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Abstract

A broad class of boosting algorithms can
be interpreted as performing coordinate-wise
gradient descent to minimize some potential
function of the margins of a data set. This
class includes AdaBoost, LogitBoost, and
other widely used and well-studied boosters.
In this paper we show that for a broad class
of convex potential functions, any such boost-
ing algorithm is highly susceptible to random
classification noise. We do this by showing
that for any such booster and any nonzero
random classification noise rate η, there is
a simple data set of examples which is effi-
ciently learnable by such a booster if there
is no noise, but which cannot be learned to
accuracy better than 1/2 if there is random
classification noise at rate η. This negative re-
sult is in contrast with known branching pro-
gram based boosters which do not fall into
the convex potential function framework and
which can provably learn to high accuracy in
the presence of random classification noise.

1. Introduction

1.1. Background

Much work has been done on viewing boosting algo-
rithms as greedy iterative algorithms that perform a
coordinate-wise gradient descent to minimize a poten-
tial function of the margin of the examples, see e.g.
[3, 12, 19, 7, 18, 2]. In this framework every poten-
tial function φ defines an algorithm that may possi-
bly be a boosting algorithm; we denote the algorithm
corresponding to φ by Bφ. For example, AdaBoost
[11] and its confidence-rated generalization [20] may
be viewed as the algorithm Bφ corresponding to the
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potential function φ(z) = e−z. The MadaBoost algo-
rithm of Domingo and Watanabe [5] may be viewed as
the algorithm Bφ corresponding to

φ(z) =

{

1 − z if z ≤ 0

e−z if z > 0.
(1)

(We give a more detailed description of exactly what
the algorithm Bφ is for a given potential function φ in
Section 2.2.)

1.2. Motivation: noise-tolerant boosters?

It has been widely observed that AdaBoost can suf-
fer poor performance when run on noisy data, see e.g.
[10, 17, 4]. The most commonly given explanation for
this is that the exponential reweighting of examples
which it performs (a consequence of the exponential
potential function) can cause the algorithm to invest
too much “effort” on correctly classifying noisy exam-
ples. Boosting algorithms such as MadaBoost [5] and
LogitBoost [12] based on a range of other potential
functions have subsequently been provided, sometimes
with an explicitly stated motivation of rectifying Ad-
aBoost’s poor noise tolerance. However, we are not
aware of rigorous results establishing provable noise
tolerance for any boosting algorithms that fit into the
potential functions framework, even for mild forms of
noise such as random classification noise (henceforth
abbreviated RCN) at low noise rates. This motivates
the following question: are Adaboost’s difficulties in
dealing with noise due solely to its exponential weight-
ing scheme, or are these difficulties inherent in the po-
tential function approach to boosting?

1.3. Our results: convex potential boosters
cannot withstand random classification
noise

This paper shows that the potential function boosting
approach provably cannot yield learning algorithms
that tolerate even low levels of random classification
noise when convex potential functions are used. More
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precisely, we exhibit a fixed natural set of base classi-
fiers h1, . . . , hn and show that for every convex func-
tion φ satisfying some very mild conditions and every
noise rate η > 0, there is a multiset S of labeled ex-
amples such that the following holds:

• There is a linear separator sgn(α1h1 + · · ·+αnhn)
over the base classifiers h1, . . . , hn that correctly
labels every example in S with margin γ > 0 (and
hence it is easy for a boosting algorithm trained
on S to efficiently construct a final hypothesis that
correctly classifies all examples in S). However,

• When the algorithm Bφ is run on the distribu-
tion Dη,S , it constructs a classifier that has error
rate 1/2 on the examples in S. Here Dη,S is the
uniform distribution over S but where examples
are corrupted with random classification noise at
rate η, i.e. labels are independently flipped with
probability η.

This result shows that random classification noise can
cause convex potential function boosters to fail in a
rather strong sense. We note that as discussed in
Section 7, there do exist known boosting algorithms
[13, 16] that can tolerate random classification noise,
and in particular can efficiently achieve perfect accu-
racy on S, after at most poly(1/γ) stages of boosting,
when run on Dη,S in the scenario described above.

Recently Bartlett and Traskin proved that the Ad-
aBoost algorithm is consistent if it is stopped after a
suitable number of iterations, given certain conditions
on a random source generating the data [1]. Our anal-
ysis does not contradict theirs because the source in
our construction does not satisfy Condition 1 of their
paper. To see why this is the case it is useful, as has
become customary, to think of the contribution that
a given example makes to the potential as a “loss”
paid by the learning algorithm. Informally, Condi-
tion 1 from [1] requires linear combinations of base
classifier predictions to have total loss arbitrarily close
to the best possible loss for any measurable function.
Our analysis takes advantage of the fact that, for lin-
ear combinations of base classifiers with a convex loss
function, large-margin errors are especially egregious:
we present the learner with a choice between a lot of
cheap errors and relatively few expensive errors. If
optimization were to be performed over all measur-
able functions, roughly speaking, it would be possible
to make all errors cheap.

Though the analysis required to establish our main
result is somewhat delicate, the actual construction
is quite simple and admits an intuitive explanation

(see Section 4.2). For every convex potential function
φ we use the same set of only n = 2 base classifiers
(these are confidence-rated base classifiers which out-
put real values in the range [−1, 1]), and the multi-
set S contains only three distinct labeled examples;
one of these occurs twice in S, for a total multiset
size of four. We expect that many other construc-
tions which similarly show the brittleness of convex
potential boosters to random classification noise can
be given. We describe experiments with one such
construction that uses Boolean-valued weak classifiers
rather than confidence-rated ones in Section 6.

2. Background and Notation

Throughout the paper X will denote the instance
space. H = {h1, . . . , hn} will denote a fixed finite
collection of base classifiers over X, where each base
classifier is a function hi : X → [−1, 1]; i.e. we
shall work with confidence-rated base classifiers. S =
(x1, y1), . . . , (xm, ym) ∈ (X × {−1, 1})m will denote a
multiset of m examples with binary labels.

2.1. Convex potential functions

We adopt the following natural definition which, as we
discuss in Section 5, captures a broad range of different
potential functions that have been studied.

Definition 1 We say that φ : R → R is a convex po-
tential function if φ satisfies the following properties:

1. φ is convex and nonincreasing and φ ∈ C1 (i.e. φ
is differentiable and φ′ is continuous);

2. φ′(0) < 0 and limx→+∞ φ(x) = 0.

2.2. Convex potential boosters

Let φ be a convex potential function, H =
{h1, . . . , hn} a fixed set of base classifiers, and S =
(x1, y1), . . . , (xm, ym) a multiset of labeled examples.

Similarly to Duffy and Helmbold [6, 7], we consider
an iterative algorithm which we denote Bφ. The al-
gorithm performs a coordinatewise gradient descent
through the space of all possible coefficient vectors for
the weak hypotheses, in an attempt to minimize the
convex potential function of the margins of the exam-
ples. We now give a more precise description of how
Bφ works when run with H on S.

Algorithm Bφ maintains a vector (α1, ..., αn) of voting
weights for the base classifiers h1, ..., hn. The weights
are initialized to 0. In a given round T , the algorithm
chooses an index iT of a base classifier, and modifies
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the value of αiT
. If αiT

had previously been zero, this
can be thought of as adding base classifier number iT
to a pool of voters, and choosing a voting weight.

Let F (x;α1, ..., αn) =
∑n

i=1 αihi(x) be the master hy-
pothesis that the algorithm has constructed prior to
stage T (so at stage T = 1 the hypothesis F is iden-
tically zero.) We write Pφ,S to denote the “global”
potential function over S

Pφ,S(α1, ..., αn) =

m
∑

i=1

φ(yiF (xi;α1, ..., αn)) (2)

which represents the overall potential of a hypothesis
vector (α1, . . . , αn) on the sample S. It is easy to check
that this is a convex function from Rn (the space of all
possible (α1, . . . , αn) coefficient vectors for F ) to R.

In stage T the algorithm Bφ first chooses a base clas-
sifier by choosing iT to be the index i ∈ [n] which
maximizes

−
∂

∂αi
Pφ,S(α1, ..., αn),

and then choosing a new value of αiT
in order to mini-

mize Pφ,S(α1, ..., αn) for the resulting α1, ..., αn. Thus,
in the terminology of [6] we consider “un-normalized”
algorithms which preserve the original weighting fac-
tors α1, α2, etc. The AdaBoost algorithm is an exam-
ple of an algorithm that falls into this framework, as
are the other algorithms we discuss in Section 5. Note
that the fact that Bφ can determine the exactly opti-
mal weak classifier to add in each round errs on the
side of pessimism in our analysis.

In our analysis, we will consider the case in which Bφ as
being run on a distribution Dη,S obtained by starting
with a finite multiset of examples, and adding indepen-
dent misclassification noise. One can naturally extend
the definition of Bφ to apply to probability distribu-
tions over X × {−1, 1} by extending the definition of
potential in (2) as follows

Pφ,D(α1, ..., αn) = E(x,y)∼D(φ(yF (x;α1, ..., αn))).
(3)

For rational values of η, running Bφ on (3) for D =
Dη,S is equivalent to running Bφ over a finite multiset
in which each element of S occurs a number of times
proportional to its weight under D.

2.3. Boosting

Fix a classifier c : X → {−1, 1} and a multiset
S = (x1, y1), . . . , (xm, ym) of labeled examples. We
say that a set of base classifiers H = {h1, . . . , hn} is
boostable with respect to c and S if there is a vector
α ∈ Rn such that for all i = 1, . . . ,m, we have

sgn[α1h1(x
i) + · · · + αnhn(xi)] = yi.

If γ > 0 is such that

yi ·
(

α1h1(x
i) + · · · + αnhn(xi)

)

√

α2
1 + · · · + α2

n

≥ γ

for all i, we say that H is boostable w.r.t. c and S with
margin γ.

It is well known that if H is boostable w.r.t. c and S
with margin γ, then a range of different boosting algo-
rithms (such as AdaBoost) can be run on the noise-free
data set S to efficiently construct a final classifier that
correctly labels every example in S. As one concrete ex-
ample, after O( log m

γ2 ) stages of boosting AdaBoost will

construct a linear combination F (x) =
∑n

i=1 γihi(x)
of the base classifiers such that sgn(F (xi)) = yi for all
i = 1, . . . ,m; see [11, 20] for details.

2.4. Random classification noise and
noise-tolerant boosting

Random classification noise is a simple, natural, and
well-studied model of how benign (nonadversarial)
noise can affect data. Given a multiset S of labeled
examples and a value 0 < η < 1

2 , we write Dη,S to
denote the distribution corresponding to S corrupted
with random classification noise at rate η. A draw from
Dη,S is obtained by drawing (x, y) uniformly at ran-
dom from S and independently flipping the binary la-
bel y with probability η.

We say that an algorithm B is a boosting algorithm
which tolerates RCN at rate η if B has the following
property. Let c be a target classifier, S be a multiset of
m examples, and H be a set of base classifiers such that
H is boostable w.r.t. c and S. Then for any ǫ > 0, if
B is run with H as the set of base classifiers on Dη,S ,
at some stage of boosting B constructs a classifier g
which has accuracy

|{(xi, yi) ∈ S : g(xi) = yi}|

m
≥ 1 − η − ǫ.

The accuracy rate above is in some sense optimal, since
known results [13] show that no “black-box” boosting
algorithm can be guaranteed to construct a classifier g
whose accuracy exceeds 1 − η in the presence of RCN
at rate η. As we discuss in Section 7, there are known
boosting algorithms [13, 16] which can tolerate RCN
at rate η for any 0 < η < 1/2. These algorithms, which
do not follow the convex potential function approach
but instead build a branching program over the base
classifiers, use poly(1/γ, log(1/ǫ)) stages to achieve ac-
curacy 1− η − ǫ in the presence of RCN at rate η if H
is boostable w.r.t. c and S with margin γ.



Random Classification Noise Defeats All Convex Potential Boosters

3. Main Result

As was just noted, there do exist boosting algorithms
(based on branching programs) that can tolerate RCN.
Our main result is that no convex potential function
booster can have this property:

Theorem 2 Fix any convex potential function φ. For
any noise rate 0 < η < 1/2, the algorithm Bφ does not
tolerate RCN at rate η.

We obtain Theorem 2 as a direct consequence of the
following stronger result, which shows that there is a
simple RCN learning problem for which Bφ will in fact
misclassify half the examples in S.

Theorem 3 Fix the instance space X = [−1, 1]2 ⊂
R2 and the set H = {h1(x) = x1, h2(x) = x2} of
confidence-rated base classifiers over X.

For any noise rate 0 < η < 1/2 and any convex po-
tential function φ, there is a target classifier c, a value
γ > 0, and a multiset S of four labeled examples (three
of which are distinct) such that (a) H is boostable w.r.t.
c and S with margin γ, but (b) when Bφ is run on the
distribution Dη,S, it constructs a classifier which mis-
classifies two of the four examples in S.

4. Proof of Theorem 3

We are given an RCN noise rate 0 < η < 1/2 and a
convex potential function φ.

4.1. The basic idea

Before specifying the sample S we explain the high-
level structure of our argument. Recall from (3) that
Pφ,D is defined as

Pφ,D(α1, α2) =
∑

(x,y)

Dη,S(x, y)φ(y(α1x1 +α2x2)). (4)

As noted in Section 2.2 the function Pφ,D(α1, α2) is
convex. It follows immediately from the definition of
a convex potential function that Pφ,D(α1, α2) ≥ 0 for
all (α1, α2) ∈ R2.

The high-level idea of our proof is as follows. We
shall construct a multiset S of four labeled examples in
[−1, 1]2 (actually in the unit disc {x : ‖x‖ ≤ 1} ⊂ R2)
such that there is a global minimum (α∗

1, α
∗
2) of the cor-

responding Pφ,D(α1, α2) which has the following two
properties:

1. (“high error”) The corresponding classifier
g(x) = sgn(α∗

1x1 + α∗
2x2) misclassifies two of the

points in S (and thus has error rate 1/2); and

2. (“steep slope”) At the point (0, 0), the direc-
tional derivative of Pφ,D(α1, α2) in any direction
orthogonal to (α∗

1, α
∗
2) is not as steep as the direc-

tional derivative toward (α∗
1, α

∗
2).

We now show that it suffices to establish these two
properties to prove part (b) of Theorem 3.1 Suppose
we have such an S. Since Pφ,D(α1, α2) depends only
on the inner product between (α1, α2) and the (nor-
malized) example vectors (yx1, yx2), it follows that ro-
tating the set S around the origin by any fixed angle
induces a corresponding rotation of the function Pφ,D,
and in particular of its minima. (Note that we have
used here the fact that every example point in S lies
within the unit disc; this ensures that for any rotation
of S each weak hypothesis xi will always give outputs
in [−1, 1] as required.) Consequently a suitable rota-
tion of S to S′ will result in the corresponding rotated
function Pφ,D having a global minimum at a vector
which lies on one of the two coordinate axes (say a
vector of the form (0, τ)). If this is the case, then the
“steep slope” property (2) ensures that the directional
derivative at (0, 0) in this direction will be steepest, so
the convex potential booster Bφ will pick a base clas-
sifier corresponding to this direction (in this case h2).
Since a globally optimal weight vector is available in
this direction (the vector of length

√

(α∗
1)

2 + (α∗
2)

2 is
such a vector), Bφ will select such a vector. Once it
has achieved such a global optimum it will not change
its hypothesis in any subsequent stage, and thus Bφ’s
hypothesis will have error rate 1/2 on the points in the
rotated set S′ by the “high error” property (1).

4.2. The sample S

Now let us define the multiset S of examples. S con-
sists of three distinct examples, one of which is re-
peated twice. (We shall specify the value of γ later
and show that 0 < γ < 1

6 .)

• S contains one copy of the example x = (1, 0) with
label y = +1. (We call this the “large margin”
example.)

• S contains two copies of the example x = (γ,−γ)
with label y = +1. (We call these examples the
“penalizers” since they are the points that Bφ will
misclassify.)

• S contains one copy of the example x = (γ, 5γ)
with label y = +1. (We call this example the
“puller” for reasons described below.)

1To prove part (a) we need to show that H is boostable
w.r.t. some classifier c and S with margin γ, but as we
shall see this is easy to achieve.
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Thus all examples in S are positive. It is immediately
clear that the classifier c(x) = sgn(x1) correctly clas-
sifies all examples in S with margin γ > 0, so the set
H = {h1(x) = x1, h2(x) = x2} of base classifiers is
boostable w.r.t. c and S with margin γ. We further
note that since γ < 1

6 , each example in S does indeed
lie in the unit disc {x : ‖x‖ ≤ 1}.

Let us give some intuition for why this set S has
the “high error” property. The halfspace whose nor-
mal vector is (1, 0) classifies all examples correctly,
but the noisy (negative labeled) version of the “large
margin” example causes a convex potential function
to incur a very large cost for this hypothesis vec-
tor. Consequently a lower cost hypothesis can be ob-
tained with a vector that points rather far away from
(1, 0). The “puller” example (whose y-coordinate is
5γ) outweights the two “penalizer” examples (whose
y-coordinates are −γ), so it “pulls” the minimum cost
hypothesis vector to point up into the first quadrant
– in fact, so far up that the two “penalizer” examples
are misclassified by the optimal hypothesis vector for
the potential function φ.

In Section 4.3 below we make this intuition precise and
show that there is a global minimum (α∗

1, α
∗
2) of Pφ,D

for which α∗
1 < α∗

2. This immediately implies that
the corresponding classifier g(x) = sgn(α∗

1x1 + α∗
2x2)

misclassifies the two copies of (γ,−γ) in S and gives
us the “high error” property (1). In Section 4.4 we
show that this (α∗

1, α
∗
2) moreover has the “steep slope”

property (2).

4.3. The “high error” property: analyzing a
global minimum of Pφ,D

Let 1 < N < ∞ be such that η = 1
N+1 , so 1−η = N

N+1 .

We have that

Pφ,D(α1, α2) =
∑

(x,y)

Dη,S(x, y)φ(y(α1x1 + α2x2))

=
1

4

∑

(x,y)∈S

[(1 − η)φ(α1x1 + α2x2)

+ ηφ(−α1x1 − α2x2)] .

It is clear that minimizing 4(N + 1)Pφ,D is the same
as minimizing Pφ,D so we shall henceforth work with
4(N +1)Pφ,D since it gives rise to cleaner expressions.
We have that 4(N + 1)Pφ,D(α1, α2) equals

∑

(x,y)∈S

[Nφ(α1x1 + α2x2) + φ(−α1x1 − α2x2)]

= Nφ(α1) + φ(−α1)

+2Nφ(α1γ − α2γ) + 2φ(−α1γ + α2γ)

+Nφ(α1γ + 5α2γ) + φ(−α1γ − 5α2γ). (5)

Let L1(α1, α2) and L2(α1, α2) be defined as follows:

L1(α1, α2)
def
=

∂

∂α1
4(N + 1)Pφ,D(α1, α2) and

L2(α1, α2)
def
=

∂

∂α2
4(N + 1)Pφ,D(α1, α2).

For B > 1 to be fixed later, let us write L1(α) to
denote L1(α,Bα) and similarly write L2(α) to denote
L2(α,Bα). It is easy to verify that we have

L1(α) = Nφ′(α) − φ′(−α) + 2γNφ′(−(B − 1)αγ)

−2γφ′((B − 1)αγ) + Nγφ′((5B + 1)αγ)

−γφ′(−(5B + 1)αγ)

and

L2(α) = −2γNφ′(−(B − 1)αγ) + 2γφ′((B − 1)αγ)

+5γNφ′((5B + 1)αγ) − 5γφ′(−(5B + 1)αγ).

We introduce the following function to help in the anal-
ysis of L1(α) and L2(α):

for α ∈ R, Z(α)
def
= Nφ′(α) − φ′(−α).

Let us establish some basic properties of this function.
Since φ is differentiable and convex, we have that φ′ is
a non-decreasing function. This is easily seen to imply
that Z(·) is a non-decreasing function. We moreover
have Z(0) = φ′(0)(N − 1) < 0. The definition of a
convex potential function implies that as α → +∞ we
have φ′(α) → 0−, and consequently we have

lim
α→+∞

Z(α) = 0 + lim
α→+∞

−φ′(−α) > 0,

where the inequality holds since φ′(α) is a nonincreas-
ing function and φ′(0) < 0. Since φ′ and hence Z is
continuous, we have that over the interval [0,+∞)
the function Z(α) assumes every value in the range
[φ′(0)(N − 1),−φ′(0)).

Next observe that we may rewrite L1(α) and L2(α) as

L1(α) = Z(α) + 2γZ(−(B − 1)αγ) + γZ((5B + 1)γα)
(6)

and

L2(α) = −2γZ(−(B−1)αγ)+5γZ((5B +1)γα). (7)

In the rest of this section we shall show that there
are values α > 0, 0 < γ < 1/6, B > 1 such that
L1(α) = L2(α) = 0. Since Pφ,D is convex, this will

imply that (α∗
1, α

∗
2)

def
= (α,Bα) is a global minimum

for the dataset constructed using this γ, as required.

Let us begin with the following claim which will be
useful in establishing L2(α) = 0.
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Claim 4 For any B ≥ 1 there is a finite value ǫ(B) >
0 such that

2Z(−(B − 1)ǫ(B)) = 5Z((5B + 1)ǫ(B)) < 0 (8)

Proof: Fix any value B ≥ 1. Recalling that Z(0) =
φ′(0)(N − 1) < 0, at ǫ = 0 the quantity 2Z(−(B −
1)ǫ) equals 2φ′(0)(N − 1) < 0, and as ǫ increases this
quantity does not increase. On the other hand, at
ǫ = 0 the quantity 5Z((5B + 1)ǫ) equals 5φ′(0)(N −
1) < 2φ′(0)(N − 1), and as ǫ increases this quantity
increases to a limit, as ǫ → +∞, which is at least
5(−φ′(0)). Since Z is continuous, there must be some
ǫ > 0 at which the two quantities are equal and are
each at most 2φ′(0)(N − 1) < 0.

Observation 5 The function ǫ(B) is a continuous
and nonincreasing function of B for B ∈ [0,∞).

Proof: The larger B ≥ 1 is, the faster −(B − 1)ǫ)
decreases as a function of ǫ and the faster (5B + 1)ǫ
increases as a function of ǫ. Continuity of ǫ(·) follows
from continuity of Z(·).

We now fix the value of B to be B
def
= 1+γ, where the

parameter γ will be fixed later. We shall only consider
settings of α, γ > 0 such that αγ = ǫ(B) = ǫ(1 + γ);

i.e. given a setting of γ, we shall take α = ǫ(1+γ)
γ . For

any such α, γ we have

L2(α) = (7) = γ[−2Z(−(B − 1)ǫ(1 + γ))

+5Z((5B + 1)ǫ(1 + γ))] = 0

where the last equality is by Claim 4. Now let us
consider (6); our goal is to show that for some γ > 0
it is also 0. For any (α, γ) pair with αγ = ǫ(1 + γ), we
have by Claim 4 that

2γZ(−(B − 1)γα) + γZ((5B + 1)γα)

= 2γZ(−(B − 1)ǫ(1 + γ)) + γZ((5B + 1)ǫ(1 + γ))

= 6γZ((5B + 1)ǫ(1 + γ))

where the second equality is by Claim 4. Plugging this

into (6), we have that for α = ǫ(1+γ)
γ , the quantity

L1(α) equals 0 if and only if

Z

(

ǫ(1 + γ)

γ

)

= −6γZ((5B + 1)ǫ(1 + γ))

= 6γ · (−Z((6 + 5γ) · ǫ(1 + γ))). (9)

Let us analyze (9). We first note that Observation 5
implies that ǫ(1 + γ) is a nonincreasing function of γ

for γ ∈ [0,∞). Consequently ǫ(1+γ)
γ is a decreasing

function of γ, and since Z is a nonincreasing function,
the LHS is a nonincreasing function of γ. Recall that at
γ = 0 we have ǫ(1+γ) = ǫ(1) which is some fixed finite
positive value by Claim 4. So we have limγ→0+ LHS
= limx→+∞ Z(x) ≥ −φ′(0). On the other extreme,
since ǫ(·) is nonincreasing, we have

lim
γ→+∞

LHS ≤ lim
γ→+∞

Z

(

ǫ(1)

γ

)

= Z(0) = φ′(0)(N−1) < 0.

So as γ varies through (0,∞), the LHS decreases
through all values between −φ′(0) and 0.

On the other hand, at γ = 0 the RHS of (9) is clearly
0. Moreover the RHS is always positive for γ > 0 by
Claim 4. Since the RHS is continuous (by continu-
ity of Z(·) and ǫ(·)), this together with the previous
paragraph implies that there must be some γ > 0 for
which the LHS and RHS of (9) are the same positive
value. So we have shown that there are values α > 0,
γ > 0, B = 1 + γ such that L1(α) = L2(α) = 0. This
concludes the proof of the “high error” property (1).

We close this section by showing that the value of γ >
0 obtained above is indeed at most 1/6 (and hence
every example in S lies in the unit disc as required).
To see this, note that we have shown that for this γ, we

have Z((6+5γ)ǫ(1+γ)) < 0 and Z
(

ǫ(1+γ)
γ

)

> 0. Since

Z is a nondecreasing function this implies 6 + 5γ < 1
γ

which clearly implies γ < 1/6 as desired.

4.4. The “steep slope” property: analyzing
directional derivatives

Now we turn to proving that the directional derivative
in the orthogonal direction is less steep than in the
direction of the global minimum (α∗

1, α
∗
2). We have just

established that (α,Bα) = (α, (1 + γ)α) is a global
minimum for the data set as constructed above. The
directional derivative at (0, 0) in the direction of this

optimum is L1(0)+BL2(0)√
1+B2

.

Since φ′(0) < 0, by (6) and (7) we have

L1(0) = (1 + 3γ)φ′(0)(N − 1) < 0

L2(0) = 3γφ′(0)(N − 1) < 0.

This implies that L1(0) < L2(0) < 0, which, since
B > 1, implies BL1(0) − L2(0) < 0. This means that
(B,−1) rather than (−B, 1) is the direction orthogonal
to the optimal (1, B) which has negative slope.

Recalling that B = 1 + γ, we have the following in-
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equalities:

B < 1 + 6γ =
(1 + 3γ) + 3γ

(1 + 3γ) − 3γ

B <
−L1(0) − L2(0)

−L1(0) + L2(0)
(10)

B(−L1(0) + L2(0)) < −L1(0) − L2(0) (11)

L1(0) + BL2(0) < BL1(0) − L2(0) < 0, (12)

where (11) follows from (10) using L1(0) < L2(0) < 0.
So the directional derivative in the optimal direction
(1, B) is steeper than in (B,−1), and the proof of the
“steep slope” property, and with it Theorem 3, is com-
plete.

5. Consequences for Known Boosting

Algorithms

A wide range of well-studied boosting algorithms are
based on potential functions φ that satisfy our Def-
inition 1. Theorem 2 thus implies that each of the
corresponding convex potential function boosters as
defined in Section 2.2 cannot tolerate random classi-
fication noise at any noise rate 0 < η < 1

2 . (In some
cases the original versions of the algorithms discussed
below are not exactly the same as the Bφ algorithm
as described in Section 2.2 because of small differences
such as the way the step size is chosen at each update.
Thus we do not claim that Theorem 2 applies directly
to each of the original boosting algorithms; however
we feel that our analysis strongly suggests that the
original boosters may, like the corresponding Bφ algo-
rithms, be highly susceptible to random classification
noise.)

AdaBoost and MadaBoost. As discussed in the
Introduction and in [6, 18] the Adaboost algorithm
[11] is the algorithm Bφ obtained by taking the convex
potential function to be φ(x) = exp(−x). Similarly
the MadaBoost algorithm [5] is based on the potential
function φ(x) defined in Equation (1). Each of these
functions clearly satisfies Definition 1.

LogitBoost and FilterBoost. As described in
[6, 18, 2], the LogitBoost algorithm of [12] is based on
the logistic potential function ln(1 + exp(−x)), which
is easily seen to fit our Definition 1. Roughly, Filter-
Boost [2] combines a variation on the rejection sam-
pling of MadaBoost with the reweighting scheme, and
therefore the potential function, of LogitBoost.

6. Experiments with Binary-valued

Weak Learners

The analysis of this paper leaves open the possibil-
ity that a convex potential booster could still tolerate
noise if the base classifiers were restricted to be binary-
valued. In this section we describe empirical evidence
that this is not the case. We generated 100 datasets,
applied three convex potential boosters to each, and
calculated the training error.

Data. Each dataset consisted of 4000 examples, di-
vided into three groups, 1000 large margin examples,
1000 pullers, and 2000 penalizers. The large margin
examples corresponded to the example (1, 0) in Sec-
tion 4.2, the pullers play the role of (γ, 5γ), and the
penalizers collectively play the role of (γ,−γ).

Each labeled example (x, y) in our dataset is gen-
erated as follows. First the label y is chosen ran-
domly from {−1, 1}. There are 21 features x1, . . . , x21

that take values in {−1, 1}. Each large margin ex-
ample sets x1 = · · · = x21 = y. Each puller assigns
x1 = · · · = x11 = y and x12 = · · · = x21 = −y.
Each penalizer is chosen at random in three stages:
(1) the values of a random subset of five of the first
eleven features x1, . . . , x11 are set equal to y, (2) the
values of a random subset of six of the last ten features
x12, . . . , x21 are set equal to y, and (3) the remaining
ten features are set to −y.

At this stage, if we associate a base classifier with each
feature xi, then each of the 4000 examples is classified
correctly by a majority vote over these 21 base classi-
fiers. Intuitively, when an algorithm responds to the
pressure exerted by the noisy large margin examples
and the pullers to move toward a hypothesis that is
a majority vote over the first 11 features only, then it
tends to incorrectly classify the penalizers, because in
the penalizers only 5 of those first 11 features agree
with the class.

Finally, each class designation y is corrupted with clas-
sification noise with probability 0.1.

Boosters. We experimented with three boosters: Ad-
aBoost, MadaBoost (which is arguably, loosely speak-
ing, the least convex of the convex potential boosters),
and LogitBoost. Each booster was run for 100 rounds.

Results. The average training error of AdaBoost over
the 100 datasets was 33%. The average for LogitBoost
was 30%, and for MadaBoost, 27%.
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7. Discussion

We have shown that any boosting algorithm based on
coordinate-wise gradient descent to optimize a con-
vex potential function satisfying mild conditions can-
not tolerate random classification noise. While our
results imply strong limits on the noise-tolerance of al-
gorithms that fit this framework, they do not apply to
other boosting algorithms such as Freund’s Boost-By-
Majority algorithm [8] and BrownBoost [9] for which
the corresponding potential function is non-convex.
An interesting direction for future work is to extend
our negative results to a broader class of potential
functions, or to other types of boosters such as “regu-
larized” boosters [19, 14].

We close by observing that there do exist efficient
boosting algorithms (which do not follow the poten-
tial function approach) that can provably tolerate ran-
dom classification noise [13, 16]. These noise-tolerant
boosters work by constructing a branching program
over the weak classifiers; the original algorithms of
[13, 16] were presented only for binary-valued weak
classifiers, but recent work [15] extends the algorithm
from [16] to work with confidence-rated base classi-
fiers. A standard analysis (omitted because of space
constraints) shows that this boosting algorithm for
confidence-rated base classifiers can tolerate random
classification noise at any rate 0 < η < 1/2 according
to our definition from Section 2.4. In particular, for
any noise rate η bounded below 1/4, if this booster is
run on the data sets considered in this paper, it can
construct a final classifier with accuracy 1−η−ǫ > 3/4

after O( log 1/ǫ
γ2 ) stages of boosting. Since our set of ex-

amples S is of size four, though, this means that the
booster’s final hypothesis will in fact have perfect accu-
racy on these data sets which thwart convex potential
boosters.
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