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Abstract

We consider the problem of learning mixtures of prod-
uct distributions over discrete domains in the distribution
learning framework introduced by Kearns et al. [19]. We
give apoly(n/¢) time algorithm for learning a mixture of
k arbitrary product distributions over the-dimensional
Boolean cube{0,1}" to accuracye, for any constant.
Previous polyn)-time algorithms could only achieve this
for k = 2 product distributions; our result answers an open
guestion stated independently in [8] and [15]. We further
give evidence that no polynomial time algorithm can suc-
ceed whert is superconstant, by reduction from a notorious
open problem in PAC learning. Finally, we generalize our
poly(n/e) time algorithm to learn any mixture &f= O(1)
product distributions ovef0, 1, ...,b}™, foranyb = O(1).

1. Introduction

Given distributionsX!, ..., X* over R™ and mixing
weightsr!, 7% that sum to 1, a draw from the mixture
distributionZ is obtained by first selectingwith probabil-
ity ¢ and then making a draw froX®. Mixture distribu-
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a hypothesismixture Z’ of k distributions fromC which
(with high confidence), is-close to the unknown mix-
ture. The learning algorithm should run in timely(n/¢).
The standard notion of “closeness” between distributibns
and Z’, proposed by Kearns et al. and used in this work,
is the Kullback-Leibler (KL) divergence{or relative en-
tropy), defined akL(Z||Z') := [ Z(x (x)/Z'(x ))

(We remind the reader (see e.g. [7]) thbﬂ: -7 <
(21n2)\/KL(Z||Z') where||-||; denotes total variation dis-
tance; hence if the KL divergence is small, then the total
variation distance is also small.)

In this paper we learn mixtures pfoduct distributions
over the Boolean cubf, 1}, and more generally over the
b-ary cube{0,...,b—1}"; i.e., the classe€ will consist
of distributionsX*® whosen coordinates are mutually in-
dependent distributions ové0, 1} and{0,...,b — 1}, re-
spectively. (Of course, the algorithm works for product dis-
tributions overx” for any alphabekE with || = b.) Such
learning problems have been well studied in the past, as we
now describe.

Related Work. In [19] Kearns et al. gave efficient algo-
rithms for learning mixtures oHamming balls these are
product distributions ovef0,1}™ in which all the coor-
dinate mean&[X’] must be eithep or 1 — p for some

tions arise in many practical scientific situations as diverse unknownp which is fixed over all mixture components.

as medicine, geology, and artificial intelligence; indeed,
there are several textbooks devoted to the subject [25, 20].

Assuming that data arises as a mixture of some distribu-

tions from a class of distributions, it is natural to try to

Although these algorithms can handle mixtures with=

O(1) many components, the fact that the components are
Hamming balls rather than general product distributions is
a very strong restriction. (The algorithms also have some

learn the parameters of the mixture components. Our work additional restrictionsp has to be bounded away frof2,

addresses the learning problem in the PAC-style model in- . . TWI
In this framework we are the learner is also given oracle access to the target distribu-

tion Z — i.e. she can submit an inputand get back the

troduced by Kearns et al. [19].
given a clasg of probability distributions oveR™ and ac-

cess to random data sampled from an unknown mix#re
of k& unknown distributions fron€. The goal is to output

and a more generous learning scenario is assumed in which

probability mas< assigns ta.)
More recently, Freund and Mansour [15] gave an effi-
cient algorithm for learning a mixture of two general prod-
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et al. [9, 8] gave an efficient algorithm for learning phylo-
genetic trees in the two-state general Markov model; for the
special case in which the tree topology is a star, this gives an



algorithm for learning an arbitrary mixture of two product avoidable. In Theorem 7 we give a reduction from a noto-
distributions over{0,1}™. Both [15] and [8] stated as an rious open question in computational learning theory (the
open question the problem of obtaining a polynomial-time problem of learning decision trees of superconstant size)
algorithm for learning a mixture of > 2 product distri- to the problem of learning a mixture of any superconstant
butions. Indeed, recent work of Mossel and Roch [21] on number of product distributions ovéf, 1}". This implies
learning phylogenetic trees argues that the rank-deficiencythat solving the mixture learning problem for ahy= w(1)

of transition matrices is a major source of difficulty, and this would require a breakthrough in learning theory, and sug-
may indicate whyk = 2 has historically been a barrier — gests that Theorem 1 may be essentially the best possible.
a two-row matrix can be rank-deficient only if one rowisa  We also generalize our result to learn a mixture of prod-
multiple of the other, whereas the general casg of 2 is uct distributions ovef0, ..., b — 1}" for any constant:

much more complex.

In other related work, there is a vast literature in statis- . A
tics on the general problem of analyzing mixture data—seebe any “”"”QW” mixture Gf product d|§tr|but|ons over
[20, 23, 25] for surveys. To a large degree this work centers{07 ---,b—1}". Then there is an a_tlgonthm tha.t, given
on trying to find the exact best mixture model (in terms of samples fronZ and anye7§ > 0as |.n'puts, runs in time
likelihood) which explains a given data sample; this is com- pqum/e), log(1/4) and with probabilityl — 4 outputs a
putationally intractable in general. In contrast, our main m|>§tur<_eZ Of & pro/duct distributions ove{0, ..., b — 1}
goal (and the goal of [19, 15, 9, 8, 21]) is to obtaifficient satisfyingKL(Z||Z') < e.

algorithms that produceclose hypotheses. Taking b = k, this gives a polynomial time algorithm
We also note that there has also been recent interestor |earningk-state Markov Evolutionary Trees with a star

in learning mixtures of:.-dimensional Gaussians from the  topology. (Note that the main result of Cryan et al. [9, 8] is

point of view ofclustering[10, 11, 2, 26]. In this framework  an algorithm for learning two-state METs with an arbitrary

one is given samples from a a mixture of “well-separated” topology; hence our result is incomparable to theirs.)
Gaussians, and the goal is to classify each point in the sam-

ple according to which Gaussian it came from. We discu552 Overview of our approach
the relationship between our scenario and this recent liter-—
ature on Gaussians in Section 6; here we emphasize th .
throughout this paper we make no “separation” assumptionzé'l' ThewAM algorithm
(indeed, no assumptions at all) on the component product
distributions in the mixture.

Finally, the problem of learning discrete mixture distri- : . . .
. o . WAM is a general algorithm taking as input a parameter
butions may have applications to other areas of theoreti-

. . > 0 and having access to samples from an unknown mix-
cal computer science, such as database privacy [24, 6] an(?ure Z of k product distributionsX? Xt Here each
guantum complexity [1]. , S G

X! = (Xi,...,X!) is anR"-valued random vector with
independent coordinates. The goal of WAM is to output
accurate estimates for all of timeixing weightst? andco-
ordinate meang, := E[X’]. Note that a product distribu-
tion over{0,1}" is completely specified by its coordinate

Theorem 2 Fix anyk = O(1) andb = O(1), and letZ

The cornerstone of our overall learning algorithms is an
algorithm we call WAM (for WEIGHTS AND MEANS).

1.1. Our results

In this paper we give an efficient algorithm for learn-
ing a mixture ofk = O(1) many product distributions over

0,1}". Our main th is the following: means.

{0,1}". Our main theorem is the following: More precisely, WAM outputs bst of poly(n/e) many
Theorem 1 Fix anyk = O(1), and letZ be any unknown cand|dates(<fr1_, L), <ﬂ%’ﬂ%v_ o ’ﬂfz_»; each candi-
mixture ofk product distributions ovef0, 1}". Then there date may be viewed as a possible estimate for the correct
is an algorithm that, given samples frdfrand anye, § > 0 mixing weights and coordinate means. We will show that

as inputs, runs in timeoly (n/¢) - log(1/8) and with prob- with high probability at least one of the candidates output

ability 1 — & outputs a mixturé’ of k product distributions Py WAM is parametrically accurateroughly speaking this
over{0, 1}" satisfyingKL(Z||Z') < e. means that the candidate is a good estimate in the sense

that in the sense that® — 7| < e for eachi and that
We emphasize that our algorithm requires none of the ad-|ﬂ§ — ﬂ§| < e for eachi andj. However there is a slight
ditional assumptions — such as minimum mixing weights twist: if a mixing weightr? is very low then WAM may not
or coordinate means bounded away from/2, or 1 — that receive any samples froiX’, and thus it is not reasonable
appear in some work on learning mixture distributions. to require WAM to get an accurate estimate f6r. . . , u,.
Our algorithm runs in timén/e)kd,which is polynomial On the other hand, if? is so low then it is not very impor-
only if k is constant; however, this dependence may be un-tant to get an accurate estimate fdr, . . ., u!, becauséX®



has only a tiny effect oiZ. We thus make the following
formal definition:

Definition 1 A candidate((#!, ..., &%), (il, i3, ...
is said to beparametrically-accuratef:

1. |7t — 7t <eforall 1 <i<k;

2. \ﬂ;ﬁ —M§-| <eforalll <i<Ekandl <j < nsuch
thatm? > e.

The main technical theorem in this paper, Theorem 4,
shows that so long as th¥®’s take values in a bounded
range, WAM will with high probability output at least one
candidate that is parametrically accurate. The proof of this

theorem uses tools from linear algebra (singular value the-

ory) along with a very careful error analysis.

Remark 3 As will be clear from the proof of Theorem 4,
WAM will succeed even if the mixture distributioXs are
only pairwise independent, not fully independent. This may
be of independent interest.

2.2. FromWAM to PAC learning (binary case)

As we noted already, in the binary case a product distri-
bution on{0,1}" is completely specified by its coordi-

P, (withj = 1,...,nandl = 0,...,b — 1) wherep} ,

is the probability that a draw frorTX;i yields £. The sim-

ple but useful observation that underlies our extension to
{0,...,b—1}" is the following: just as any distribution
over{0, 1} is completely specified by its mean, any distri-
bution X’ over {0,...,b— 1} is completely specified by
its firstb — 1 momentsE[X], B[(X%)?],..., E[(X%)"1].

Our approach is thus to run WAM — 1 times; for{ =
1,...,b—1thesth run will sample from the mixture distri-
bution given by converting each samplg, ..., z,,) to the
sample(z{,...,2%). We then carefully combine the lists
output by the runs of WAM, and follow similar steps to (1)
and (2) above to find a good hypothesis in the combined list.

2.4. Outline

Most of the main body of this paper, Section 3, is ded-
icated to explaining the ideas behind the WAM algorithm
and its proof of correctness. (The detailed algorithm and
proof appear in Appendices A through C.) We discuss the
application of WAM to theb-ary case in Section 4, and in
Section 5 we detail our reduction from a notorious open
guestion in computational learning theory. We conclude in
Section 6 with a discussion of applications and future work.

The two steps outlined in Section 2.2 are conceptually
straightforward, but the details are quite technical, and can

nate means; thus a candidate can essentially be viewed 3Se found in the full version of this paper [14]

a hypothesis mixture of product distributions. (This is not

precisely correct, as the candidate mixing weights may not

precisely sum to 1 and the candidate means might be outside>- 1€ WAM Algorithm

the rang€0, 1] by as much as.) To complete the learning
algorithm described in Theorem 1 we must give an efficient
procedure that takes the list output by WAM and identifies
a candidate distribution that is closeZdn KL divergence,

as required by Theorem 1. We do this in two steps:

1. We first give an efficient procedure that converts a
parametrically accurate candidate into a proper hy-
pothesis distribution that is close # in KL diver-

In this section we describe our main algorithm, WAM.
We assume a general mixture setting: WAM has access
to samples fronZ, a mixture ofk product distributions
X', ..., X* with mixing weightsz®, ... 7*. EachX®
(X¢,...,X%) is ann-dimensional vector-valued random
variable. We will further assume that all components’ coor-
dinates are bounded in the rarjgd , 1]; i.e., X" € [-1,1]"
with probability 1. We have choségn 1, 1] for convenience;

gence. We apply this procedure to each candidate inpy scaling and translating samples we can get a theorem

the list output by WAM, and thus obtain a list of mix-
tures (hypotheses), at least one of which is clos to
in KL divergence.

. We then show that a maximume-likelihood procedure
can take a list of hypotheses, at least one of which is
good (close t& in KL divergence), and identify a sin-
gle hypothesis which is good.

2.3. Larger alphabets
In the larger alphabet setting, is a mixture ofk prod-

uct distributionsX!, ..., X* over {0,...,b—1}". Now
each mixture componerX® is defined bybn parameters

about any interval such a8, 1] or [0, (b — 1)*~!], with an
appropriate scaling of. We write i’ := E[X}] € [-1,1]
for the mean of thgth coordinate oiX®.

Our main theorem is the following:

Theorem 4 There is an algorithnrWAM with the following
property: for anyk = O(1) and anye, § > 0, WAM runs

in timepoly(n/e) -log(1/4) and outputs a list opoly(n/e)
many candidates, at least one which (with probability at
least] — ) is parametricallye-accurate.

We give the full proof of correctness in Appendix C. The
remainder of this section is devoted to explaining the main
ideas behind the algorithm and its analysis.



3.1. Overview of WAM Z to estimate the pairwise correlations between the co-
ordinates ofZ. Specifically, for all pairs of coordinates
There is of course a brute-force way to come up with a 1 <j < j’ < n, the algorithm WAM empirically estimates
list of candidateg (7, ..., #%), (4, 43, ..., k), at least
one of which is parametrically-accurate: simply “try all

possible values® for the parameters up to additive accuraCyrne estimation will be done to within additive accuracy
e. In other words, try all value$, e, 2¢, 3¢, ..., 1 for the

L . ématrix = poly(e/n); specifically,ematrix == 781, where
mixing weights and a[l values, _“1 T ) 1—¢,1for T := €2/n?. With high (i.e.1 — §) confidence we will get
the means, We call this approach g_nddmg ) U.nfort'unatelly good such estimates in timly(n/¢). Again, for the pur-
there ared(n) para_mete_rs in a candidate so th|_s naive grid- poses of this intuitive description of WAM we will hence-
ding g‘{a}tegy_ requires time (and produces a list of length) forth assume we have exactly correct values for each value
(1/16_2] b ’V.Vh.'gh 'Sbcf.a:;yvvzifeptibllf' o Il oai corr(j,7'). (As an aside, this is the only part of the algo-

_'hebasic idea benhin IS as lollows. given all pair- i m that uses samples fro#y as we will shortly see, this
wise correlations between the coordinatesZofit can be justifies Remark 3.)
shown that there are @onstantnumber of “key” parame- Observe that sinc&X' and X', are (pairwise) indepen-
ters that suffice to determine all others. Hence in polyno- J J

o g . . dent we have
mial time we can empirically estimate all the correlations,

corr(j, j') = E[Z;Z;/].

try all possibilities for the constantly many key parameters, . ko, i
and then determine the remainifgn) parameters. corr(j,j)) = E[Z;Z;] = ;177 E[X;X}]

The main challenge in implementing this idea is that it is ko . . ko
nota priori clear that the error incurred from gridding the = Y, mEXEX)]| = > 7' ujuj.
key parameters does not “blow up” when these are used to i=1 i=1

in the remainin rameters. The heart of our analysi , , - .
obtain the remaining parameters. The heart of our a alysis o+ s define o= \/;u} and wite ji, —

involves showing that it suffices to grid the key parameters

~1 ~2 ~k k -
to granularitypoly(e/n) in order to get final erro. (5, A7 A7) € [=1,1]7 for 1 < j < n. We thus have

N~
3.2. The algorithm, and intuition for the analysis corr(jJ7) = s - iy
where- denotes the dot product R*. The remaining task
We will now go over the steps of the algorithm WAM for WAM is to determine all the value/s;c. Since WAM
and at the same time provide an “intuitive” discussion already has values for eaeti and eachr® > ¢ > 0, it
of the analysis. A concise description of the steps of suffices for WAM to determine all the valuéé and then
WAM is given in Appendix A for the reader’s convenience. ivide by V7.
Throughout this section we will assume for the sake of dis- At this point WAM has empirically estimated values for
cussion that the steps we take incur no error; a sketch of they)| e pairwise dot productg; - /i;:, j # j/, and as men-
actual error analysis appears in Section 3.3. tioned, for intuitive purposes we are assuming all of these
The first step of WAM is to “grid” the values of the miX-  estimates are exactly correct. Letdenote thé: x n matrix
ing weights{r*} to granularitye,, = ¢’. Since there  \yhose(i, j) entry is the unknowiii’; i.e., thejth column of
are only constantly many mixing weights, this costs just a /s ;. The statement that WAM has all the dot products
multiplicative factor ofpoly(1/¢) in the running time. The fi -/lj/‘ for j + j' is equivalent to saying that WAM has all
remainder of the algorithm “assumes” that the values cur- the off-diagonalentries of the Gram matri/ T M. We are
rently being gridded for the mixing weights are the nearly- thus led to the central problem WAM solves:

correct VaIL.'e.S of_t_he mixing v_veights. In fact, fqr the PUr " central Task: Given (estimates for) the off-diagonal en-
poses of this intuitive description of WAM, we will simply tries of the Gram matrix\/ T M, obtain (estimates of) all

assume we have_exgctly correct values. . possible candidates for the entries of the n matrix M.
The next step is simple: Suppose sosttd the & mixing

weights we have are smaller tharBy the definition of be- (A remark: The diagonal entries 8f " M are the quan-

ing “e-parametrically accurate”, we are not obliged to worry titiesji;-fi; = Zle i (,u;l)z and there is no obvious way to

about coordinates with such small mixing weights; we will estimate these quantities using samples f&nAlso there

simply forget about these mixture components completely are n such quantities, which is too many to “grid over”.

and treak ask—s in what follows. (We assign arbitrary val-  Nevertheless, the fact that we are missing the diagonal en-

ues for the candidate means of the forgotten components.}ries of M T M will not play an important role for WAM.)

We may henceforth assume thdt> ¢ > 0 for all i. In general, a complete x n Gram matrix determines the
The next step of algorithm WAM is to use samples from original £ x n matrix matrix up to isometries cR*. Such



isometries can be described by k orthonormal matrices,  the u;'s are simply0! Thus we now have an instance of
and thesé:? “degrees of freedom” roughly correspond to the Central Task with a full-rank matrix, a case we already
the constantly many key parameters that we grid over in thesolved. (Technically, may now be as large as+ (k — 1),

end. A geometric intuition for the Central Task is the fol- but this is stillO(n) and hence no time bounds are affected.)
lowing: there arex unknown vectors ifR* and we have all ~ Given all entries of\/” we certainly have all entries dff,

the “angles” between them (more precisely, the dot prod- and so we have solved the Central Task and completed the

ucts) between them. Thus fixirigof the vectors (henck? algorithm WAM in the rank-deficient case.

unknown coordinates) is enough to completely determine

the remainder of the vectors. 3.3. Sketch of the actual analysis o0fvAM

The full rank case. We proceed with our intuitive descrip-

tion of WAM and show how to solve the Central Tagken The preceding intuitive discussion of algorithm WAM

M has full rank Having done this, we will give the actual neglected all error analysis. Correctly handling the error
steps of the algorithm that show how the full rank assump- analysis is the somewhat subtle issue we discuss in this sec-
tion can be removed. tion. As mentioned, the full proof is given in Appendix C.

So suppose for now that/ has full rank. Then there The mainissue in the error analysis comes in understand-
exists some set of columns of M that are linearly inde-  ing the right notion of the rank ot/ — since of all our grid-
pendent, say/ = {j1,...,jk} C [n]. Algorithm WAM ding inevitably yields only approximations of the entries of
tries all () = poly(n) possibilities for the set/ and M, the actual notion of rank is far too fragile to be of use.
then grids over the vectorg;, , ..., ii;, with granularity Recall the outline of the algorithm in our idealized intuition
ematrix = poly(e/n) in each coordinate. As usual for (rank-deficient case):
the purposes of intuition, we assume that we now have

fij,s - -, fij, exactly correct. 7 = dimension of subspace in whigh’s lie
Let M; be thek x k matrix given by the/-columns of = augmentM by k — r orthogonak;’s, forming M’
M, and letM 7 be thek x (n — k) matrix given by deleting — M’ now full rank

the J-columns ofM. WAM now has the entries af/; and
must compute the remaining unknowng,;. Since WAM _ T
has all of the off-diagonal entries 8f ™ M, it has all of the = solve linear system!’ ; Mz = B
values ofB = M L M;. (See Figure 1.) But the columns
of M; are linearly independent, sbf; is invertible and
hence WAM can computg/ . = BM; " in poly(n) time.
Having done this, WAM has all the entries df and so the
Central Task is complete, as is the algorithm.

The general case Of course in general)/ does not have

full rank. This represents the main conceptual problem we

faced in rigorously solving the Central Task. Indeed, we = find “strongly” nonsingulak x k submatrix}/_;

believe that handling rank-deficiency is the chief concep- = solve linear systenM’}Mfy — B (1)

tual problem for the whole learning mixtures question, and

that our linear algebraic methods for overcoming it (the de- The real difficulty of the error analysis comes in the last

scription of which occupies the remainder of Section 3) are step: controlling the error incurred from the solution of the

the main technical contribution of this paper. linear system. Since we will only have approximately cor-
Supposerank(M) = r < k. By trying all possible  rect values for the entries df/’,; and B, we need to ana-

values (only constantly many), algorithm WAM can be as- lyze the additive error arising from solving a perturbed lin-

= find nonsingulak x k submatrixM’;

For the purposes of the error analysis, we reinterpret the
operation of WAM as follows:

r* = dimension of subspace in which tfig’'s “essentially” lie
= augmentM by k — r “essentially” orthogonal:;’s,
forming M’ = M’ now “strongly” full rank

sumed to knowr. Now by definition ofrank(M) = r ear system. Standard results from numerical analysis (see
there must exist — r orthonormal vectors,. 1, ..., u; € Corollary 5 in Appendix B) let us bound this error by a
[—1, 1]* which are orthogonal to all columns 8f. WAM function of: (i) the error inM/’; and B, and (i) the smallest
grids over these vectors with granulariyi.six, incurring singular valueof M, denoted by, (M’).

another multiplicativepoly(n/¢) time factor. As usual, Let us briefly recall some notions related to singular val-

assume for the intuitive discussion that we now have theues: Given any: x n matrix M, the first (largest) singular
u;'s exactly. Let these vectors be adjoined as columns tovalue of M is oy (M) = maxy, |,=1 [[u{ M||2, and au,
M, forming M’. But now the matrix)M’ has full rank; achieving this maximum is taken as the fifigtft) singular
furthermore, WAM knows all the off-diagonal elements vectorof M. The second singular value 81 is oo (M) =
of (M")TM’, i.e. all the pairwise dot products df/’’s MAX||yy | =1,uz Luy ||Ug M||2, @andus is the second left sin-
columns, since all of the new dot products which involve gular vector ofM. In general, theth singular value and



Matrix M of fi’’s

Figure 1. The full rank case. We solve for the unknown

vector are given by maximizing over dll; || = 1 orthog-
onalto allug, ..., u;_1. In awell-defined sense (the Frobe-
nius norm), the smallest singular valwg( ) ) measures the
distance ofMf from being singular.

WAM'’s final error bounds arise from dividing the error
in its estimates fon/’; and B by the smallest singular value
of M’;. The error in the estimates for the entries/df,

M7 M; = B
/;/777. 777777777
|- gridded
solved for estimated
fii’sin Mz.

o« (M) /o1 (M) then it should suffice to selecton the
order ofpoly(e). However, there is still a missing piece of
the analysis: Although the smallest singular valuelof
becomes at least,- (1) after adjoining thet;’s, we only
use ak x k submatrixM’; to solve the linear system. Is it
the case that i/’ has a large smallest singular value then
its “best” k x k submatrix also has a somewhat large small-

come from gridding, and thus can essentially be made asest singular value? We need a quantitative version of the

small as desired; WAM makes them smaller than; ix.
The errors inB come from two sources: some of the en-
tries of B are estimates of quantiti¢s - ji;; = corr(j, j'),

fact that a nonsingular x n matrix has & x k& nonsingular
submatrix (again, cf. (1)).
This does not seem to be a well-studied problem, and

and again these errors can be made essentially as small dadeed there are some open questions in linear algebra sur-

desired, smaller thaa,..;ix. However the other errors in
B come from approximating the quantitigs - u; by 0;

rounding the issue. It is possible to derive an extremely
weak quantitative result of the required nature using the

i.e, assuming the augmenting vectors are orthogonal to theCauchy-Binet formula. We instead give the following quan-

columns of)M.

As the reader may by now have guessed, the vectors wit

which WAM attempts to augmemt/ will be the lastk — r*
singular vectors of\/, w,«y1,...,u,. The hope is that for
an appropriate choice of*, these singular vectors will be
“essentially” orthogonal to the columns &f, and that the
resulting M’ will be “strongly” full rank, in the sense that

titatively strong version:

h

Corollary 5 Let A be ak x n real matrix withoy, (A) > e.
Then there exists a subset of colundng. [n] with |J| = k&

such thaTCTk(AJ) > 6/\/l€(n — k) + 1.

(We call the result a corollary because our proof in Ap-
pendix B is derived from a 1997 linear algebraic result of

ok (M") will be somewhat large (cf. (1)). One can show (see Goreinov, Tyrtyshnikov, and Zamarashkin [16]. Inciden-
Proposition 8 of Appendix B) that the extent to which the tally, it is conjectured in their paper, and we also conjecture,

u;'s are orthogonal to the columns df is controlled by the
(r* + 1)th singular value of\f; i.e., |fi; - u;| < o1 (M)
for all i > r* + 1; this is precisely the error we incur for

that/k(n — k) + 1 can be replaced by'n.)

With this result in hand it becomes sufficient to take-
€2/n?, as described in the previous section. Now the error

the zero entries i3. On the other hand, one can also show analysis can be completed:

that the augmentedl/’ has smallest singular value at least
o+ (M). Thus we are motivated to chooseso as to get a
large multiplicative gap between.- (M) ando .« 1 (M):

Definition 2 Givenr > 0, ther-essential rankf M is

(M) = r3(M) = min {741 (M)/o, (M) < 7,

where we take (M) = 1 andoy1 (M) = 0.

One might think that if the additive error incurred
from solving the linear system were to be roughly

e If M has a singular value gap of and so has es-
sential rankr* < k, then when WAM tries out the
appropriater* and singular vectors, the error it in-
curs from solving the linear system is roughly at most
O(y/nt) = O(?/n3/?); and as we show at the end of
Appendix C, having this level of control over errors in
solving the linear system for the unknowgfs lets us
obtain the finalu;l values to the requiregtaccuracy.

e If M has no singular value gap smaller tharthen



its smallest singular value is at least to begin with;
thus it suffices to takeyairix = 7°7! = poly(e/n) to
control the errors in the full-rank case.

See Appendix C for the detailed proof of correctness.

4. Estimating Higher Moments

In this section we explain our remarks from Section 2.3
more thoroughly; specifically, how to use WAM to learn
a mixture Z of k product distributionsX!, ..., X* over
{0,...,b—1}". Such a distribution can be “parametri-
cally” described by mixing Weightswi}ie[k] and probabil-
ities {p} ,}, wherep’ , = Pr[X] = {].

Running WAM on samples frorZ gives a list of esti-
mates of mixing weights and coordinate me&iX], but

these coordinate means are insufficient to completely de-

scribe the distributionﬁ(;i. However, suppose that we run
WAM on samples fromZ* (i.e. each time we obtain a
draw (z1,...,2,) from Z, we actually give(z{,...,2")

to WAM). It is easy to see that by doing this, we are
running WAM on ther-weighted mixture of distributions
(XHE ..., (XF)¥; we will thus get as output a list of can-
didates for the mixing weights and tlseordinate/th mo-
mentsE[(X%)‘] for Z.

Our algorithm for distributions ovefo0,...,b—1}"
uses this approach to obtain a list of candidate description
of each of the firsb— 1 coordinate moments @&. The algo-
rithm then essentially takes the cross-product of ttheséa
lists to obtain a list of overall candidates, each of which is
an estimate of the mixing weights and al- 1 moments.

Since WAM guarantees that each list contains an accurate[
estimate, the overall list will also contain an accurate esti-

mate of the mixing weights and of all moments. For each

candidate the estimate of the moments is then easily con-

verted to “parametric form’{pj.’e}, and as we show, any

candidate with accurate estimates of the moments yields a

accurate estimate of the probabilities, .

We now give the main theorem of the section, the proof
of which (given in [14]) contains the details of the algo-
rithm:

Theorem 6 Fix k = O(1),b = O(1). LetZ be a mixture of
k product distributionsX*, ..., X* over {0,...,b—1}",
S0Z is described by mixing weights , . .., 7% and proba-
bilities {p} , }ic k], jen). ceqo. .. b1} -

There is an algorithm with the following property: for
anye,d > 0, the algorithm runs in poln/e) - log 5 time
and with probabilityl — ¢ outputs a list of candidates
({7}, {p} ;}) such that for at least one candidate in the
list, the following holds:

1. |7 — 7| < eforall i € [k]; and

2. |pk , — 1l | < eforall i, j, £ such thatr’ > e.

S

5. A Hardness Result

The following theorem gives evidence that the class of
mixtures of k(n) product distributions over the Boolean
cube may be hard to learn in polynomial time for any
k(n) =w(1):

Theorem 7 For any functionk(n), if there is a polyn/e)
time algorithm which learns a mixture stn) many product
distributions over{0, 1}", then there is a poly:/¢) time
uniform distribution PAC learning algorithm which learns
the class of alk(n)-leaf decision trees.

The basic idea behind this theorem is quite simple.
Given anyk(n)-leaf decision tred’, the set of all positive
examples forT" is a union of at mosk(n) many disjoint
subcubes of0, 1}, and thus the uniform distribution over
the positive examples is a mixture of at més$h) product
distributions ovef 0, 1}". If we can obtain a high-accuracy
hypothesis mixturéD for this mixture of product distribu-
tions, then roughly speakir@ must put “large” weight on
the positive examples and “small” weight on the negative
examples. We can thus ugketo make accurate predictions
of T’s value on new examples very simply as follows: given
a new example: to classify, we simply compute the prob-
ability weight that the hypothesis mixtufe puts onz, and
output 1 or 0 depending on whether this weight is large or
small. We give the formal proof of Theorem 7 in [14].

We note that after years of intensive research, no(@oly
time uniform distribution PAC learning algorithm is known
which can learnk(n)-leaf decision trees for ang(n) =
w(1); indeed, such an algorithm would be a major break-
hrough in computational learning theory. (Avrim Blum
has offered a $1000 prize for solving a subproblem of the
k(n) = n case and a $500 prize for a subproblem of the
k(n) = logn case; see [4].) The fastest algorithms to date

rLlZ, 3] can learrk(n)-leaf decision trees under the uniform

distribution in timen!'°¢%(") This suggests that it may be
impossible to learn mixtures of a superconstant number of
product distributions ovef0, 1}" in polynomial time.

6. Conclusions and Future Work

We have shown how to learn mixtures of any constant
number of product distributions ovel0,1}™, and more
generally ovef0,...,b— 1}", in polynomial time.

The methods we use are quite general and can be adapted
to learn mixtures of other types of multivariate product dis-
tributions which are definable in terms of their moments.
Along these lines, we have used the approach in this pa-
per to give a PAC-style algorithm for learning mixtures of
k = O(1) axis-aligned Gaussians in polynomial time [13].
(We note that while some previous work on learning mix-
tures of Gaussians from a clustering perspective can handle



k = w(1) many component Gaussians, all such work as- [14]
sumes that there is some minimum separation between the
centers of the component Gaussians, since otherwise clus-
tering is clearly impossible. In contrast, our resultin [13] — [15]

J. Feldman, R. O'Donnell, and R. Servedio. Learning
mixtures of product distributions over discrete domains.
Columbia University technical report, CUCS-029-05, 2005.
Y. Freund and Y. Mansour. Estimating a mixture of two

in which we do not attempt to do clustering but instead find
a hypothesis distribution with small KL-divergence from

the target mixture — does not require us to assume that the
component Gaussians are separated.) We expect that our; ]
techniques can also be adapted to learn mixtures of other

distributions such as products of exponential distributions
or beta distributions.

It is natural to ask if our approach can be extended to
learn mixtures of distributions which are not necessarily
product distributions; this is an interesting direction for fu-
ture work. Note that our main algorithmic ingredient, algo-
rithm WAM, only requires that that the coordinate distribu-
tions be pairwise independent.

Finally, one may also ask if it is possible to improve
the efficiency of our learning algorithms — can the running
times be reduced t0°**), to nO*), or evennCoe k)7
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A. Algorithm WAM

Algorithm WAM has access to samples from the mixture
Z and takes as input parameters > 0.
Algorithm  WAM:

1. Let

2. Grid over the mixing weights, producing
1

k+1

3 2 2
Ewts — €, T —€ /Tl y and €matrix = T .

values #',...,#% €[0,1] accurate to within
+ewts. If s of these weights are smaller
than € — ewts, €liminate them and treat k

as k— s in what follows.

3. Make empirical estimates corr(j,7") for all
correlations corr(j,j') = B[Z;Z;/)] = fij - fiyr

for j# 4 to within +ematrix, With
confidence 1-96.
4, Let M be the £k xn matrix of unknowns

(Mi;) = (%), and try all possible

integers 0 <r* <k for the essential rank
of M.

5. Grid over k —r* vectors
Trg1,y ...,k € [-1,1]% to within +ematrix N
each coordinate and augment M with

these as columns, forming M.
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Figure 2. A depiction of the matrix used by
depicted as being the rightmost columns of

n + (k —r*) columns of M’

WAM. For ease of illustration the columns J of M are
M, and the columns J’ from the augmenting columns

Ug—t+1,- - -, Ug are depicted as being the leftmost of those augmenting columns.

6. Try all possible subsets of exactly k

column indices of ]/\/[\’; write these
indices as J =JUJ', where J
corresponds to columns from the original
matrix M and J' corresponds to

augmented columns. Grid over [-1,1] for
M in columns J to within

the entries of
+emateix, yielding {fii:i€k],jeJ}. Let
]/\4\3 denote the matrix of estimates for

all the columns in J. (See Figure 2.)

7. Let 7 denote the columns of M other
than J, and let M7 denote the matrix of
remaining unknowns formed by these
columns. Let B be the matrix with rows
indexed by 7 and columns indexed by

whose (j,5’) entry is the estimate corr(j,5")

of fp;-py if jed oris 0if j elJ.
Using the entries of B and M) (all of
which are known), solve the system

MJM/ =B to obtain estimates it for
the entries of M (which are the
unknown [L;'s), thus producing estimates

jit for all entries of M. (If the
matrix ]\A/[’j is singular, simply abandon
the current gridding.)

8. From the estimated values ﬁ; compute
the estimates i} = ai/Vai for all 4.
(Note that 7' is never 0 since each is
at least € — €wts > 0.)

9. Output the candidate
(<ﬁ177ﬁk>7<ﬂ%7ﬂ%>7ﬂﬁ>)

B. Linear algebra necessities

We will need the following; see [14] for proofs.

Corollary 5 Let A be ak x n real matrix witho (A) > e.
Then there exists a subset of colurdns. [n] with |J| = &

such thatr (Ay) > ¢/+/k(n — k) + 1.

Proposition 8 Let A be a &k x m matrix with columns
ai,...,an. Fix anyr* and letu,«y1,...,u; be the left
singular vectors corresponding to the smallest singular
valueso,«y1,...,0, Of A. Let A’ be A with the vec-
tors u,«41,. .., u; adjoined as columns. Then,(A’) >
min{1, o,-(A)}, and for all#* + 1 < ¢ < k and for all
columnsa; of A we havéa; - ug| < o141 (A).

Corollary 9 Let A be a nonsingulak x k matrix,b be ak-

dimensional vector, and the solution toAz = b. Assume
that ||z|l.c < 1. Supposed’ is a k x k matrix such that
each entry ofd — A’ is at moste,,.1.ix iIN Magnitude, and
assume thad,.rix < ox(A)/2k. Letd’ be ak-dimensional
vector satisfyind|b — V|| < ens. Letz’ be the solution

to A’2’ = b'. Then we have

atrix T €rhs
o < O ]C €matri T
iz = 'lloe < O(k) =220t

C. Proof of Theorem 4

We go through the algorithm step by step, as it appears
in Appendix A. In Step 1 of WAM, we define constants
Ewts = €, T = €2/n?, andepanix = 7711, which we use
throughout the proof.



In Step 2 of WAM the algorithm will grid over estimates
7' that satisfy|7* — «*| for all <. In this case, any mixing
componentX? whose mixing weightt’ is at leaste will

not be eliminated. Since we need not be concerned with

with | 7| = k& such that

NVE(m —k)+1> 00 (

M) /kn.
®)

(Mj >O’k

accuracy for the means of the other mixing components, weln Step 6, WAM will try this set of columng = J U J'; it
can ignore them and assume for the rest of the proof thatwill also grid estimates for the entries in this column that

7t > eforall 4.
Now we come to the main work in the proof of correct-

are correct up to an additivée,, .. Note that WAM
now has an/’; that has all entries correct up to an addi-

ness of Theorem 4: namely, showing that in Steps 37 oftive +e,,.crix. Now consider the matri®s WAM forms in

algorithm WAM, accurate estimates for t}jag’s are pro-
duced. Our goal for most of the rest of the proof will be to
show we obtain estimates satisfying|/ii — fii| < & := ¢

for all i. To that end, let* = (M), ther-essential rank
of M. We will quickly dismiss the two easy cases,= 0
andr* = k; we then treat the general case: r* < k.

r* = 0 case.By definition, in this case (M) < 7 < ¢.
Sinceo; (M) is at least as large as the magnitudeld®s
largest entry we must therefore hal\a:;| < ¢ for all 4, j.
Now when WAM triesr* = 0 in Step 4, tries thé standard
basis vectors fofiy, ...,y in Step 5, and chooses all of
these vectors fa in Step 6, it will setB = 0 in Step 7 and
getﬁ;ﬂ = 0 for all 4, j when it solves the linear system. This
is within an additiver < € of the true values, as desired.

r* = k case. By definition, it's not hard to see that in
this case we must have, (M) > 7*. Now consider when
WAM tries r*
By Corollary 5 there is some set difcolumnsj =J

such thatry, (M) > o, (M) /\/k(n — k) +1 > 7% /n. In

Step 6 WAM will try out this,7 and grld the associated en-
tries to within Fematrix._IN Step 7 the algorithm will use
only corr’s in forming B and these will also be correct to
within an additivete,.¢rix. We can now use Corollary 9
— note thateanix = 7° < (77 /n)/2k < op(M 1) /2k,

= k in Step 4. Step 5 becomes vacuous.

Step 7. For the columns corresponding/tthe entries are
given bycort’s, which are correct to withinte,,a¢,ix. FOr

the columns corresponding t8 the entries are 0's; by the
second part of Proposition 8 these are correct up to an addi-
tive o« 11 (M). We now use Corollary 5 to bound the error
resulting from solving the systeM}]\//.f’j = Bin Step 7.

To check that the necessary hypothesis is satisfied we com-
bine (2) and (3) to obtainy, (M) /2k > oy« (M) /2k*n >

=1 /2Kk%n > 781 = € .uix. Now Corollary 9 tells us
that theyi’ produced satisfy

€matrix + maX{Ematrixv Op*41 (M)}

BL— i <
|/’[‘j :u_]| —= O(k) O'k(M&)
o Orer1 (M)
< 2 €matrix + Op +1(
> O(k n) e (]\/[) )

where in the last step we used (3). But by (2) we
have ematrix/0r (M) < €mamix/7F"1 = 72 and also
opey1(M)/op-(M) < 7. Thus we havejii — fii| <
O(k?n)7 < €, as desired.

It remains to bound the error blowup in Step 8. By this
point we have values for the'’s that are accurate to within
“+ewts, and further, allv®’s are at least. We also have val-
ues for allu’ 's that are accurate to withisté. Since the
functiong(z, y) = y/+/x satisfies

as necessary. This gives estimates in Step 7 satisfying

mé 5] < O(k )% = O(knT) < €, as desired.

0 < r* < k case.In this case, by definition of the essential
rank, we have

70 (M) > 0pe 1 (M) > 7. 2

In Step 4 WAM will try out the correct value for*
and in Step 5 WAM will grid over vectorg, -1, ..., 4
that are within +e .4« I €ach coordinate of the ac-
tual last left singular vectors o#, w«11,...,u;. Let
M’ denote the matrix)/ with these true singular vec-
tors adjoined. By Proposition 8 we havg,(M') >
min{1, o~ (M)}. From the crude upper bourg- (M) <

IM|r = ,/Zi’j(ﬂ;'.)? < Vkn, we can restate this as

simply o(M’) > o.«(M)/vVkn. Now applying Corol-
lary 5 we conclude there is a subsgtof M'’s columns

gg(:v,y)’ <e 2

sup 3y

z€le,1]
ly|<1

sup
z€le,1]
lyl<1

gg(x,y)‘ =2¢7%/2,

the Mean Value Theorem implies that in Step 8 our re-
sulting estimatesl;ﬂ are accurate to within additive error
Ewts - 26 3/2 4 €. ¢ 1/2 < ¢, as necessary.

This completes the proof of WAM’s correctness. As
for the running time, it is easy to see that the dominat-
ing factor comes from gridding over the entriesidf; and
Upe41,...,u. Since there aré? entries and we grid to
granularityeaoix = Tk+1 = poly(n/e)¥, the overall run-
ning time ispoly (n/e)*’; i.e., poly(n/¢) for constant:. W



