).
We observe that at most a k/n fraction of all inputs a ∈ [n]k

have ai = n for any i; by the conditions on k, ε and n in the
statement of the theorem, k/n may be assumed to be at
most ε/4. So to finish the proof of the theorem, it suffices
to show the following, which we refer to as statement (*):

(*): At most an ε/4 fraction of all points a ∈ [n− 1]k have
sign(v ·Φ(dkn(a))− θ) = −1 and sign(v ·Φ(ukn(a))−
θ) = 1.

We first note that for any two elements i, j ∈ [t − 1] we
have |down−1(keyi)|, |down−1(keyj)| ∈ {bn/tc, bn/tc + 1}
and we recall from the bounds on t stated at the beginning
of the proof that consequently |down−1(i)|, |down−1(j)| ≥ k.
As a result, for any two vectors (i1, . . . , ik) ∈ [t − 1]k and
(j1, . . . , jk) ∈ [t− 1]k, we have that the two sets

{a ∈ [n− 1]k : down(a`) = i` for all ` = 1, . . . , k} and

{b ∈ [n− 1]k : down(b`) = j` for all ` = 1, . . . , k}

have sizes that differ by at most a multiplicative factor of
(1 + 1

k
)k < 3. Hence to establish (*) it suffices to show that

at most a ε/12 fraction of all vectors (i1, . . . , ik) ∈ [t − 1]k

have

sign(v · Φ(keyi1 , . . . , keyik )− θ) = −1

and sign(v · Φ(keyi1+1, . . . , keyik+1)− θ) = 1.

We define a Boolean-valued function F : [t−1]k → {−1, 1}
as follows:

F (i1, . . . , ik) = sign
(
v · Φ(keyi1 , . . . , keyik )− θ

)
.

The monotonicity of the weights vkey1
, . . . , vkeyt−1

implies

that F is a monotone non-decreasing function over [t− 1]k:
if r, s ∈ [t − 1]k satisfy ri ≤ si for all i ∈ [k] then it cannot
be the case that F (r) = 1 and F (s) = −1. Now we upper
bound the desired probability using a union bound:

Pr
(i1,...,ik)∈[t−1]k

[F (i1, . . . , ik) 6= F (i1 + 1, . . . , ik + 1)] ≤

Pr
(i1,...,ik)∈[t−1]k

[F (i1, . . . , ik) 6= F (i1 + 1, i2, . . . , ik)] +

Pr
(i1,...,ik)∈[t−1]k

[F (i1 + 1, i2, . . . , ik)

6= F (i1 + 1, i2 + 1, i3, . . . , ik)]

+ · · ·+
Pr

(i1,...,ik)∈[t−1]k
[F (i1 + 1, . . . , ik−1 + 1, ik)

6= F (i1 + 1, . . . , ik + 1)].

By the monotonicity of F , each of the k probabilities on
the RHS is at most 1/(t − 1) (since fixing all the values of
the other k−1 coordinates, there can be at most one setting
of the remaining free coordinate which causes the value of
F to change). For a suitable choice of the hidden constant
in t = O(k/ε), we have that 1/(t − 1) ≤ ε/(12k). Thus the
RHS above is at most ε/12 as desired. This concludes the
proof of Theorem 5.

6. LOWER BOUNDS FOR APPROXIMAT-
ING HALFSPACES

Recall that the n-variable halfspace DL is defined as

DL(x) = sign(

n∑
i=1

(−2)ixi).

Our main result in this section is a lower bound on the weight
of any ε-approximator for DL:

Theorem 7. Let k ≥ 3 and ε ≥ 4k/n. Then any ε-
approximator for DL over {0, 1}n≤k must have weight at least

kΘ(1)/ε1/(k−1)−1.

Discussion. It is easy to see that for all ε, the function
DL has an ε-approximator over {0, 1}n of weight O(1/ε).
So Theorem 7 shows that for a specific natural function,
taking k to be constant and letting ε vary, getting an ε-
approximator over the Hamming ball {0, 1}n≤k (for k con-
stant) requires weights that are exponentially larger than the
weights required for ε-approximation over the entire Boolean
cube. Theorem 7 is also in sharp contrast with the recent
upper bound of [2] which shows that there is always an ε-
approximator over the entire Boolean cube which has weight
at most quasipoly(1/ε) (as a function of ε).

6.1 Proof Sketch of Theorem 7
Since the proof of Theorem 7 is somewhat involved we give

an outline here; please see Appendix F for a detailed proof.
At a very high level, the idea is that in order for an LTF
sign(v · x− θ) to be a good approximator for DL, it should
be the case that (roughly speaking) vi > 0 for even i, vi < 0
for odd i, and the magnitudes of the weights |vi| increase
sharply with i; the essence of the proof is to show that if any
of these conditions are “badly violated” then sign(v · x − θ)
must disagree with DL on many inputs.

In more detail, let sign(v · x − θ) be an arbitrary integer
weight halfspace which is a 2ε-approximator for DL with re-
spect to D1 (by Observation 1 it suffices to consider such
approximators). We first show (Claim 17) that without loss
of generality we may assume that the threshold θ is 0 and
the weights vi are positive for even i and negative for odd
i. This is not too difficult; the bulk of our work is to show
that overall the magnitudes of the weights must increase
significantly from smallest to largest, and thus the largest
magnitude weight must be very large (since the smallest
magnitude weight has magnitude at least 1). To do this, we
consider the weights in order of increasing magnitude and
consider disjoint “blocks” of the smallest-magnitude weights,
the next-smallest-magnitude weights, and so on. We show
(Lemma 18) that either there are large weights, or else al-
most all of the blocks are “pure,” meaning that they either
consist almost entirely of positive (even-index) weights, or



consist almost entirely of negative (odd-index) weights. Fi-
nally, the argument concludes by showing that if almost all
of the blocks are “pure” as described above, then in fact the
halfspace must err on a significant fraction of all inputs.

7. AN UPPER BOUND FOR APPROXIMAT-
ING DECISION LISTS

At this point we have established that every halfspace
over {0, 1}n≤k can be ε-approximated using weight kO(k/ε),
and that for the DL halfspace any ε-approximator must use

weight kΘ(1)/ε1/(k−1)−1. It is a natural goal to close the gap
between these upper and lower bounds; while we have not
yet succeeded in doing this, in Appendix G we give a detailed

analysis of the DL halfspace and prove a stronger kO(k/
√
ε)

upper bound for it. This tells us that if the kO(k/ε) upper
bound of Theorem 5 is in fact the “right answer,” then any
lower bound proof establishing this must use a halfspace
other than DL.

Theorem 8. Let ε, k, n satisfy ε = ω(k2/n). Then there
is an ε-approximator for the function DL over {0, 1}n≤k that

has weight kO(k/
√
ε).

8. CONCLUSION
We have studied exact and approximate representations of

halfspaces over the Hamming ball {0, 1}n≤k, giving upper and
lower bounds on the weight of such representations. While
our upper and lower bounds are fairly close, there are still
several open questions that naturally suggest themselves for
followup work. In particular, our Theorem 5 gives a weight
upper bound of kO(k/ε) which is independent of n but de-
pends super-exponentially on k; we suspect that it may be
possible to improve this dependence on k. Even for fixed
k there is a gap between our upper bound, which is expo-
nential in ε−1, and our lower bound, which is exponential in
ε−1/(k−1). It would be interesting to close this gap.

Finally, a broader goal for future work is to explore the im-
plications of our newly established weight bounds on the ef-
fectiveness of various margin-based learning algorithms over
{0, 1}n≤k.

APPENDIX
A. PROOF OF THEOREM 1

Fix f to be any halfspace over {0, 1}n≤k. Each point x
in {0, 1}n≤k with f(x) = y ∈ {−1, 1} provides a linear con-
straint

y(w1x1 + · · ·+ wnxn + wn+1) ≥ 1

over the weights w1, . . . , wn+1 which define the halfspace
f(x) = sign(w1x1 + · · · + wnxn + wn+1). Since f is a half-

space the above system of
∑k
j=0

(
n
j

)
linear inequalities over

variables w1, . . . , wn+1 is feasible. A standard result in the
theory of linear programming (see e.g. [10, 6]) implies that
there is a subset of n + 1 of the above inequalities which is
such that if each inequality is replaced with equality, the re-
sulting set of n+ 1 equalities defines a unique weight vector
(w1, . . . , wn+1) ∈ Rn+1 which is a feasible solution to the

entire set of
∑k
j=0

(
n
j

)
inequalities. In other words, there

is a representation sign(w · x + wn+1) computing f where

(w1, . . . , wn+1) ∈ Rn+1 is the solution to a linear system

Aw = b

where b ∈ {−1, 1}n+1 and A is an (n+1)×(n+1) 0/1 matrix
in which the first n entries of each row have at most k ones
and the last entry is 1. Let det(Ai)

det(A)
be the expression for a

solution wi using Cramer’s rule. Since scaling the compo-
nents of w by the same constant factor does not affect the
behavior of f , setting each wi = det(Ai) also works. Fix an
arbitrary i, let B = Ai, and let B1, ..., Bn+1 be the columns
of B. Hadamard’s inequality gives det(B) ≤

∏n+1
j=1 ‖Bj‖,

where ‖Bj‖ denotes the 2-norm of the Bj viewed as a vector
in Rn+1. Let `j be the number of nonzero components in Bj ;
since these components are all ±1, we have ‖Bj‖ =

√
`j , so

that det(B) ≤
∏n+1
j=1

√
`j . Each row of B has at most k + 2

nonzero components, so
∑n+1
j=1 `j ≤ (k + 2)(n + 1). Since∏n+1

j=1

√
`j is maximized subject to

∑n+1
j=1 `j ≤ (k+2)(n+1)

when `j = k + 2 for all j, we have wi = det(B) ≤ (k +

2)(n+1)/2. So f can be realized using integer weights of at
most this magnitude.

B. PROOF OF THEOREM 2
Since f is a halfspace over {0, 1}n≤2, it has some repre-

sentation as f(x) = sign(w · x − θ) where w1, . . . , wn, θ are
real numbers. We will use this representation to construct
an integer-weight representation sign(v · x− θ′) that agrees
with f on all points in {0, 1}n≤2 and where each |vi| ≤ O(n).

By negating f if necessary (which does not change the
integer weight required for a representation) we may assume
that f(0n) = −1. This means that sign(−θ) = −1 and thus
we have θ > 0.

We may suppose without loss of generality that w1 <
· · · < wn and all n weights w1, . . . , wn are nonzero (since
if the weights do not satisfy these conditions they can be
reordered and perturbed to satisfy them). We note that if
wn < 0 then every input x ∈ {0, 1}n≤2 (and indeed every
input in {0, 1}n) has w · x ≤ 0 < θ; in this case f is the
constant-(−1) function and f trivially has a representation
of weight 0. Thus we assume going forth that wn > 0.

Let ` ∈ {1, . . . , n} be such that w`−1 < 0 < w` (so ` = 1
if w1 > 0). Now,

• Let w′ ∈ Rn+1 be (w1, ..., w`−1, 0, w`, ..., wn).

• For each x ∈ {0, 1}n=2, let

x′ ∈ {0, 1}n+1
=2 = (x1, ..., x`−1, 0, x`, ..., xn).

• For each x ∈ {0, 1}n=1, let

x′ ∈ {0, 1}n+1
=2 = (x1, ..., x`−1, 1, x`, ..., xn).

• When x = 0n, let x′ ∈ {0, 1}n+1 be (0, . . . , 0).

Note that, for all x ∈ {0, 1}n≤2, sign(w′ · x′ − θ) = sign(w ·
x − θ), and, for all x except 0n, x′ has exactly two ones.
Furthermore, if we have a weight vector v ∈ Rn+1 such that
v` = 0, if we define v̂ ∈ Rn by v̂ = (v1, ..., v`−1, v`+1, vn+1),
then, for all x ∈ {0, 1}n≤2 and all real θ, we have sign(v ·x′−
θ) = sign(v̂ ·x− θ). So, our problem reduces to the problem
of finding a vector v ∈ Rn+1 with small integer weights for
which v` = 0 and there is a θ′ such that

sign(v · x− θ′) = sign(w′ · x− θ)



for all x ∈ {0n+1} ∪ {0, 1}n+1
=2 .

Now let us define an (n+ 1)× (n+ 1) matrix

(M(i, j))i,j∈{1,...,n+1}

with entries in {−1, 1} as follows. The matrix M will be
symmetric, i.e. M(i, j) = M(j, i). It will also be mono-
tone increasing within each row and column, i.e. for each
value i, the string M(i, 1) . . .M(i, n+ 1) will be of the form
(−1)r(1)n+1−r for some r ∈ {0, . . . , n + 1}. Here is how M
is defined:

• For {i, j} ⊂ {1, . . . , n+ 1} we have M(i, j) = 1 if and
only if sign(w′ · (ei + ej)) = 1.

• Define M(`, `) = −1 (recall that f(0n) = −1), and
define the other diagonal values, M(i, i) for i 6= `, as
follows. For i > 1 simply set M(i, i) equal to M(i, i−
1). For i = 1 set M(1, 1) equal to M(1, 2).

For example, if

w = (−3,−5/2, 1, 4/3, 6, 7), θ = 1/2 (2)

then

w′ = (−3,−5/2, 0, 1, 4/3, 6, 7)

and

M =



−1 −1 −1 −1 −1 1 1
−1 −1 −1 −1 −1 1 1
−1 −1 −1 1 1 1 1
−1 −1 1 1 1 1 1
−1 −1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1


.

It is easy to check that, in general, the matrix M is indeed
symmetric. By virtue of the fact that w1 < · · · < w`−1 <
0 < w`+1 < · · · < wn, we have that M is monotone increas-
ing within each row and column. Finally, the construction
of M ensures that it faithfully reflects the structure of f
over {0, 1}n≤2, in the following sense. Suppose we can define
weights v1 ≤ ... ≤ vn+1 and a threshold θ′ with v` = 0 such
that

M(i, j) = 1 if and only if vi + vj ≥ θ′. (3)

Then the halfspace

sign(v1x1 + · · ·+ v`−1x`−1 + v`+1x`+1 + · · ·+ vn+1xn+1− θ′)

correctly computes f over {0, 1}n+1
≤2 , and therefore correctly

solves the original problem. (In fact (3) is stronger than
what is needed – all of the correct classifications are already
enforced by the off-diagonal elements, with the exception of
0n, whose correct classification is enforced by the constraint
associated with M(`, `).)

In the rest of the proof we will construct the desired
v1, . . . , vn+1 satisfying (3) where

v1 ≤ · · · ≤ v`−1 ≤ v` = 0 ≤ v`+1 ≤ · · · ≤ vn+1, (4)

each vi is an integer, and each vi satisfies |vi| ≤ O(n).
Going forth the following notation will be useful: we write

Mi to denote the i-th row of M , which we view as an (n +
1)-character string M(i, 1) . . .M(i, n+ 1) over the alphabet
{−1, 1}, and is, of course, the same as the i-th column of
M .

We may assume that M is not the (n + 1) × (n + 1)
identically-(−1) matrix (since if it is then f is the constant-
(−1) function over {0, 1}n=2), so in particular the bottom
right entry M(n+ 1, n+ 1) equals 1. On the other hand, we
know that the M(`, `) entry is −1. Since M is monotone in-
creasing within each row and column, and is symmetric, the
only way that M could have all its rows M1 = · · · = Mn+1

equal to each other is if M were either the identically +1 or
identically −1 matrix. Since M is neither of these matrices,
there are at least two distinct rows in M .

The weights v1, . . . , vn+1 are constructed in a greedy stage-
wise fashion that we now describe. We partition the set
{1, . . . , n+ 1} into 2 ≤ A ≤ n+ 1 intervals I1, . . . , IA in the
following way. The interval I1 is {1, . . . , i1} where i1 is such
that rows 1, . . . , i1 satisfy M1 = · · · = Mi1 6= Mi1+1. Let
j1 be such that M1 = · · · = Mi1 = (−1)n+1−j11j1 . Then
interval I2 is {i1 + 1, . . . , i2} where similarly i2 is such that
Mi1+1 = · · · = Mi2 6= Mi2+1. As before j2 denotes the value
such that Mi1+1 = · · · = Mi2 = (−1)n+1−j21j2 (note that
j2 > j1). Continuing in this way we get intervals I1, . . . , IA
and values 0 ≤ j1 < · · · < jA ≤ n+ 1, where the right end-
point of IA is n+ 1. If a < b are both in the same interval Ii
then our construction will assign the same weight to va and
vb.

Returning to the example shown in (2), we have

• I1 = {1, 2}, I2 = {3}, I3 = {4, 5}, I4 = {6, 7}, and

• i1 = 2, i2 = 3, i3 = 5, i4 = 7, and

• j1 = 2, j2 = 4, j3 = 5, j4 = 7.

Fix any index i ∈ {1, . . . , A} and consider any element
a ∈ Ii. We have that M(a, n + 2 − ji) = 1 while M(a, n +
1 − ji) = −1. The idea of our construction is that we will
maintain

va + vn+2−ji = C and va + vn+1−ji = C − 1, (5)

where C is a fixed integer (the same across all i ∈ {1, . . . , A}
and all a ∈ Ii). Together with (4) this ensures that (3) holds
as required, taking θ′ = C − 1/2.

In the first stage we set the weights “at the ends” and in
subsequent stages we “work our way in toward the middle.”
More precisely, in the first stage we start with the first in-
terval I1. We take v1 = · · · = vi1 = α, and consequently
to obey the description in the previous paragraph vn+2−j1
must equal C−α (in fact we set all of vn+2−j1 through vn+1

to equal C − α) and vn+1−j1 must equal C − 1− α (we will
explain how α is set below). Moving on to the second in-
terval I2, we set vi1+1 = · · · = vi2 = α + 1, and we set all
of vn+2−j2 through vn+1−j1 to C − (α + 1) (note that this
setting of vn+1−j1 is consistent with the way it was set when
we were dealing with the first interval I1).

During the first stage, the set of indices that get their
weights set to C − α is exactly IA. Each of their columns
has a 1 in the first row of M , and, since M is monotone,
each of their columns has all 1’s, and so they all have the
same columns. Since M is symmetric, they also have the
same rows. However, n+1−j1 is not in IA, because column
n+ 1− j1 has a −1 in the first row. Similarly, in the second
round (if there is a second round), the indices in IA−1 are
exactly the indices whose values are set to C − α− 1.

From here let us divide our analysis into cases, depending
on whether A is even or odd.



If A is even, after A/2 iterations, all of the weights have
been determined, and to ensure that the second of the con-
straints of (5) holds when i = A/2, we need

α+A/2 = (C − α−A/2)− 1. (6)

If A is odd, in iteration number (A + 1)/2, we want to set
the weights of I(A+1)/2 both to α+ (A+ 1)/2 and C − (α+
(A+ 1)/2), so

α+ (A+ 1)/2 = (C − α− (A+ 1)/2),

which is equivalent to (6). Recall that we also need v` = 0.
Let t be the index for which ` ∈ It. Since v` = α+(t−1), we
need α = −(t− 1), and then setting C = A− 2t− 1 satisfies
all of the constraints.

We have constructed v1, . . . , vn+1 that satisfy (4) where
each vi is an integer. It follows easily from the construction
that each |vi| is at most O(n), and the theorem is proved.

C. ANALYSIS OF DECISION LISTS
Counting arguments. We first show that straightfor-

ward counting arguments do not give good bounds. Let
N(n, k) denote

∑k
i=0

(
n
i

)
, the number of points in {−1, 1}n≤k

(note that Nk ≤ (en/k)k). Since the VC dimension of halfs-
paces over {−1, 1}n≤k is known to be n+1, the Sauer-Shelah
lemma [15, 17] says that there are at most

n+1∑
j=0

(
Nk
j

)
≤
n+1∑
j=0

(
(en/k)k

j

)
≤
(
e(en/k)k

n+ 1

)n+1

halfspaces over {−1, 1}n≤k. A standard counting argument
says that if there are more than Cn halfspaces over a given
domain S ⊆ {−1, 1}n≤k, then some halfspace over S must
require integer weight Ω(C). So the strongest weight lower
bound that can be obtained from this kind of counting argu-
ment is O((en/k)k/n). This is actually quite weak; we will
see that much stronger lower bounds can be obtained for
explicit functions.

Proof of Observation 3. Let sign(v·x−θ) be a represen-
tation of DL over {0, 1}n≤3. As noted in the preliminaries we

may assume θ is of the form (integer + 1
2
) so its magnitude

is at least 1/2.
Since DL(0n) = sign(0 − θ) is +1 we have that θ < 0.

Writing each vi as wiθ we may divide through by |θ| and
re-express sign(v · x − θ) as sign(w · x + 1). Here the wi’s
may not be integers, but since |θ| ≥ 1/2 it suffices to show

that |wn| = 2Ω(n).
Since DL(ej) = −1 for j odd we have wj < −1 for j

odd, and since DL(ek−1 + ek) = 1 for k even we have wk ≥
−wk−1 − 1 and thus wk > 0 for even k. For even k ≥ 4,
since DL(ek + ek−1 + ek−3) = 1 we have

|wk| = wk ≥ −wk−1−wk−3−1 = |wk−1|+|wk−3|−1, (7)

for even k ≥ 4.

For odd k ≥ 5, since DL(ek + ek−1 + ek−3) = −1 we have
wk < −wk−1 −wk−3 − 1, and since wk is negative for odd k
and positive for even k this means

|wk| > |wk−1|+ |wk−3|+ 1 for odd k ≥ 5 (8)

An easy induction using the inequalities (7) and (8) and
the initial condition wj < −1 for j odd gives that |wn| =

2Ω(n).

D. PROOF OF THEOREM 4
Our goal is to prove the following which immediately gives

Theorem 4. (Throughout this section β denotes the constant
log2(3/2).)

Theorem 9. If

for all f ∈ {−1, 1}n≥n−2k−1,

G(f) = sign

(
r∑
i=1

k−1∑
j=0

wijf
i(j) + w0b− θ

)
(9)

where each wij and w0 is an integer, then for some j ∈
{0, . . . , k − 1} we have

wrj ≥ (e−4kβ2(k log k)/2−k)(n−1)/k/k.

Following [6], the main step is to prove the following:

Theorem 10. Suppose that

G(f) = sign

(
r∑
i=1

k−1∑
j=0

vij(f
i, ϕαj ) + v0b− t

)
for all f = (b, f1, . . . , fr) ∈ {−1, 1}n≥n−2k−1(10)

where each vij and v0 is an integer. Then

vrk−1 ≥ (e−4kβ2(k log k)/2−k)(n−1)/k.

To show that Theorem 10 implies Theorem 9 we use the
following claim which is a simple consequence of Fourier
analysis (see Lemma 2.3 of [6]):

Claim 11. For any f ∈ {−1, 1}k and any (w0, . . . , wk−1) ∈
Rk, setting

va =
1

k

k−1∑
j=0

wjϕαa(j) for each a ∈ {0, . . . , k − 1},

we have that
∑k−1
j=0 wjf(j) =

∑k−1
a=0 va(f, ϕαa)

Proof of Theorem 9 using Theorem 10: Suppose that
{wij}, w0, θ satisfy (9). By Claim 11, for all

f ∈ {−1, 1}n≥n−2k−1

we have that

G(f) = sign

(
r∑
i=1

k−1∑
a=0

via(f i, ϕαa) + w0b− θ

)

where via = 1
k

∑k−1
j=0 w

i
jϕαa(j). We have that kvia is an inte-

ger for all i, a and so by Theorem 10 we get that kvrk−1 ≥
(e−4kβ2(k log k)/2−k)(n−1)/k, i.e.

k−1∑
j=0

wrjϕαk−1(j) ≥ (e−4kβ2(k log k)/2−k)(n−1)/k,

which gives Theorem 9 since |ϕαk−1(j)| = 1 for all j.



D.1 Proof of Theorem 10
Throughout this section {vij}, v0, t are as in (10). Since

all weights are integers we may assume that t is of the form
integer+ 1

2
.

We begin with some straightforward claims that will be
useful later.

Claim 12. We have v0 ≥ 1. Moreover, for each i ∈ [r−1]

we have v0 ≥
∑
i′ /∈{i,i+1},i′∈[r] v

i′
0 − t.

Proof. First we observe that for b ∈ {−1, 1} we have
G(b, ϕα0 , . . . , ϕα0) = b, which follows from the fact that
(ϕα0 , ϕαi) = 0 for all i 6= 0. By (10) this means that we
have sign(v0b +

∑r
i=1 v

i
0 − t) = b so it must be the case

that v0 > 0 and since v0 is an integer this means v0 ≥ 1.
Furthermore, taking b = −1 we find that v0 >

∑r
i=1 v

i
0 − t.

For the second part of the claim, fix any i ∈ [r − 1] and

consider the input f = (−1, f1, . . . , fr) where f i
′

= ϕα0 for

i′ /∈ {i, i+ 1} and f i
′

= −ϕα0 for i′ ∈ {i, i+ 1}. This input
f has 2k + 1 bits that are −1 (this is the only place in the
proof where we use an input with this many −1 bits) and
since G(f) = −1 and also

G(f) = sign

−v0 +
∑

i′ /∈{i,i+1},i′∈[r]

vi
′

0 − vi0 − vi+1
0 − t


we have that v0 >

∑
i′ /∈{i,i+1},i′∈[r] v

i′
0 − vi0− vi+1

0 − t. Aver-

aging this with the earlier inequality v0 >
∑r
i=1 v

i
0 − t gives

the second statement of the claim.

Claim 13. For every i ∈ [r], j ∈ [k − 1] we have vij > v0

(in particular, all these weights are positive).

Proof. Fix i ∈ [r], j ∈ [k − 1]. For ε, b ∈ {−1, 1} con-
sider the input f = (b, f1, . . . , fr) ∈ {−1, 1}n defined by

f i = εϕαj and f i
′

= ϕα0 for i′ 6= i. Since every ϕαj
for j ≥ 1 corresponds to the truth table of a parity func-
tion over some nonempty subset of ` bits, the string f has
either k/2 or k/2 + 1 entries that are −1 (depending on
whether b is +1 or −1). By the definition of G we have

G(f) = sign(b + (k + 1)k(i−1)+jε) = ε, and, referring to

(10), we have G(f) = sign(εvij + v0b +
∑
i 6=i′∈[r] v

i′
0 − t).

When b is sign(
∑
i6=i′∈[r] v

i′
0 − t) and ε = −b this implies

that vij ≥ v0 + |
∑
i6=i′∈[r] v

i′
0 − t| which implies vij ≥ v0.

The proof uses two main lemmas. The first lemma says
that weights do not get smaller as we pass from the i-th to
the (i+ 1)-st block:

Lemma 14. For every i ∈ [r− 1] and every j ∈ [k− 1] we
have vi+1

j ≥ vik−1.

Proof. Fix i ∈ [r − 1], j ∈ [k − 1]. Consider the input
f = (−1, f1, . . . , fr) ∈ {−1, 1}n defined by f i = −ϕαk−1 ,

f i+1 = ϕαj and f i
′

= ϕα0 for i′ /∈ {i, i + 1}. This f has
exactly k + 1 entries that are −1 and the definition of G
implies that G(f) = 1. So G(f) = sign(vi+1

j − vik−1 +∑
i′ /∈{i,i+1},i′∈[r] v

i′
0 − v0 − t) = 1, which implies that

vi+1
j ≥ vik−1 −

∑
i′ /∈{i,i+1},i′∈[r]

vi
′

0 + v0 + t ≥ vik−1,

where the final inequality follows from the second statement
of Claim 12.

The crucial lemma for us is Lemma 16, which says that
the vij weights grow quite significantly (by a factor of kΩ(k))
from the “beginning” to the “end” of each block i. Because
of the way the function G has been set up we will be able
to show this by a reduction to a weight lower bound that
H̊astad proves for his halfspace over k = 2` variables.

Definition 15. Let t0 be the index of the first set in the
enumeration of subsets of [`] such that αt0 has size 2.

Lemma 16. For every i ∈ [r] we have

vik−1 ≥ e−4kβ2(k log k)/2−k · vit0 .

Proof. Fix any i ∈ [r]. Consider the (k + 1)-variable
function defined as

A(b, f i)

def
= G(b, ϕα0 , . . . , ϕα0 , f

i, ϕα0 , . . . , ϕα0) (11)

= sign

v0b+

k−1∑
j=0

vij(f
i, ϕαj )+

∑
i6=i′∈[r]

kvi
′

0 − t

(12)

where in line (11) f i appears in the i-th of the r blocks
and all other blocks are set to ϕα0 . The equality (12) holds
because for each i′ 6= i we have that (ϕα0 , ϕαj ) is 0 for

j 6= 0 and is k for j = 0. For every (b, f i) ∈ {−1, 1}k+1 the
corresponding input to G in (11) has at most k+1 variables
set to −1, so by the definition of G we have that

A(b, f i) =

{
Fk(f i) if f is neither ϕα0 nor − ϕα0

b if f i is either ϕα0 or − ϕα0

(13)

where Fk is H̊astad’s function on k variables, Fk(f i) =
sign((f i, ϕαj )) where j is the largest index such that

(f, ϕαj ) 6= 0.

Recall that since ϕα0 is the constant 1 function, we have

(f i, ϕα0) =
∑k−1
j=0 f

i(j). Thus (13) gives us that

A

(
sign

(
k−1∑
j=0

f i(j)

)
, f i
)

= Fk(f i) for all f i ∈ {−1, 1}k.

Now it is clear that flipping the value of b changes the
value of A(b, f i) only if f i is either ϕα0 or −ϕα0 . By (12)
this implies that for all f i /∈ {ϕα0 ,−ϕα0} we must have

|v0| <

∣∣∣∣∣∣
k−1∑
j=0

vij(f
i, ϕαj ) +

∑
i 6=i′∈[r]

kvi
′

0 − t

∣∣∣∣∣∣ .
But this means that the k-variable function A′ : {−1, 1}k →
{−1, 1}

A′(f i)
def
= sign

(
v0

(
1

k

k−1∑
j=0

f i(j)

)

+

k−1∑
j=0

vij(f
i, ϕαj ) +

∑
i 6=i′∈[r]

kvi
′

0 − t

 (14)

must equal Fk(f i) for all f i ∈ {−1, 1}k, because 1
k

∑k−1
j=0 f

i(j)

is always at most 1 in magnitude and equals sign
(∑k−1

j=0 f
i(j)

)



when f i is ϕα0 or −ϕα0 . Scaling the argument to sign(·) by
a factor of k in (14), we get

sign

v0

k−1∑
j=0

f i(j) + k

k−1∑
j=0

vij(f
i, ϕαj ) +

∑
i 6=i′∈[r]

kvi
′

0 − t

 ,

a halfspace over {−1, 1}k that computes precisely H̊astad’s
function Fk. As H̊astad notes (Lemma 2.2 of his paper) we

may remove the constant term k(
∑
i6=i′∈[r] kv

i′
0 − t) with-

out changing the function. Recalling again that (f i, ϕα0) =∑k−1
j=0 f

i(j), we rewrite the resulting expression for A′(f i)
as

A′(f i) = sign

(
k−1∑
j=0

v′j(f
i, ϕαj )

)

where v′j equals kvij for j 6= 0 and equals kvt0 + v0 for j = 0.
Since these coefficients are all integers, we are in precisely the
situation of H̊astad’s Theorem 2.4. The proof of that theo-
rem explicitly establishes (see the second to last highlighted

equation on p. 489) that v′k−1 ≥ e−4kβ2(k log k)/2−k ·v′t0 , and
the lemma is proved.

Applying Lemmas 14 and 16 repeatedly and taking j in
Lemma 14 to be t0 each time, we get that

vrk−1 ≥ (e−4kβ2(k log k)/2−k)(n−1)/kv1
t0

which is at least (e−4kβ2(k log k)/2−k)(n−1)/k since v1
t0 is at

least 1 by Claim 13. This proves Theorem 10.

E. PROOF OF OBSERVATION 1
For the first claim, if k > n/4 then the claimed bound

is trivially true so we assume that k < n/4. We recall that(
n
j−1

)
/
(
n
j

)
= j/(n − j + 1), and that this is at most 1/2

for j ≤ n/4. So induction gives us that
(
n
k−2

)
≤ 1

2

(
n
k−1

)
,(

n
k−3

)
≤ 1

4

(
n
k−1

)
, and so on, so

|{0, 1}n≤k−1| ≤
k−1∑
j=0

1

2j
× |{0, 1}n=k−1| ≤ 2|{0, 1}n=k−1|.

and hence

|{0, 1}n≤k−1|
|{0, 1}n≤k|

≤
2|{0, 1}n=k−1|
|{0, 1}n≤k|

≤
2|{0, 1}n=k−1|
|{0, 1}n=k|

=
2
(
n
k−1

)(
n
k

) ≤ 4k/n. (15)

So, the total variation distance between D and D1 is∑
x:D(x)>D1(x)

(D(x)−D1(x))

=
|{0, 1}n≤k| − |{0, 1}n=k|

|{0, 1}n≤k|

=
|{0, 1}n≤k−1|
|{0, 1}n≤k|

≤ 4k/n.

For the second claim, let dup be the event that xi > 1 for
some i. We have

D2(dup) =

k−1∑
i=1

i

n
≤ k(k − 1)

2n
. (16)

Conditioned on the event (¬dup), the distribution D2 is
identical to D1. Thus for any event E we have

|D1(E)−D2(E)|
= |D1(E)−D2(E | ¬dup)D2(¬dup)

−D2(E | dup)D2(dup)|
≤ |D1(E)−D2(E | ¬dup)D2(¬dup)|+D2(dup)

= |D1(E)−D1(E)D2(¬dup)|+D2(dup)

= D1(E) · (1−D2(¬dup)) +D2(dup)

≤ 1−D2(¬dup) +D2(dup) = 2D2(dup)

≤ k(k − 1)

n
,

by (16). So ‖D2 − D1‖1 ≤ k(k−1)
n

which together with the
first claim and the triangle inequality for variation distance
gives the desired bound.

F. PROOF OF THEOREM 7
Let ε ≥ 4k/n, and assume that sign(v · x − θ) is an

integer-weight halfspace which is a 2ε-approximator for DL
with respect to D1. (Recall that D1 is the uniform distri-
bution over {0, 1}n=k.) We will show that if no |vi| ex-

ceeds kΘ(1)/ε1/(k−1)−1 then sign(v · x − θ) cannot be a 2ε-
approximator for DL.

We first observe that if ε > 1000−k then the claimed lower
bound holds trivially, so we assume henceforth that ε ≤
1000−k. Note that together with the lower bound on ε in
the theorem’s premises this means that we may assume k ≤
logn; such an upper bound on k will be useful later.

Claim 17. We may assume without loss of generality that
all of the following conditions hold:

1. θ = 0;

2. each coordinate vi is a nonzero integer;

3. vi > 0 for i even and vi < 0 for i odd.

Proof. We first show how to obtain conditions (1) and
(2) at the cost of only a multiplicative-factor increase of Θ(k)
in the weights (this factor of Θ(k) corresponds to the“−1”at
the end of the exponent of the weight bound of Theorem 7).
Then we show how to further obtain condition (3) at the
cost only of decreasing n from its original value down to
some n′ ∈ [n/2, n] and of increasing ε from its original value
by at most a factor of 2.

As noted in the preliminaries we may assume that θ is
of the form (integer)+1/2. Let u ∈ Rn denote the vec-
tor u = (1, . . . , 1). It is easy to verify that the halfspace
sign ((2kv − 2θu) · x) agrees with sign(v · x − θ) on every
x ∈ {0, 1}n=k, because for x ∈ {0, 1}n=k we have

(2kv − 2θu) · x = 2kv · x− 2kθ = 2k(v · x− θ).

Next, we observe that since 2kvi is even and 2θ is odd, we
have that each coordinate of (2kv−2θu) is a nonzero integer.
Thus we have achieved conditions (1) and (2) at the cost of
at most a Θ(k) multiplicative factor for each weight.

So, let us suppose that sign(v · x) achieves conditions (1)
and (2); we now deal with the signs of the weights. Let

P ⊆ [n] be the set of positive weights, P
def
= {i : vi > 0}, and

N = [n] \ P be the set of negative weights N = {i : vi < 0}.



Let E ⊂ [n] denote the set {2, 4, . . . , 2bn/2c} of even indices
and O = [n] \ E denote the set of odd indices in [n].

We claim that we have |N ∩E| ≤ n
200k

and |P ∩O| ≤ n
200k

.
To see why this must be true, suppose |N ∩E| > n

200k
. Then

there are at least n
200k
· ( n

200k
− 1) · · · ( n

200k
− (k− 1)) inputs

x ∈ {0, 1}n=k of the form x = ei1 + · · ·+ eik where i1, . . . , ik
are distinct and all belong to N∩E. For each such x we have
v · x < 0 (because all the weights which contribute to v · x
are negative) but DL(x) = 1 (because all the bits that are
set to 1 in x are in even coordinates), and hence sign(v · x)
is in error on each such x. This means that sign(v · x) has
error rate at least

n
200k
·
(

n
200k
− 1
)
· · ·
(

n
200k
− (k − 1)

)(
n
k

) >

(
n

200k
− (k − 1)

)k(
n
k

) .

(17)
From our bounds on ε, k and n, the quantity (17) is � 2ε;
but this contradicts the assumption that sign(v · x) is a 2ε-
approximator of f over {0, 1}n=k. Thus it must indeed be
the case that |N ∩E| ≤ n

200k
. The same argument works for

P ∩O. Thus, we have established that indeed |N∩E| ≤ n
200k

and |P ∩O| ≤ n
200k

.
So an overwhelming majority of the even i lie in P and

an overwhelming majority of the odd i lie in N . Let G′ be
defined as G′ = (P ∩ E) ∪ (N ∩ O); intuitively, G′ is the
set of “good” indices i for which vi has the “right” sign. The
preceding paragraph gives us that |G′| ≥ (1− 1

100k
)n.

Viewing the elements of G′ as being sorted in increasing
order, it may be the case that G′ contains multiple consec-
utive even elements or multiple consecutive odd elements,
i.e. we could have G′ = {1, 3, 5, 7, 8, 10, 11, 14, . . . } and the
first 4 points in G′ would all belong to O. Let G be the
subset of G′ obtained by going through the points of G′

from smallest to largest and greedily keeping the first (odd,
even, odd, even, . . . ) points of alternating parity that we
encounter (so if G′ were as in the above example we would
have G′ = {1, 8, 11, 14, . . . }). For a point i (like 3 in the
above example) to be discarded from G′, it must be the case
that i− 1 does not belong to G′. Since at most n

100k
points

do not belong to G′, we have that the number of points in G′

that are discarded in constructing G from G′ is at most n
100k

.

Thus overall we have that |G| ≥ (1 − 1
50k

)n. Consequently,

of the
(
n
k

)
points in {0, 1}n=k, at least

k−1∏
j=0

((
1− 1

50k

)
n− j

)
>

((
1− 1

50k

)
n− (k − 1)

)k
of them are of the form x =

∑k
j=1 eij where all k of the

distinct indices i1, . . . , ik belong to G. By the upper bound
on k given in the statement of the theorem, this is at least
half of the points in {0, 1}n=k. Let us restrict the halfspace
sign(v ·x) to the domain {0, 1}G=k. Even if all the error points
of sign(v · x) were to lie in {0, 1}G=k, since sign(v · x) has
error rate at most 2ε over {0, 1}n=3, it must have error rate
at most 4ε over {0, 1}G=k. Moreover, since the points in G
(going from smallest to largest) alternate parity (odd, even,
odd, even, . . . ) we have that DL over the domain {0, 1}G

is completely isomorphic to DL over the domain {0, 1}|G|.
Thus it suffices to analyze the halfspace sign(v · x) over the

domain {0, 1}|G|=k . As claimed in the first paragraph of the
proof the number of variables has gone down by at most a
factor of 2 (from n to |G|) and the error bound has at most
doubled from 2ε to 4ε, so the claim is proved.

Using the above claim, for the rest of the proof we as-
sume that the halfspace sign(v·x) satisfies conditions (1)-(3).
Next, as described in the overview at the start of this sub-
section, we divide the weights into disjoint blocks according
to their magnitudes and show that almost all the blocks are
“pure” (almost entirely comprised of even-indexed weights,
or almost entirely comprised of odd-indexed weights).

Fix π : [n] → [n] to be a permutation which sorts the
weights v1, . . . , vn in increasing order of magnitude, i.e. 0 <
|vπ(1)| ≤ |vπ(2)| ≤ · · · ≤ |vπ(n)|. (If the weights vi have all
distinct magnitudes then there is a unique such permutation

π, and otherwise we fix any such π.) Let b
def
= Θ(1)/ε1/(k−1).

If any weight has |vi| > (k/2)b/1000 then we are done, so we

assume that each i has |vi| ≤ (k/2)b/1000. We partition [n]
into b blocks S1, . . . , Sb whose sizes are as nearly even as
possible, i.e.

S1 = {π(1), . . . , π(|S1|)}, . . . , Sb = {π(n−|Sb|+1), . . . , π(n)}

where there is a fixed value s ≈ n/b such that |Si| ∈ {s, s+1}
for all 1 ≤ i ≤ b. Note that S1 consists of the smallest-
magnitude weights, S2 consists of the next-smallest-magnitude
weights, and so on.

We say that a block Si is pure if at least 999
1000

of the
coefficients (vj)j∈Si have the same sign; equivalently, Si is
pure if at least this fraction of the elements of Si have the
same parity (almost all are even, or almost all are odd). We
say that a pure block is “pure odd” (“pure even”) if 999

1000
of

its elements are odd (even). A block which is not pure is
said to be impure.

We have the following lemma:

Lemma 18. At least 998
1000

b blocks are pure.

Proof. We introduce a different notion, that of a block
being “narrow,” and use this notion to prove the lemma. We
show that at least 999

1000
of all blocks are narrow, and that

at most 1
1000

of all blocks are both narrow and impure; this
gives the lemma.

For a block Sj let Rj ≥ 1 denote the ratio (largest mag-
nitude of any weight in the block)/(smallest magnitude of
any weight in the block), i.e. Rj = |vπ(i1)|/|vπ(i2)| where
π(i1), π(i2) ∈ Sj and |vπ(i1)| ≤ |vπ(i′)| ≤ |vπ(i2)| for all
π(i′) ∈ Sj . (Note that this ratio is well defined for all
j = 1, . . . , b because each weight vi is nonzero.) We say
that a block Sj is narrow if Rj ≤ k/2.

We first show that at least 999
1000

b blocks are narrow. Recall

that |vπ(n)| ≤ (k/2)b/1000. Since |vπ(n)| ≥ |vπ(n)|/|vπ(1)| ≥∏b
i=1 Ri it must be the case that at least 999

1000
b blocks are

narrow, since otherwise we would have
∏b
i=1 Ri > (k/2)b/1000.

We next claim that if more than b/1000 blocks Si are both
narrow and impure then we have Prx∈{0,1}n

=k
[sign(v · x) 6=

DL(x)] > 2ε. To see this, fix any block ` that is both narrow

and impure. Consider an input x =
∑k
j=1 eij chosen uni-

formly from {0, 1}n=k conditioned on i1, . . . , ik all belonging
to S`. Some sign – either positive or negative – must con-
stitute the majority of the largest 1

2000
elements of {vi}i∈S` ;

say that sign is positive. With probability at least 1
4000

the

element vik will belong to this positive subset of the 1
2000

largest elements of {vi}i∈S` . On the other hand, the small-
est (1− 1

2000
) of the elements of {vi}i∈S` must also contain

at least 1
2000
· |S`| negative elements, (because S` is impure),

and with probability 1

2O(k) the elements vi1 , . . . , vik−1 will



all belong to this set of negative elements. Thus, under the
conditioning on x described above, with probability at least
1/2O(k) we have that

(−1)i1 = · · · = (−1)ik−1 6= (−1)ik , (18)

i.e. i1, . . . , ik−1 all have the same parity (odd or even) but
ik has the opposite parity (even or odd respectively). How-
ever, since S` is narrow, the magnitude of vik can be at most
k/2 times the minimum magnitude of any of vi1 , . . . , vik−1 .

Since k ≥ 3, it follows that we have that sign(v ·x) = (−1)i1 ;
but this is incorrect since DL(x) = (−1)ik (because ik is the
largest value in i1, . . . , ik). Thus, conditioned on i1, . . . , ik
all belonging to S`, we have that x is classified incorrectly by
sign(v ·x) with probability at least 1/2O(k). The probability
(over a random x ∈ {0, 1}n=k) that all k coordinates of x be-
long to S` is at least Θ(1)/bk. Assuming that at least b/1000
blocks are both narrow and impure, we get that overall the
error rate Prx∈{0,1}n

=k
[sign(v · x) 6= DL(x)] is at least

b

1000
· Θ(1)

bk
· 1

2O(k)
,

which exceeds 2ε by our choice of b.
From the above paragraph, we may conclude that at most

b/1000 blocks Si are both narrow and impure. Since at least
999
1000

b blocks are narrow, at least 998
1000

b of the b blocks are
both narrow and pure, and Lemma 18 is proved.

At this point we have shown that at least 998/1000 of the
b blocks are pure. Let pure1 < pure2 < · · · < pureb′ be the
indices of the pure blocks, where from the above lemma we
have b′ ≥ 998

1000
b. To conclude the proof we now show that if

there are so many pure blocks then the error of sign(v · x)
must exceed 2ε.

The following terminology will be useful: Given an index
κ ∈ [n−1] we define the“up-shift”up(κ) to be up(κ) = κ+1.
For a set S ⊂ [n] we define up(S) to be the set

up(S) = {j + 1 : j ∈ S}.

It is clear that |up(S)| = |S| for all S, and that if a ρ fraction
of S is even (odd) then a ρ fraction of up(S) is odd (even).

Consider any ` ∈ {1, . . . , b′} for which Spure` is a pure even
block. (There are at least 49

100
such `’s, since half of all indices

are odd and half are even and 99.8% of all indices belong
to a pure block.) We say that Spure` is upshift-decreasing if
at least 45

100
of the elements j ∈ Spure` are even and have

up(j) ∈ S`′ for some `′ < pure`, and we say that Spure` is
upshift-increasing if at least 45

100
of the elements j ∈ Spure`

are even and have up(j) ∈ S`′ for some `′ > pure`. Since
(at least) 99.9% of the elements j ∈ Spure` are even, and
thus have up(j) odd, at least 99.8% of the elements j ∈
Spure` are even and have up(j) in some block Sk with k 6=
pure`, so Spure` must be either upshift-decreasing or upshift-
increasing.

We consider two cases:
Case I: at least half of all pure even blocks Spure` are

upshift-decreasing. In this case, there are at least 49
200

b pure
even upshift-decreasing blocks Spure` .

For Spure` a pure even upshift-decreasing block, let

Gpure` ⊂ Spure`

denote the set

Gpure` = {j ∈ Spure` : j is even and up(j) ∈ S`′
for some `′ < pure`}

so |Gpure` | ≥
4
10
· n
b

(since |Spure` | ≈
n
b

). Let Lpure` denote
the lower half of the elements in Gpure` and Upure` = Gpure` \
Lpure` denote the upper half of the elements (so for every
α ∈ Lpure` and β ∈ Upure` we have α < β). We have
|Lpure` |, |Upure` | ≥

2
10
· n
b

.
Fix an ` such that Spure` is a pure even upshift-decreasing

block. Consider the set of all inputs x = ei1 + · · · + eik ∈
{0, 1}n=k for which i1, . . . , ik−1 all belong to Lpure` and ik
belongs to up(Upure`). By the cardinality bounds of the pre-
vious paragraph there are at least(

2

10
· n
b

)
·
k−2∏
j=0

(
2

10
· n
b
− j
)

possible such outcomes for x, so the probability that a ran-
dom x ∈ {0, 1}n=k is of this sort is at least 1

2Θ(k) · 1
bk

. For such

an x we have that vi1 , vi2 , . . . , vik−1 > 0 (since i1, . . . , ik−1

are even), vik < 0 (since ik is odd), and |vi1 |, . . . , |vik−1 | ≥
|vik | (since ik belongs to S′` for some `′ < pure` and

i1, . . . , ik−1

all belong to Spure`). These conditions together give that
sign(v · (ei1 + · · · + eik )) = +1. But since we have ik ∈
up(Upure`) and i1, . . . , ik−1 ∈ Lpure` , it must be the case that
i1, . . . , ik−1 < ik; since ik is odd this means DL(x) = −1,
so sign(v · x) is incorrect on such x. Taking a union bound
across all 49

200
b possibilities for ` that make Spure` a pure

even upshift-decreasing block, we get that overall

Pr
x∈{0,1}n

=k

[sign(v · x) 6= DL(x)] ≥ 49

200
b · 1

2Θ(k)bk

which is larger than 2ε.
We now turn to
Case II: at least half of all pure even blocks Spure` are

upshift-increasing, so there are at least 49
200

b pure even upshift-
increasing blocks Spure` . Recall that in a upshift-increasing
block, at least 4

10
of the elements j ∈ Spure` are even and

have up(j) ∈ S`′ for some `′ > pure`.
This analysis of this case is quite similar to Case I; the

difference is that we consider a slightly different event. For
Spure` a pure even upshift-increasing block, let Gpure` ⊂
Spure` denote the set

Gpure` = {j ∈ Spure` : j is even

and up(j) ∈ S`′ for some `′ > pure`}
1 so |Gpure` | ≥

4
10
· n
b
. As before, let Lpure` denote the lower

half of the elements in Gpure` and Upure` = Gpure` \ Lpure`

denote the upper half of the elements (so for every α ∈
Lpure` and β ∈ Upure` we have α < β). As before, we have
|Lpure` |, |Upure` | ≥

2
10
· n
b

.
Fix an ` such that Spure` is a pure even upshift-increasing

block. Consider the set of all inputs x = ei1 + · · · + eik ∈
{0, 1}n=k for which i1, . . . , ik−1 all belong to up(Lpure`) and
ik belongs to Upure` .

2 As in Case I there are at least(
2

10
· n
b

)
·
k−2∏
j=0

(
2

10
· n
b
− j
)

possible such outcomes for x, so the probability that a ran-
dom x ∈ {0, 1}n=k is of this sort is at least 1

2Θ(k) · 1
bk

. For such
1Note that in Case I we had “`′ < pure`” where now we have
“`′ > pure`” in the definition of Gpure`
2Note the difference from Case I.



an x we have that vik > 0 (since ik is even), vi1 , . . . , vik−1 <
0 (since i1, . . . , ik−1 are all odd), and |vi1 |, . . . , |vik−1 | ≥ |vik |
(since i1, . . . , ik−1 belong to S`1 and S`2 respectively for
some `1, `2 > pure` whereas A belongs to Spure`). These
conditions together give that sign(v · (ei1 + · · ·+ eik )) = −1.
But since we have ik ∈ Upure` and i1, . . . , ik−1 ∈ up(Lpure`)
it must be the case that ik > i1, . . . , ik−1; since ik is even
this means DL(x) = +1, so sign(v ·x) is incorrect on such an
x. The rest of the argument (analyzing the probability) pro-
ceeds exactly as in Case I: taking a union bound across all
49
200

b possibilities for ` that make Spure` a pure even upshift-
increasing block, we get that overall

Pr
x∈{0,1}n

=k

[sign(v · x) 6= DL(x)] ≥ 49

200
b · 1

2Θ(k)bk

which is larger than 2ε. We are done in Case II, and done
with the proof of Theorem 7.

G. PROOF OF THEOREM 8
Recall that the obvious halfspace representation for DL

as

sign(

n∑
i=1

(−2)ixi)

has weight 2n. We first present a simple construction with
an easy analysis that gives an ε/2-approximator of weight

kO(k/ε) under distribution D2 (this yields an ε-approximator
over {0, 1}n≤k by Observation 1 and our choice of ε). This
of course only recovers the general result of Theorem 5, but
then we will sharpen this DL-specific simple construction
and analysis to prove the theorem.

We assume that ε is of the form 1/integer and we define

r
def
= k/ε. Note that r < n by the assumed lower bound on

ε.
We partition [n] into r blocks S1, . . . , Sr whose sizes are

as nearly even as possible, i.e.

S1 = {1, . . . , |S1|}, . . . , Sr = {n− |Sr|+ 1, . . . , n}

where there is a fixed value s ≈ n/r such that |Si| ∈ {s, s+1}
for all 1 ≤ i ≤ r. For j ∈ [n] let bl(j) ∈ [r] denote the
index of the block Sbl(j) that contains j. For 1 ≤ j ≤ n

let wj
def
= (−1)j(2k)bl(j). It is clear that maxj∈[n] |wj | =

(2k)r = (2k)k/ε.
We claim that sign(w · x) is an O(ε)-approximator for

DL(x) overD2. To establish this, consider an input x = ei1+
· · ·+ eik drawn from D2, i.e. (i1, . . . , ik) is drawn uniformly
from [n]k. Let b? denote max{bl(i1), . . . , bl(ik)}. Since the
weights increase by a factor of 2k between successive blocks,
it is easy to see that if there is precisely one index j ∈ [k] for

which bl(ij) = b?, then sign(w ·x) = (−1)max{i1,...,ik} agrees
with the value DL(x). So we have that Prx∼D2 [sign(w ·x) 6=
DL(x)] is at most the probability that there are at least two
distinct indices j1, j2 ∈ [k] such that bl(ij1) = bl(ij2) = b?.
It is clear that for each ` ∈ [r], the probability that both
(none of bl(i1), . . . , bl(ik) lie in [` + 1, . . . , r]) and (at least
two of bl(i1), . . . , bl(ik) equal `) is at most

O(1) ·
(
`

r

)k
· k

2

`2
.

Summing over ` = 1, . . . , r we get that Prx∼D2 [sign(w ·x) 6=

DL(x)] is at most

r∑
`=1

O(1) · k
2

rk
· `k−2 = O

(
k

r

)
= O(ε)

by our choice of r = k/ε. This concludes the initial simple
construction and analysis.

We now build on the above simple construction to prove
Theorem 8. The idea is to have the magnitude of the weights
increase gradually within each block while keeping the sign
of each weight correct as in the earlier construction. This
lets us argue that in order for an input to be misclassified,
it must have the “top two” bits that are set to 1 being quite
close to each other, as well as a third input bit set to 1 that
is also close to these top two. This more stringent condition
lets us give a stronger bound on the probability of failure,
which lets us use smaller weights to achieve an overall failure
probability of ε.

We now take r = k/
√
ε. As before we may assume this

is an integer which is less than n. We define r blocks of
variables S1, . . . , Sr and bl(·) as before.

We define integer weights w1, . . . , wn as follows. For each
j the sign of wj is (−1)j . The magnitude of the weights is
defined as follows: first, |w1| = (2k)r. If the first weight in
block Si (say its index is αi + 1) has |wαi+1| = C, then the
magnitudes of weights increase linearly in that block from
C to (2k)C, i.e. for j ∈ {1, . . . , |Si|} we have

|wαi+j | = C + C ·
⌈

(2k − 1) · j
|Si|

⌉
so the final weight in block Si has magnitude |wαi+|Si|| =
(2k)C. If the final weight wαi+|Si| of block Si has magnitude
(2k)C then the first weight wαi+|Si|+1 = wαi+1+1 of the

next block has magnitude (4k2)C (so there is a factor-of-
(2k) increase in the weights between each pair of successive
blocks). It is clear that all weights are integers and that the

largest one has magnitude |wn| ≤ (2k)r ·(2k)2r = kO(r). The
halfspace we consider is sign(w · x).

Consider an input x = ei1 + · · · + eik drawn from D2, so
(i1, . . . , ik) is drawn uniformly from [n]k. As before let b?

denote max{bl(i1), . . . , bl(ik)}. As before, the only way that
it is possible for sign(w ·x) to disagree with DL(x) is if there
is some ` ∈ [r] such that both (none of bl(i1), . . . , bl(ik) lie in
[`+ 1, . . . , r]) and (at least two of bl(i1), . . . , bl(ik) equal `).
(Our subsequent analysis will impose even more conditions
that must be satisfied in order for sign(w ·x) to be incorrect
on x.)

Fix any ` ∈ [r]. The probability that both

none of bl(i1), . . . , bl(ik) lie in [`+ 1, . . . , r]

and

at least two of bl(i1), . . . , bl(ik) equal `

is at most k2 times the probability that both

none of bl(i1), . . . , bl(ik) lie in [`+ 1, . . . , r]

and

bl(i1) = bl(i2) = `;

let us condition on this event. Let us write i1 = α` + j1 and
i2 = α` + j2; we have that j1, j2 are selected independently



and uniformly from {1, . . . , |S`|} ≈ {1, . . . , n/r}. This means
that ||wi1 | − |wi2 || is essentially distributed as∣∣∣∣wα`+1 ·

(2k − 1) · (j1 − j2)

|S`|

∣∣∣∣
(we have omitted ceiling operators for readability; it is easy
to check that this omission does not significantly affect the
subsequent analysis), and consequently x is classified incor-
rectly only if at least one of the k−2 values (|wij |)j=3,...,k is

at least
∣∣∣wα`+1 · (j1−j2)

|S`|

∣∣∣, for otherwise the cumulative effect

of the other k−2 weights would not be large enough to offset
the effect of wi1 and wi2 .

Let c ∈ {0, 1, . . . , } be such that

|j1 − j2|/|S`| ∈ ((2k)−(c+1), (2k)−c].

Since every possible outcome for |j1 − j2| (where j1, j2 are
drawn independently from {1, . . . , |S`|} has probability at
most O(1)/|S`|, we have that for each c the value Pr[|j1 −
j2|/|S`| ∈ ((2k)−(c+1), (2k)−c] is at most O((2k)−c). Because
the weights increase by a factor of 2k between successive
blocks, this means that the only way that |wij | can be at

least
∣∣∣wα`+1 · (j1−j2)

|S`|

∣∣∣ is if bl(ij) belongs to {` − c − 1, ` −
c, . . . , `} (recall that because of our conditioning we have
bl(ij) ≤ `). Because of the conditioning described earlier,
for each fixed j ∈ {3, . . . , k} this occurs with probability
O(1+c)/`. Taking a union bound over k−2 different j’s, the
probability that any |wij | is as large as would be necessary
to cause an error is at most O((1 + c)k)/`.

Putting all the pieces together and summing over all pos-
sible values ` = 1, . . . , r, we have that

Pr
x∼D2

[sign(w · x) 6= DL(x)]

≤
r∑
`=1

O(1) ·
(
`

r

)k
k2

`2
·
∞∑
c=0

O((2k)−c) · O((1 + c)k)

`

= O(1) · k
3

rk

r∑
`=1

`k−3
∞∑
c=0

1 + c

(2k)c

= O(1) · k
2

r2

which is O(ε) by our choice of r. The theorem is proved.
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