
Learning mixtures of product distributions over discrete domains

Jon Feldman∗

Dept. of IEOR
Columbia University

jonfeld@ieor.columbia.edu

Ryan O’Donnell†

Microsoft Research
Redmond, WA

odonnell@microsoft.com

Rocco A. Servedio‡

Dept. of Computer Science
Columbia University

rocco@cs.columbia.edu

Abstract

We consider the problem of learning mixtures of prod-
uct distributions over discrete domains in the distribution
learning framework introduced by Kearns et al. [19]. We
give apoly(n/ε) time algorithm for learning a mixture of
k arbitrary product distributions over then-dimensional
Boolean cube{0, 1}n to accuracyε, for any constantk.
Previous poly(n)-time algorithms could only achieve this
for k = 2 product distributions; our result answers an open
question stated independently in [8] and [15]. We further
give evidence that no polynomial time algorithm can suc-
ceed whenk is superconstant, by reduction from a notorious
open problem in PAC learning. Finally, we generalize our
poly(n/ε) time algorithm to learn any mixture ofk = O(1)
product distributions over{0, 1, . . . , b}n, for anyb = O(1).

1. Introduction

Given distributionsX1, . . . ,Xk over Rn and mixing
weightsπ1, . . . , πk that sum to 1, a draw from the mixture
distributionZ is obtained by first selectingi with probabil-
ity πi and then making a draw fromXi. Mixture distribu-
tions arise in many practical scientific situations as diverse
as medicine, geology, and artificial intelligence; indeed,
there are several textbooks devoted to the subject [25, 20].

Assuming that data arises as a mixture of some distribu-
tions from a class of distributionsC, it is natural to try to
learn the parameters of the mixture components. Our work
addresses the learning problem in the PAC-style model in-
troduced by Kearns et al. [19]. In this framework we are
given a classC of probability distributions overRn and ac-
cess to random data sampled from an unknown mixtureZ
of k unknown distributions fromC. The goal is to output

∗Supported by an NSF Mathematical Sciences Postdoctoral Research
Fellowship.

†Some of this work was done while at the Institute for Advanced Study,
supported in part by the NSF under agreement No. CCR-0324906.

‡Supported in part by NSF CAREER award CCF-0347282.

a hypothesismixture Z′ of k distributions fromC which
(with high confidence), isε-close to the unknown mix-
ture. The learning algorithm should run in timepoly(n/ε).
The standard notion of “closeness” between distributionsZ
andZ′, proposed by Kearns et al. and used in this work,
is the Kullback-Leibler (KL) divergence(or relative en-
tropy), defined asKL(Z||Z′) :=

∫
x
Z(x) ln(Z(x)/Z′(x)).

(We remind the reader (see e.g. [7]) that‖Z − Z′‖1 ≤
(2 ln 2)

√
KL(Z||Z′) where‖·‖1 denotes total variation dis-

tance; hence if the KL divergence is small, then the total
variation distance is also small.)

In this paper we learn mixtures ofproduct distributions
over the Boolean cube{0, 1}n, and more generally over the
b-ary cube{0, . . . , b− 1}n; i.e., the classesC will consist
of distributionsXi whosen coordinates are mutually in-
dependent distributions over{0, 1} and{0, . . . , b− 1}, re-
spectively. (Of course, the algorithm works for product dis-
tributions overΣn for any alphabetΣ with |Σ| = b.) Such
learning problems have been well studied in the past, as we
now describe.

Related Work. In [19] Kearns et al. gave efficient algo-
rithms for learning mixtures ofHamming balls; these are
product distributions over{0, 1}n in which all the coor-
dinate meansE[Xi

j] must be eitherp or 1 − p for some
unknown p which is fixed over all mixture components.
Although these algorithms can handle mixtures withk =
O(1) many components, the fact that the components are
Hamming balls rather than general product distributions is
a very strong restriction. (The algorithms also have some
additional restrictions:p has to be bounded away from1/2,
and a more generous learning scenario is assumed in which
the learner is also given oracle access to the target distribu-
tion Z — i.e. she can submit an inputx and get back the
probability massZ assigns tox.)

More recently, Freund and Mansour [15] gave an effi-
cient algorithm for learning a mixture of two general prod-
uct distributions over{0, 1}n. Around the same time Cryan
et al. [9, 8] gave an efficient algorithm for learning phylo-
genetic trees in the two-state general Markov model; for the
special case in which the tree topology is a star, this gives an

algorithm for learning an arbitrary mixture of two product
distributions over{0, 1}n. Both [15] and [8] stated as an
open question the problem of obtaining a polynomial-time
algorithm for learning a mixture ofk > 2 product distri-
butions. Indeed, recent work of Mossel and Roch [21] on
learning phylogenetic trees argues that the rank-deficiency
of transition matrices is a major source of difficulty, and this
may indicate whyk = 2 has historically been a barrier —
a two-row matrix can be rank-deficient only if one row is a
multiple of the other, whereas the general case ofk > 2 is
much more complex.

In other related work, there is a vast literature in statis-
tics on the general problem of analyzing mixture data — see
[20, 23, 25] for surveys. To a large degree this work centers
on trying to find the exact best mixture model (in terms of
likelihood) which explains a given data sample; this is com-
putationally intractable in general. In contrast, our main
goal (and the goal of [19, 15, 9, 8, 21]) is to obtainefficient
algorithms that produceε-close hypotheses.

We also note that there has also been recent interest
in learning mixtures ofn-dimensional Gaussians from the
point of view ofclustering[10, 11, 2, 26]. In this framework
one is given samples from a a mixture of “well-separated”
Gaussians, and the goal is to classify each point in the sam-
ple according to which Gaussian it came from. We discuss
the relationship between our scenario and this recent liter-
ature on Gaussians in Section 6; here we emphasize that
throughout this paper we make no “separation” assumptions
(indeed, no assumptions at all) on the component product
distributions in the mixture.

Finally, the problem of learning discrete mixture distri-
butions may have applications to other areas of theoreti-
cal computer science, such as database privacy [24, 6] and
quantum complexity [1].

1.1. Our results

In this paper we give an efficient algorithm for learn-
ing a mixture ofk = O(1) many product distributions over
{0, 1}n. Our main theorem is the following:

Theorem 1 Fix anyk = O(1), and letZ be any unknown
mixture ofk product distributions over{0, 1}n. Then there
is an algorithm that, given samples fromZ and anyε, δ > 0
as inputs, runs in timepoly(n/ε) · log(1/δ) and with prob-
ability 1− δ outputs a mixtureZ′ of k product distributions
over{0, 1}n satisfyingKL(Z||Z′) ≤ ε.

We emphasize that our algorithm requires none of the ad-
ditional assumptions — such as minimum mixing weights
or coordinate means bounded away from0, 1/2, or1 — that
appear in some work on learning mixture distributions.

Our algorithm runs in time(n/ε)k3
, which is polynomial

only if k is constant; however, this dependence may be un-

avoidable. In Theorem 7 we give a reduction from a noto-
rious open question in computational learning theory (the
problem of learning decision trees of superconstant size)
to the problem of learning a mixture of any superconstant
number of product distributions over{0, 1}n. This implies
that solving the mixture learning problem for anyk = ω(1)
would require a breakthrough in learning theory, and sug-
gests that Theorem 1 may be essentially the best possible.

We also generalize our result to learn a mixture of prod-
uct distributions over{0, . . . , b− 1}n for any constantb:

Theorem 2 Fix any k = O(1) and b = O(1), and letZ
be any unknown mixture ofk product distributions over
{0, . . . , b− 1}n. Then there is an algorithm that, given
samples fromZ and anyε, δ > 0 as inputs, runs in time
poly(n/ε) · log(1/δ) and with probability1 − δ outputs a
mixtureZ′ of k product distributions over{0, . . . , b− 1}n

satisfyingKL(Z||Z′) ≤ ε.

Taking b = k, this gives a polynomial time algorithm
for learningk-state Markov Evolutionary Trees with a star
topology. (Note that the main result of Cryan et al. [9, 8] is
an algorithm for learning two-state METs with an arbitrary
topology; hence our result is incomparable to theirs.)

2. Overview of our approach

2.1. TheWAM algorithm

The cornerstone of our overall learning algorithms is an
algorithm we call WAM (for WEIGHTS AND MEANS).
WAM is a general algorithm taking as input a parameter
ε > 0 and having access to samples from an unknown mix-
ture Z of k product distributionsX1, . . . ,Xk. Here each
Xi = (Xi

1, . . . ,X
i
n) is anRn-valued random vector with

independent coordinates. The goal of WAM is to output
accurate estimates for all of themixing weightsπi andco-
ordinate meansµi

j := E[Xi
j]. Note that a product distribu-

tion over{0, 1}n is completely specified by its coordinate
means.

More precisely, WAM outputs alist of poly(n/ε) many
candidates(〈π̂1, . . . , π̂k〉, 〈µ̂1

1, µ̂
1
2, . . . , µ̂

k
n〉); each candi-

date may be viewed as a possible estimate for the correct
mixing weights and coordinate means. We will show that
with high probability at least one of the candidates output
by WAM is parametrically accurate; roughly speaking this
means that the candidate is a good estimate in the sense
that in the sense that|π̂i − πi| ≤ ε for eachi and that
|µ̂i

j − µi
j | ≤ ε for eachi andj. However there is a slight

twist: if a mixing weightπi is very low then WAM may not
receive any samples fromXi, and thus it is not reasonable
to require WAM to get an accurate estimate forµi

1, . . . , µ
i
n.

On the other hand, ifπi is so low then it is not very impor-
tant to get an accurate estimate forµi

1, . . . , µ
i
n becauseXi

has only a tiny effect onZ. We thus make the following
formal definition:

Definition 1 A candidate(〈π̂1, . . . , π̂k〉, 〈µ̂1
1, µ̂

1
2, . . . , µ̂

k
n〉)

is said to beparametricallyε-accurateif:

1. |π̂i − πi| ≤ ε for all 1 ≤ i ≤ k;

2. |µ̂i
j − µi

j | ≤ ε for all 1 ≤ i ≤ k and1 ≤ j ≤ n such
thatπi ≥ ε.

The main technical theorem in this paper, Theorem 4,
shows that so long as theXi’s take values in a bounded
range, WAM will with high probability output at least one
candidate that is parametrically accurate. The proof of this
theorem uses tools from linear algebra (singular value the-
ory) along with a very careful error analysis.

Remark 3 As will be clear from the proof of Theorem 4,
WAM will succeed even if the mixture distributionsXi are
only pairwise independent, not fully independent. This may
be of independent interest.

2.2. From WAM to PAC learning (binary case)

As we noted already, in the binary case a product distri-
bution on{0, 1}n is completely specified by itsn coordi-
nate means; thus a candidate can essentially be viewed as
a hypothesis mixture of product distributions. (This is not
precisely correct, as the candidate mixing weights may not
precisely sum to 1 and the candidate means might be outside
the range[0, 1] by as much asε.) To complete the learning
algorithm described in Theorem 1 we must give an efficient
procedure that takes the list output by WAM and identifies
a candidate distribution that is close toZ in KL divergence,
as required by Theorem 1. We do this in two steps:

1. We first give an efficient procedure that converts a
parametrically accurate candidate into a proper hy-
pothesis distribution that is close toZ in KL diver-
gence. We apply this procedure to each candidate in
the list output by WAM, and thus obtain a list of mix-
tures (hypotheses), at least one of which is close toZ
in KL divergence.

2. We then show that a maximum-likelihood procedure
can take a list of hypotheses, at least one of which is
good (close toZ in KL divergence), and identify a sin-
gle hypothesis which is good.

2.3. Larger alphabets

In the larger alphabet setting,Z is a mixture ofk prod-
uct distributionsX1, . . . ,Xk over {0, . . . , b− 1}n. Now
each mixture componentXi is defined bybn parameters

pi
j,` (with j = 1, . . . , n and` = 0, . . . , b − 1) wherepi

j,`

is the probability that a draw fromXi
j yields `. The sim-

ple but useful observation that underlies our extension to
{0, . . . , b− 1}n is the following: just as any distribution
over{0, 1} is completely specified by its mean, any distri-
bution Xi

j over {0, . . . , b− 1} is completely specified by
its first b − 1 momentsE[Xi

j],E[(Xi
j)

2], . . . ,E[(Xi
j)

b−1].
Our approach is thus to run WAMb − 1 times; for ` =
1, . . . , b− 1 the`th run will sample from the mixture distri-
bution given by converting each sample(z1, . . . , zn) to the
sample(z`

1, . . . , z
`
n). We then carefully combine the lists

output by the runs of WAM, and follow similar steps to (1)
and (2) above to find a good hypothesis in the combined list.

2.4. Outline

Most of the main body of this paper, Section 3, is ded-
icated to explaining the ideas behind the WAM algorithm
and its proof of correctness. (The detailed algorithm and
proof appear in Appendices A through C.) We discuss the
application of WAM to theb-ary case in Section 4, and in
Section 5 we detail our reduction from a notorious open
question in computational learning theory. We conclude in
Section 6 with a discussion of applications and future work.

The two steps outlined in Section 2.2 are conceptually
straightforward, but the details are quite technical, and can
be found in the full version of this paper [14].

3. TheWAM Algorithm

In this section we describe our main algorithm, WAM.
We assume a general mixture setting: WAM has access
to samples fromZ, a mixture ofk product distributions
X1, . . . ,Xk with mixing weightsπ1, . . . , πk. EachXi =
(Xi

1, . . . ,X
i
n) is an n-dimensional vector-valued random

variable. We will further assume that all components’ coor-
dinates are bounded in the range[−1, 1]; i.e.,Xi ∈ [−1, 1]n

with probability 1. We have chosen[−1, 1] for convenience;
by scaling and translating samples we can get a theorem
about any interval such as[0, 1] or [0, (b − 1)b−1], with an
appropriate scaling ofε. We writeµi

j := E[Xi
j] ∈ [−1, 1]

for the mean of thejth coordinate ofXi.
Our main theorem is the following:

Theorem 4 There is an algorithmWAM with the following
property: for anyk = O(1) and anyε, δ > 0, WAM runs
in timepoly(n/ε) · log(1/δ) and outputs a list ofpoly(n/ε)
many candidates, at least one which (with probability at
least1− δ) is parametricallyε-accurate.

We give the full proof of correctness in Appendix C. The
remainder of this section is devoted to explaining the main
ideas behind the algorithm and its analysis.

3.1. Overview ofWAM

There is of course a brute-force way to come up with a
list of candidates(〈π̂1, . . . , π̂k〉, 〈µ̂1

1, µ̂
1
2, . . . , µ̂

k
n〉), at least

one of which is parametricallyε-accurate: simply “try all
possible values” for the parameters up to additive accuracy
ε. In other words, try all values0, ε, 2ε, 3ε, . . . , 1 for the
mixing weights and all values−1,−1 + ε, . . . , 1 − ε, 1 for
the means. We call this approach “gridding”. Unfortunately
there areΘ(n) parameters in a candidate so this naive grid-
ding strategy requires time (and produces a list of length)
(1/ε)Θ(n), which is clearly unacceptable.

The basic idea behind WAM is as follows: given all pair-
wise correlations between the coordinates ofZ, it can be
shown that there are aconstantnumber of “key” parame-
ters that suffice to determine all others. Hence in polyno-
mial time we can empirically estimate all the correlations,
try all possibilities for the constantly many key parameters,
and then determine the remainingΘ(n) parameters.

The main challenge in implementing this idea is that it is
not a priori clear that the error incurred from gridding the
key parameters does not “blow up” when these are used to
obtain the remaining parameters. The heart of our analysis
involves showing that it suffices to grid the key parameters
to granularitypoly(ε/n) in order to get final errorε.

3.2. The algorithm, and intuition for the analysis

We will now go over the steps of the algorithm WAM
and at the same time provide an “intuitive” discussion
of the analysis. A concise description of the steps of
WAM is given in Appendix A for the reader’s convenience.
Throughout this section we will assume for the sake of dis-
cussion that the steps we take incur no error; a sketch of the
actual error analysis appears in Section 3.3.

The first step of WAM is to “grid” the values of the mix-
ing weights{πi} to granularityεwts := ε3. Since there
are only constantly many mixing weights, this costs just a
multiplicative factor ofpoly(1/ε) in the running time. The
remainder of the algorithm “assumes” that the values cur-
rently being gridded for the mixing weights are the nearly-
correct values of the mixing weights. In fact, for the pur-
poses of this intuitive description of WAM, we will simply
assume we have exactly correct values.

The next step is simple: Suppose somes of thek mixing
weights we have are smaller thanε. By the definition of be-
ing “ε-parametrically accurate”, we are not obliged to worry
about coordinates with such small mixing weights; we will
simply forget about these mixture components completely
and treatk ask−s in what follows. (We assign arbitrary val-
ues for the candidate means of the forgotten components.)
We may henceforth assume thatπi ≥ ε > 0 for all i.

The next step of algorithm WAM is to use samples from

Z to estimate the pairwise correlations between the co-
ordinates ofZ. Specifically, for all pairs of coordinates
1 ≤ j < j′ ≤ n, the algorithm WAM empirically estimates

corr(j, j′) = E[ZjZj′].

The estimation will be done to within additive accuracy
εmatrix = poly(ε/n); specifically,εmatrix := τk+1, where
τ := ε2/n2. With high (i.e.1 − δ) confidence we will get
good such estimates in timepoly(n/ε). Again, for the pur-
poses of this intuitive description of WAM we will hence-
forth assume we have exactly correct values for each value
corr(j, j′). (As an aside, this is the only part of the algo-
rithm that uses samples fromZ; as we will shortly see, this
justifies Remark 3.)

Observe that sinceXi
j andXi

j′ are (pairwise) indepen-
dent we have

corr(j, j′) = E[ZjZj′] =
k∑

i=1

πiE[Xi
jX

i
j′]

=
k∑

i=1

πiE[Xi
j]E[Xi

j′] =
k∑

i=1

πiµi
jµ

i
j′ .

Let us define µ̃i
j =

√
πiµi

j and write µ̃j =
(µ̃1

j , µ̃
2
j , . . . , µ̃

k
j) ∈ [−1, 1]k for 1 ≤ j ≤ n. We thus have

corr(j, j′) = µ̃j · µ̃j′ ,

where· denotes the dot product inRk. The remaining task
for WAM is to determine all the valuesµi

j . Since WAM
already has values for eachπi and eachπi ≥ ε > 0, it
suffices for WAM to determine all the values̃µi

j and then

divide by
√

πi.
At this point WAM has empirically estimated values for

all the pairwise dot products̃µj · µ̃j′ , j 6= j′, and as men-
tioned, for intuitive purposes we are assuming all of these
estimates are exactly correct. LetM denote thek×n matrix
whose(i, j) entry is the unknowñµi

j ; i.e., thejth column of
M is µ̃j . The statement that WAM has all the dot products
µ̃j · µ̃j′ for j 6= j′ is equivalent to saying that WAM has all
theoff-diagonalentries of the Gram matrixM>M . We are
thus led to the central problem WAM solves:

Central Task: Given (estimates for) the off-diagonal en-
tries of the Gram matrixM>M , obtain (estimates of) all
possible candidates for the entries of thek × n matrixM .

(A remark: The diagonal entries ofM>M are the quan-
titiesµ̃j ·µ̃j =

∑k
i=1 πi(µi

j)
2 and there is no obvious way to

estimate these quantities using samples fromZ. Also there
are n such quantities, which is too many to “grid over”.
Nevertheless, the fact that we are missing the diagonal en-
tries ofM>M will not play an important role for WAM.)

In general, a completen×n Gram matrix determines the
original k × n matrix matrix up to isometries onRk. Such

isometries can be described byk× k orthonormal matrices,
and thesek2 “degrees of freedom” roughly correspond to
the constantly many key parameters that we grid over in the
end. A geometric intuition for the Central Task is the fol-
lowing: there aren unknown vectors inRk and we have all
the “angles” between them (more precisely, the dot prod-
ucts) between them. Thus fixingk of the vectors (hencek2

unknown coordinates) is enough to completely determine
the remainder of the vectors.

The full rank case. We proceed with our intuitive descrip-
tion of WAM and show how to solve the Central Taskwhen
M has full rank. Having done this, we will give the actual
steps of the algorithm that show how the full rank assump-
tion can be removed.

So suppose for now thatM has full rank. Then there
exists some set ofk columns ofM that are linearly inde-
pendent, sayJ = {j1, . . . , jk} ⊂ [n]. Algorithm WAM
tries all

(
n
k

)
= poly(n) possibilities for the setJ and

then grids over the vectors̃µj1 , . . . , µ̃jk
with granularity

εmatrix = poly(ε/n) in each coordinate. As usual for
the purposes of intuition, we assume that we now have
µ̃j1 , . . . , µ̃jk

exactly correct.
Let MJ be thek × k matrix given by theJ-columns of

M , and letMJ̄ be thek× (n− k) matrix given by deleting
theJ-columns ofM . WAM now has the entries ofMJ and
must compute the remaining unknowns,MJ̄ . Since WAM
has all of the off-diagonal entries ofM>M , it has all of the
values ofB = M >̄

J MJ . (See Figure 1.) But the columns
of MJ are linearly independent, soMJ is invertible and
hence WAM can computeM >̄

J = BM−1
J in poly(n) time.

Having done this, WAM has all the entries ofM and so the
Central Task is complete, as is the algorithm.

The general case.Of course in general,M does not have
full rank. This represents the main conceptual problem we
faced in rigorously solving the Central Task. Indeed, we
believe that handling rank-deficiency is the chief concep-
tual problem for the whole learning mixtures question, and
that our linear algebraic methods for overcoming it (the de-
scription of which occupies the remainder of Section 3) are
the main technical contribution of this paper.

Supposerank(M) = r < k. By trying all possible
values (only constantly many), algorithm WAM can be as-
sumed to knowr. Now by definition ofrank(M) = r
there must existk − r orthonormal vectorsur+1, . . . , uk ∈
[−1, 1]k which are orthogonal to all columns ofM . WAM
grids over these vectors with granularityεmatrix, incurring
another multiplicativepoly(n/ε) time factor. As usual,
assume for the intuitive discussion that we now have the
uj ’s exactly. Let these vectors be adjoined as columns to
M , forming M ′. But now the matrixM ′ has full rank;
furthermore, WAM knows all the off-diagonal elements
of (M ′)>M ′, i.e. all the pairwise dot products ofM ′’s
columns, since all of the new dot products which involve

the uj ’s are simply0! Thus we now have an instance of
the Central Task with a full-rank matrix, a case we already
solved. (Technically,n may now be as large asn+(k− 1),
but this is stillO(n) and hence no time bounds are affected.)
Given all entries ofM ′ we certainly have all entries ofM ,
and so we have solved the Central Task and completed the
algorithm WAM in the rank-deficient case.

3.3. Sketch of the actual analysis ofWAM

The preceding intuitive discussion of algorithm WAM
neglected all error analysis. Correctly handling the error
analysis is the somewhat subtle issue we discuss in this sec-
tion. As mentioned, the full proof is given in Appendix C.

The main issue in the error analysis comes in understand-
ing the right notion of the rank ofM — since of all our grid-
ding inevitably yields only approximations of the entries of
M , the actual notion of rank is far too fragile to be of use.
Recall the outline of the algorithm in our idealized intuition
(rank-deficient case):

r = dimension of subspace in which̃µj ’s lie

⇒ augmentM by k − r orthogonalui’s, formingM ′

⇒ M ′ now full rank

⇒ find nonsingulark × k submatrixM ′
J

⇒ solve linear systemM ′>
J̄M ′

J = B

For the purposes of the error analysis, we reinterpret the
operation of WAM as follows:

r∗ = dimension of subspace in which theµ̃j ’s “essentially” lie

⇒ augmentM by k − r “essentially” orthogonalui’s,

formingM ′ ⇒ M ′ now “strongly” full rank

⇒ find “strongly” nonsingulark × k submatrixM ′
J

⇒ solve linear systemM ′>
J̄M ′

J = B (1)

The real difficulty of the error analysis comes in the last
step: controlling the error incurred from the solution of the
linear system. Since we will only have approximately cor-
rect values for the entries ofM ′

J andB, we need to ana-
lyze the additive error arising from solving a perturbed lin-
ear system. Standard results from numerical analysis (see
Corollary 5 in Appendix B) let us bound this error by a
function of: (i) the error inM ′

J andB, and (ii) the smallest
singular valueof M ′

J , denoted byσk(M ′).
Let us briefly recall some notions related to singular val-

ues: Given anyk × n matrix M , the first (largest) singular
value ofM is σ1(M) = max‖u1‖2=1 ‖u>1 M‖2, and au1

achieving this maximum is taken as the first(left) singular
vectorof M . The second singular value ofM is σ2(M) =
max‖u2‖2=1,u2⊥u1 ‖u>2 M‖2, andu2 is the second left sin-
gular vector ofM . In general, theith singular value and

k

k kk

n

MJ̄ MJ

MJ

Matrix M of µ̃i
j ’s

M >̄
J

n− k

= B

solved for

gridded

estimated

Figure 1. The full rank case. We solve for the unknown µ̃i
j ’s in MJ̄ .

vector are given by maximizing over all‖ui‖2 = 1 orthog-
onal to allu1, . . . , ui−1. In a well-defined sense (the Frobe-
nius norm), the smallest singular valueσk(M) measures the
distance ofM from being singular.

WAM’s final error bounds arise from dividing the error
in its estimates forM ′

J andB by the smallest singular value
of M ′

J . The error in the estimates for the entries ofM ′
J

come from gridding, and thus can essentially be made as
small as desired; WAM makes them smaller thanεmatrix.
The errors inB come from two sources: some of the en-
tries ofB are estimates of quantities̃µj · µ̃j′ = corr(j, j′),
and again these errors can be made essentially as small as
desired, smaller thanεmatrix. However the other errors in
B come from approximating the quantities̃µj · ui by 0;
i.e, assuming the augmenting vectors are orthogonal to the
columns ofM .

As the reader may by now have guessed, the vectors with
which WAM attempts to augmentM will be the lastk− r∗

singular vectors ofM , ur∗+1, . . . , uk. The hope is that for
an appropriate choice ofr∗, these singular vectors will be
“essentially” orthogonal to the columns ofM , and that the
resultingM ′ will be “strongly” full rank, in the sense that
σk(M ′) will be somewhat large (cf. (1)). One can show (see
Proposition 8 of Appendix B) that the extent to which the
ui’s are orthogonal to the columns ofM is controlled by the
(r∗ + 1)th singular value ofM ; i.e., |µ̃j · ui| ≤ σr∗+1(M)
for all i ≥ r∗ + 1; this is precisely the error we incur for
the zero entries inB. On the other hand, one can also show
that the augmentedM ′ has smallest singular value at least
σr∗(M). Thus we are motivated to chooser∗ so as to get a
large multiplicative gap betweenσr∗(M) andσr∗+1(M):

Definition 2 Givenτ > 0, theτ -essential rankof M is

r∗(M) = r∗τ (M) = min
0≤r≤k

{σr+1(M)/σr(M) ≤ τ},

where we takeσ0(M) = 1 andσk+1(M) = 0.

One might think that if the additive error incurred
from solving the linear system were to be roughly

σr∗(M)/σr∗+1(M) then it should suffice to selectτ on the
order ofpoly(ε). However, there is still a missing piece of
the analysis: Although the smallest singular value ofM ′

becomes at leastσr∗(M) after adjoining theuj ’s, we only
use ak × k submatrixM ′

J to solve the linear system. Is it
the case that ifM ′ has a large smallest singular value then
its “best”k× k submatrix also has a somewhat large small-
est singular value? We need a quantitative version of the
fact that a nonsingulark×n matrix has ak×k nonsingular
submatrix (again, cf. (1)).

This does not seem to be a well-studied problem, and
indeed there are some open questions in linear algebra sur-
rounding the issue. It is possible to derive an extremely
weak quantitative result of the required nature using the
Cauchy-Binet formula. We instead give the following quan-
titatively strong version:

Corollary 5 LetA be ak × n real matrix withσk(A) ≥ ε.
Then there exists a subset of columnsJ ⊆ [n] with |J | = k
such thatσk(AJ) ≥ ε/

√
k(n− k) + 1.

(We call the result a corollary because our proof in Ap-
pendix B is derived from a 1997 linear algebraic result of
Goreinov, Tyrtyshnikov, and Zamarashkin [16]. Inciden-
tally, it is conjectured in their paper, and we also conjecture,
that

√
k(n− k) + 1 can be replaced by

√
n.)

With this result in hand it becomes sufficient to takeτ =
ε2/n2, as described in the previous section. Now the error
analysis can be completed:

• If M has a singular value gap ofτ and so has es-
sential rankr∗ < k, then when WAM tries out the
appropriater∗ and singular vectors, the error it in-
curs from solving the linear system is roughly at most
O(
√

nτ) = O(ε2/n3/2); and as we show at the end of
Appendix C, having this level of control over errors in
solving the linear system for the unknownµ̃i

j ’s lets us
obtain the finalµi

j values to the requiredε-accuracy.

• If M has no singular value gap smaller thanτ then

its smallest singular value is at leastτk to begin with;
thus it suffices to takeεmatrix = τk+1 = poly(ε/n) to
control the errors in the full-rank case.

See Appendix C for the detailed proof of correctness.

4. Estimating Higher Moments

In this section we explain our remarks from Section 2.3
more thoroughly; specifically, how to use WAM to learn
a mixtureZ of k product distributionsX1, . . . ,Xk over
{0, . . . , b− 1}n. Such a distribution can be “parametri-
cally” described by mixing weights{πi}i∈[k] and probabil-
ities{pi

j,`}, wherepi
j,` = Pr[Xi

j = `].
Running WAM on samples fromZ gives a list of esti-

mates of mixing weights and coordinate meansE[Xi
j], but

these coordinate means are insufficient to completely de-
scribe the distributionsXi

j . However, suppose that we run
WAM on samples fromZ` (i.e. each time we obtain a
draw (z1, . . . , zn) from Z, we actually give(z`

1, . . . , z
`
n)

to WAM). It is easy to see that by doing this, we are
running WAM on theπ-weighted mixture of distributions
(X1)`, . . . , (Xk)`; we will thus get as output a list of can-
didates for the mixing weights and thecoordinate`th mo-
mentsE[(Xi

j)
`] for Z.

Our algorithm for distributions over{0, . . . , b− 1}n

uses this approach to obtain a list of candidate descriptions
of each of the firstb−1 coordinate moments ofZ. The algo-
rithm then essentially takes the cross-product of theseb− 1
lists to obtain a list of overall candidates, each of which is
an estimate of the mixing weights and allb − 1 moments.
Since WAM guarantees that each list contains an accurate
estimate, the overall list will also contain an accurate esti-
mate of the mixing weights and of all moments. For each
candidate the estimate of the moments is then easily con-
verted to “parametric form”{pi

j,`}, and as we show, any
candidate with accurate estimates of the moments yields an
accurate estimate of the probabilitiespi

j,`.
We now give the main theorem of the section, the proof

of which (given in [14]) contains the details of the algo-
rithm:

Theorem 6 Fix k = O(1), b = O(1). LetZ be a mixture of
k product distributionsX1, . . . ,Xk over {0, . . . , b− 1}n,
soZ is described by mixing weightsπ1, . . . , πk and proba-
bilities {pi

j,`}i∈[k],j∈[n],`∈{0,...,b−1}.
There is an algorithm with the following property: for

any ε, δ > 0, the algorithm runs in poly(n/ε) · log 1
δ time

and with probability1 − δ outputs a list of candidates
〈{π̂i}, {p̂i

j,`}〉 such that for at least one candidate in the
list, the following holds:

1. |π̂i − πi| ≤ ε for all i ∈ [k]; and

2. |p̂i
j,` − pi

j,`| ≤ ε for all i, j, ` such thatπi ≥ ε.

5. A Hardness Result

The following theorem gives evidence that the class of
mixtures of k(n) product distributions over the Boolean
cube may be hard to learn in polynomial time for any
k(n) = ω(1):

Theorem 7 For any functionk(n), if there is a poly(n/ε)
time algorithm which learns a mixture ofk(n) many product
distributions over{0, 1}n, then there is a poly(n/ε) time
uniform distribution PAC learning algorithm which learns
the class of allk(n)-leaf decision trees.

The basic idea behind this theorem is quite simple.
Given anyk(n)-leaf decision treeT , the set of all positive
examples forT is a union of at mostk(n) many disjoint
subcubes of{0, 1}n, and thus the uniform distribution over
the positive examples is a mixture of at mostk(n) product
distributions over{0, 1}n. If we can obtain a high-accuracy
hypothesis mixtureD for this mixture of product distribu-
tions, then roughly speakingD must put “large” weight on
the positive examples and “small” weight on the negative
examples. We can thus useD to make accurate predictions
of T ’s value on new examples very simply as follows: given
a new examplex to classify, we simply compute the prob-
ability weight that the hypothesis mixtureD puts onx, and
output 1 or 0 depending on whether this weight is large or
small. We give the formal proof of Theorem 7 in [14].

We note that after years of intensive research, no poly(n)
time uniform distribution PAC learning algorithm is known
which can learnk(n)-leaf decision trees for anyk(n) =
ω(1); indeed, such an algorithm would be a major break-
through in computational learning theory. (Avrim Blum
has offered a $1000 prize for solving a subproblem of the
k(n) = n case and a $500 prize for a subproblem of the
k(n) = log n case; see [4].) The fastest algorithms to date
[12, 3] can learnk(n)-leaf decision trees under the uniform
distribution in timenlog k(n). This suggests that it may be
impossible to learn mixtures of a superconstant number of
product distributions over{0, 1}n in polynomial time.

6. Conclusions and Future Work

We have shown how to learn mixtures of any constant
number of product distributions over{0, 1}n, and more
generally over{0, . . . , b− 1}n, in polynomial time.

The methods we use are quite general and can be adapted
to learn mixtures of other types of multivariate product dis-
tributions which are definable in terms of their moments.
Along these lines, we have used the approach in this pa-
per to give a PAC-style algorithm for learning mixtures of
k = O(1) axis-aligned Gaussians in polynomial time [13].
(We note that while some previous work on learning mix-
tures of Gaussians from a clustering perspective can handle

k = ω(1) many component Gaussians, all such work as-
sumes that there is some minimum separation between the
centers of the component Gaussians, since otherwise clus-
tering is clearly impossible. In contrast, our result in [13] —
in which we do not attempt to do clustering but instead find
a hypothesis distribution with small KL-divergence from
the target mixture — does not require us to assume that the
component Gaussians are separated.) We expect that our
techniques can also be adapted to learn mixtures of other
distributions such as products of exponential distributions
or beta distributions.

It is natural to ask if our approach can be extended to
learn mixtures of distributions which are not necessarily
product distributions; this is an interesting direction for fu-
ture work. Note that our main algorithmic ingredient, algo-
rithm WAM, only requires that that the coordinate distribu-
tions be pairwise independent.

Finally, one may also ask if it is possible to improve
the efficiency of our learning algorithms — can the running
times be reduced tonO(k2), to nO(k), or evennO(log k)?

References

[1] S. Aaronson. Multilinear formulas and skepticism of quan-
tum computation. InProc. 36th STOC, 118–127, 2004.

[2] S. Arora and R. Kannan. Learning mixtures of arbitrary
Gaussians. InProc. 33rd STOC, 247–257, 2001.

[3] A. Blum. Rank-r decision trees are a subclass ofr-decision
lists. Information Processing Letters, 42(4):183–185, 1992.

[4] A. Blum. Learning a function ofr relevant variables (open
problem). InProc. 16th COLT, 731–733, 2003.

[5] A. Blum, M. Furst, J. Jackson, M. Kearns, Y. Mansour, and
S. Rudich. Weakly learning DNF and characterizing statis-
tical query learning using Fourier analysis. InProc. 26th
STOC, 253–262, 1994.

[6] S. Chawla, C. Dwork, F. McSherry, A. Smith, and H. Wee.
Towards privacy in public databases. To appear, Theory of
Cryptography, 2005.

[7] T. Cover and J. Thomas.Elements of Information Theory.
Wiley, 1991.

[8] M. Cryan.Learning and approximation algorithms for prob-
lems motivated by evolutionary trees. PhD thesis, University
of Warwick, 1999.

[9] M. Cryan, L. Goldberg, and P. Goldberg. Evolutionary trees
can be learned in polynomial time in the two state general
Markov model. SIAM Journal on Computing, 31(2):375–
397, 2002.

[10] S. Dasgupta. Learning mixtures of gaussians. InProc. 40th
FOCS, 634–644, 1999.

[11] S. Dasgupta and L. Schulman. A Two-round Variant of EM
for Gaussian Mixtures. InProc. 16th UAI, 143–151, 2000.

[12] A. Ehrenfeucht and D. Haussler. Learning decision trees
from random examples. Information and Computation,
82(3):231–246, 1989.

[13] J. Feldman, R. O’Donnell, and R. Servedio. PAC Learning
mixtures of axis-aligned Gaussians. manuscript, 2005.

[14] J. Feldman, R. O’Donnell, and R. Servedio. Learning
mixtures of product distributions over discrete domains.
Columbia University technical report, CUCS-029-05, 2005.

[15] Y. Freund and Y. Mansour. Estimating a mixture of two
product distributions. InProc. 12th COLT, 183–192, 1999.

[16] S. Goreinov, E. Tyrtyshnikov, and N. Zamarashkin. A theory
of pseudoskeleton approximations.Linear Algebra and its
Applications, 261:1–21, 1997.

[17] W. Hoeffding. Probability inequalities for sums of bounded
random variables.Journal of the American Statistical Asso-
ciation, 58:13–30, 1963.

[18] M. Kearns. Efficient noise-tolerant learning from statistical
queries.Journal of the ACM, 45(6):983–1006, 1998.

[19] M. Kearns, Y. Mansour, D. Ron, R. Rubinfeld, R. Schapire,
and L. Sellie. On the learnability of discrete distributions. In
Proc. 26th STOC, 273–282, 1994.

[20] B. Lindsay.Mixture models: theory, geometry and applica-
tions. Institute for Mathematical Statistics, 1995.

[21] E. Mossel and S. Roch. Learning nonsingular phylogenies
and hidden markov models. InProc. 37th STOC, 366-375,
2005.

[22] A. Ray. Personal communication, 2003.
[23] R. A. Redner and H. F. Walker. Mixture densities, maximum

likelihood and the EM algorithm.SIAM Review, 26:195–
202, 1984.

[24] A. Smith. Personal communication. 2005.
[25] D. Titterington, A. Smith, and U. Makov.Statistical analysis

of finite mixture distributions. Wiley & Sons, 1985.
[26] S. Vempala and G. Wang. A spectral algorithm for learning

mixtures of distributions. InProc. 43rd FOCS, 113–122,
2002.

A. Algorithm WAM

Algorithm WAM has access to samples from the mixture
Z and takes as input parametersε, δ > 0.
Algorithm WAM :

1. Let εwts = ε3, τ = ε2/n2, and εmatrix = τk+1.

2. Grid over the mixing weights, producing
values π̂1, . . . , π̂k ∈ [0, 1] accurate to within
±εwts. If s of these weights are smaller
than ε− εwts, eliminate them and treat k
as k − s in what follows.

3. Make empirical estimates ĉorr(j, j′) for all
correlations corr(j, j′) = E[ZjZj′] = µ̃j · µ̃j′

for j 6= j′ to within ±εmatrix, with
confidence 1− δ.

4. Let M be the k × n matrix of unknowns
(Mij) = (µ̃i

j), and try all possible
integers 0 ≤ r∗ ≤ k for the essential rank
of M .

5. Grid over k − r∗ vectors
ûr∗+1, . . . , ûk ∈ [−1, 1]k to within ±εmatrix in
each coordinate and augment M with
these as columns, forming M̂ ′.

︷ ︸︸ ︷J ︷ ︸︸ ︷J ′

︸ ︷︷ ︸
k columns ofJ

︷ ︸︸ ︷

t columns
ûr∗+1, . . . , ûk

which augmentM︷ ︸︸ ︷n columns ofM

︸ ︷︷ ︸
columns ofJ̄




k rows
of M

µ̃1
1 · · · · · ·

...

...

...

...

µ̃1
k · · · · · ·

· · · · · · µ̃1
n

...

...

...

...

︸ ︷︷ ︸
n + (k − r∗) columns ofM̂ ′

Figure 2. A depiction of the matrix used by WAM . For ease of illustration the columns J of M are
depicted as being the rightmost columns of M, and the columns J ′ from the augmenting columns
ûk−t+1, . . . , ûk are depicted as being the leftmost of those augmenting columns.

6. Try all possible subsets of exactly k
column indices of M̂ ′; write these
indices as J = J ∪ J ′, where J
corresponds to columns from the original
matrix M and J ′ corresponds to
augmented columns. Grid over [−1, 1] for
the entries of M in columns J to within
±εmatrix, yielding { ˆ̃µi

j : i ∈ [k], j ∈ J}. Let

M̂ ′
J denote the matrix of estimates for

all the columns in J . (See Figure 2.)

7. Let J̄ denote the columns of M other
than J , and let MJ̄ denote the matrix of
remaining unknowns formed by these
columns. Let B̂ be the matrix with rows
indexed by J̄ and columns indexed by J
whose (j, j′) entry is the estimate ĉorr(j, j′)
of µ̃j · µ̃j′ if j′ ∈ J , or is 0 if j′ ∈ J ′.
Using the entries of B̂ and M̂ ′

J (all of
which are known), solve the system
M >̄

J M̂ ′
J = B̂ to obtain estimates ˆ̃µi

j for
the entries of MJ̄ (which are the
unknown µ̃i

j ’s), thus producing estimates
ˆ̃µi

j for all entries of M . (If the

matrix M̂ ′
J is singular, simply abandon

the current gridding.)

8. From the estimated values ˆ̃µi
j , compute

the estimates µ̂i
j = ˆ̃µi

j/
√

π̂i for all i, j.
(Note that π̂i is never 0 since each is
at least ε− εwts > 0.)

9. Output the candidate
(〈π̂1, . . . , π̂k〉, 〈µ̂1

1, µ̂
1
2, . . . , µ̂

k
n〉).

B. Linear algebra necessities

We will need the following; see [14] for proofs.

Corollary 5 LetA be ak × n real matrix withσk(A) ≥ ε.
Then there exists a subset of columnsJ ⊆ [n] with |J | = k
such thatσk(AJ) ≥ ε/

√
k(n− k) + 1.

Proposition 8 Let A be a k × n matrix with columns
a1, . . . , an. Fix any r∗ and let ur∗+1, . . . , uk be the left
singular vectors corresponding to the smallest singular
valuesσr∗+1, . . . , σk of A. Let A′ be A with the vec-
tors ur∗+1, . . . , uk adjoined as columns. Thenσk(A′) ≥
min{1, σr∗(A)}, and for all r∗ + 1 ≤ ` ≤ k and for all
columnsaj of A we have|aj · u`| ≤ σr∗+1(A).

Corollary 9 LetA be a nonsingulark×k matrix,b be ak-
dimensional vector, andx the solution toAx = b. Assume
that ‖x‖∞ ≤ 1. SupposeA′ is a k × k matrix such that
each entry ofA − A′ is at mostεmatrix in magnitude, and
assume thatεmatrix < σk(A)/2k. Letb′ be ak-dimensional
vector satisfying‖b− b′‖∞ ≤ εrhs. Let x′ be the solution
to A′x′ = b′. Then we have

‖x− x′‖∞ ≤ O(k)
εmatrix + εrhs

σk(A)
.

C. Proof of Theorem 4

We go through the algorithm step by step, as it appears
in Appendix A. In Step 1 of WAM, we define constants
εwts = ε3, τ = ε2/n2, andεmatrix = τk+1, which we use
throughout the proof.

In Step 2 of WAM the algorithm will grid over estimates
π̂i that satisfy|π̂i − πi| for all i. In this case, any mixing
componentXi whose mixing weightπi is at leastε will
not be eliminated. Since we need not be concerned with
accuracy for the means of the other mixing components, we
can ignore them and assume for the rest of the proof that
πi ≥ ε for all i.

Now we come to the main work in the proof of correct-
ness of Theorem 4: namely, showing that in Steps 3–7 of
algorithm WAM, accurate estimates for thẽµi

j ’s are pro-
duced. Our goal for most of the rest of the proof will be to
show we obtain estimates̃̂µi

j satisfying| ˆ̃µi
j − µ̃i

j | ≤ ε̃ := ε2

for all i. To that end, letr∗ = r∗τ (M), theτ -essential rank
of M . We will quickly dismiss the two easy cases,r∗ = 0
andr∗ = k; we then treat the general case0 < r∗ < k.

r∗ = 0 case.By definition, in this caseσ1(M) ≤ τ ≤ ε̃.
Sinceσ1(M) is at least as large as the magnitude ofM ’s
largest entry we must therefore have|µ̃i

j | ≤ ε̃ for all i, j.
Now when WAM triesr∗ = 0 in Step 4, tries thek standard
basis vectors for̂u1, . . . , ûk in Step 5, and chooses all of
these vectors forJ in Step 6, it will setB̂ = 0 in Step 7 and
get ˆ̃µi

j = 0 for all i, j when it solves the linear system. This
is within an additiveτ ≤ ε̃ of the true values, as desired.

r∗ = k case. By definition, it’s not hard to see that in
this case we must haveσk(M) ≥ τk. Now consider when
WAM tries r∗ = k in Step 4. Step 5 becomes vacuous.
By Corollary 5 there is some set ofk columnsJ = J
such thatσk(MJ) ≥ σk(M)/

√
k(n− k) + 1 ≥ τk/n. In

Step 6 WAM will try out thisJ and grid the associated en-
tries to within±εmatrix. In Step 7 the algorithm will use
only ĉorr’s in forming B̂ and these will also be correct to
within an additive±εmatrix. We can now use Corollary 9
— note thatεmatrix = τk+1 ≤ (τk/n)/2k ≤ σk(MJ)/2k,
as necessary. This gives estimates in Step 7 satisfying
| ˆ̃µi

j − µ̃i
j | ≤ O(k)2εmatrix

τk/n
= O(knτ) ≤ ε̃, as desired.

0 < r∗ < k case.In this case, by definition of the essential
rank, we have

τσr∗(M) ≥ σr∗+1(M) ≥ τk. (2)

In Step 4 WAM will try out the correct value forr∗

and in Step 5 WAM will grid over vectorŝur∗+1, . . . , ûk

that are within±εmatrix in each coordinate of the ac-
tual last left singular vectors ofM , ur∗+1, . . . , uk. Let
M ′ denote the matrixM with these true singular vec-
tors adjoined. By Proposition 8 we haveσk(M ′) ≥
min{1, σr∗(M)}. From the crude upper boundσr∗(M) ≤
‖M‖F =

√∑
i,j(µ̃

i
j)2 ≤ √

kn, we can restate this as

simply σk(M ′) ≥ σr∗(M)/
√

kn. Now applying Corol-
lary 5 we conclude there is a subsetJ of M ′’s columns

with |J | = k such that

σk(M ′
J) ≥ σk(M ′)/

√
k(n− k) + 1 ≥ σr∗(M)/kn.

(3)
In Step 6, WAM will try this set of columnsJ = J ∪ J ′; it
will also grid estimates for the entries in this column that
are correct up to an additive±εmatrix. Note that WAM
now has an̂M ′

J that has all entries correct up to an addi-

tive ±εmatrix. Now consider the matrix̂B WAM forms in
Step 7. For the columns corresponding toJ the entries are
given by ĉorr’s, which are correct to within±εmatrix. For
the columns corresponding toJ ′ the entries are 0’s; by the
second part of Proposition 8 these are correct up to an addi-
tive σr∗+1(M). We now use Corollary 5 to bound the error
resulting from solving the systemM >̄

J M̂ ′J = B̂ in Step 7.
To check that the necessary hypothesis is satisfied we com-
bine (2) and (3) to obtainσk(M ′

J)/2k ≥ σr∗(M)/2k2n ≥
τk−1/2k2n ≥ τk+1 = εmatrix. Now Corollary 9 tells us
that theˆ̃µi

j produced satisfy

| ˆ̃µi
j − µ̃i

j | ≤ O(k)
εmatrix + max{εmatrix, σr∗+1(M)}

σk(M ′
J)

≤ O(k2n)
εmatrix + σr∗+1(M)

σr∗(M)
,

where in the last step we used (3). But by (2) we
have εmatrix/σr∗(M) ≤ εmatrix/τk−1 = τ2 and also
σr∗+1(M)/σr∗(M) ≤ τ . Thus we have| ˆ̃µi

j − µ̃i
j | ≤

O(k2n)τ ≤ ε̃, as desired.
It remains to bound the error blowup in Step 8. By this

point we have values for theπi’s that are accurate to within
±εwts, and further, allπi’s are at leastε. We also have val-
ues for allµ̃i

j ’s that are accurate to within±ε̃. Since the
functiong(x, y) = y/

√
x satisfies

sup
x∈[ε,1]
|y|≤1

∣∣∣∣ ∂

∂x
g(x, y)

∣∣∣∣ = 2ε−3/2, sup
x∈[ε,1]
|y|≤1

∣∣∣∣ ∂

∂y
g(x, y)

∣∣∣∣ < ε−1/2,

the Mean Value Theorem implies that in Step 8 our re-
sulting estimateŝµi

j are accurate to within additive error
εwts · 2ε−3/2 + ε̃ · ε−1/2 ≤ ε, as necessary.

This completes the proof of WAM’s correctness. As
for the running time, it is easy to see that the dominat-
ing factor comes from gridding over the entries ofMJ and
ur∗+1, . . . , uk. Since there arek2 entries and we grid to
granularityεmatrix = τk+1 = poly(n/ε)k, the overall run-
ning time ispoly(n/ε)k3

; i.e.,poly(n/ε) for constantk.

