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Abstract

This paperconnectstwo fundamentalideasfrom theo-
retical computerscience:hard-coresetconstruction,a type
of hardnessamplificationfrom computationalcomplexity,
andboosting, a techniquefromcomputationallearningthe-
ory. Using this connectionwe give fruitful applications
of complexity-theoretic techniquesto learning theory and
vice versa. We showthat the hard-core set construction
of Impagliazzo[15], which establishestheexistenceof dis-
tributionsunderwhich booleanfunctionsare highly inap-
proximable, maybe viewedas a boostingalgorithm. Us-
ing alternateboostingmethodswegivean improvedbound
for hard-core setconstructionwhich matchesknownlower
boundsfrom boostingand thusis optimalwithin this class
of techniques.We thenshowhowto apply techniquesfrom
[15] to give a new version of Jackson’s celebrated Har-
monic Sieve algorithm for learning DNF formulaeunder
the uniform distribution using membership queries. Our
new version has a significantasymptoticimprovementin
runningtime. Critical to our argumentsis a careful analy-
sisof thedistributionswhich areemployedin bothboosting
andhard-coresetconstructions.
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1. Intr oduction

1.1. Boostingand Hard-Cor eSets

Thispaperconnectstwo fundamentalideasfrom theoret-
ical computerscience:hard-coresetconstruction,a typeof
hardnessamplificationfrom computationalcomplexity, and
boosting, a techniquefrom computationallearningtheory.

We refer to a hardnessamplificationas a result of the
following form: given a booleanfunction � that is mildly
inapproximableby circuits of someboundedsize � , con-
struct, from � , a new function ��� that is highly inapprox-
imableby all circuitsof sizecloselyrelatedto � . Hardness
amplificationresultsarea crucial componentof recentat-
temptsto derandomizeBPP[24, 3, 16]. Perhapsthe most
famoushardnessamplificationresultis Yao’s XOR-lemma
[14], which statesthat if a booleanfunction � is mildly in-
approximableby circuitsof size � thentheXOR of several
independentcopiesof � is highly inapproximablefor cir-
cuitsof sizecloselyrelatedto � .

While the goal of hardnessamplificationis to amplify
somesmall initial “hardness”of a booleanfunction, the
goalof boostingis to “boost” somesmall initial advantage
overrandomguessingthata learnercanachievein Valiant’s
PAC (ProbabilisticallyApproximately Correct) model of
learning.Roughlyspeaking,a strong learningalgorithmin
this model is an algorithmwhich, given accessto random
labelled examples �
	��
���
	���� drawn from any distribution� � can generatea hypothesis� suchthat ����������� ��� 	��"!
���
	��$#&%('*),+ for any +.-0/1� while a weak learningal-
gorithm [22] can only do this for some '32�45-6+7-6/98
Schapire[25] and then Freund[10, 11] gave boostingal-
gorithmswhich convert weaklearnersinto stronglearners,
thusproving theequivalenceof weakandstronglearnabil-
ity. Sincethen,boostinghasbeenappliedin a wide variety
of contexts andcontinuesto be an active areaof research
[6, 7, 8, 9, 13, 20, 26]. All known boostingalgorithmswork
by usingtheweaklearningalgorithmseveraltimesona se-
quenceof carefullyconstructeddistributions.



Reference: Setsizeparameter: Circuit sizeparameter:

Impagliazzo[15] + :&� ;�<=+><=��?@�
Nisan[15] + :&� ; < � ACB�D��E'F2G;H+>���>IKJL��?L�
This Paper +M2�:&� ACB�D��E'F2F+L�N� :&� ; < � ACB�D��E'F2F+L�N�LIHJM�O?@�

Table 1. Comparison of kno wn hard-core set constructions.

Superficially, boostingandhardnessamplificationseem
to have oppositegoals—boostingconstructsa hypothesis
which closely approximatesa function � while hardness
amplificationresultsprovethatcertainfunctionsarehardto
approximate.Theproof techniquesemployedin bothareas,
however, have a similar structure.All known hardnessam-
plificationresultsgobycontradiction:assumingthereexists
a circuit P capableof mildly approximating��� , oneproves
the existenceof a slightly larger circuit which closelyap-
proximates� . Fromthis perspective,a hardnessamplifica-
tion proof resemblesa typeof boostingprocedure:circuits
which mildly approximatea function ��� (thesecorrespond
to thehypothesesoutputby theweaklearner)arecombined
to form a new circuit computing � on a large fraction of
inputs.

In an important paper, Impagliazzo[15] reducesthe
problemof amplifying the hardnessof a function � to the
problem of constructinga distribution

�
such that � is

highly inapproximableby small circuits for inputschosen
accordingto

� 8 He thenconstructssucha distribution and
usesit to prove an XOR lemma. Impagliazzoalsoshows
that the existenceof sucha distribution implies the exis-
tenceof a“hard-coreset”asdefinedin Section2.1;wethus
referto Impagliazzo’smethodof constructingsucha distri-
butionasahard-coresetconstruction.Schapire[25] wasthe
first to point out that theexistenceof a boostingalgorithm
impliestheexistenceof sucha distribution.

1.2. Our Results

In this paperwe give an explicit correspondencebe-
tweenthedistributionsthatarisein Impagliazzo’shard-core
setconstructionandthedistributionsconstructedby boost-
ing algorithms. This observation allows us to prove that
the hard-coreset constructionof Impagliazzois a boost-
ing algorithmwhenthe initial distribution is uniform. As
we will show, thereare two importantparameterswhich
boostingand hard-coreset constructionsshare: the num-
berof “stages”requiredandthe“boundedness”of thedis-
tributionswhich areconstructed.Interestingly, the proce-
dureswhich have beenusedfor hard-coresetconstruction
have better“boundedness”andcanbe usedto improve al-
gorithmsin computationallearningtheory, while boosting
algorithmsrequirefewer “stages”andcanbe usedto im-

provehard-coresetconstruction.

We first show how to useknown boostingalgorithmsto
obtain new hard-coreset constructions.In [15], Impagli-
azzoprovesthefollowing: givena function � suchthatno
circuit of sizelessthan � correctlycomputes� onmorethan
�E'�)Q+L��4�R inputs,thenfor any ;TSU'F2�4 thereexistsa set V
of size +L4 R suchthat no circuit of size :&� ; < + < �W� cancor-
rectly compute� on morethana �E'F2�4�XY;K� fractionof the
inputsin V . By letting known boostingalgorithmsdictate
theconstructionof thedistributionsin Impagliazzo’sproof,
we improve on previous resultswith respectto the circuit
sizeparameterwith only asmalllossin thesetsizeparame-
ter. As explainedin Section4.3,we believe our circuit size
parameterto be optimal with respectto this classof tech-
niques.Table1 summarizesour hard-coresetconstruction
results.

We also show how to useImpagliazzo’s hard-coreset
constructionto obtain a new variant of Jackson’s break-
throughHarmonicSieve algorithm[17] for learningDNF
formulaewith membershipqueriesunderthe uniform dis-
tribution. Our variant is substantiallymore efficient than
theoriginal algorithm.Jackson’soriginal algorithmrunsin
time Z:&�
[�\G]32�+ J <@� , where[ is thenumberof variablesin the
DNF formula, \ is the numberof terms,and + is the accu-
racy parameter;our variant runs in time Z:^� [�\G]G2�+>]@� . (We
canfurther improve the running time to Z:&�
[�\G]32�+
_=� at the
costof learningusinga slightly morecomplicatedclassof
hypotheses).

In recentwork Bshouty, Jacksonand Tamon[5] have
improved the running time of the Harmonic Sieve to
Z:&� `�\=a�2F+
a=� , where ` is the numberof distinct variables

whichappearin theminimalDNF representationof thetar-
get formula. Our resultsimprove therunningtime of their
new algorithmto Z:&� `�\=a�2�+><@� timesteps,which is thefastest
known algorithmfor PAC learningDNF with membership
queriesundertheuniform distribution.

Our main technicalcontribution is a carefulanalysisof
the distributions constructedduring the boostingprocess.
We show that boostingprocedureswhich constructdistri-
butionswith high minimumentropy aredesirablefor good
hard-coresetconstructions.



1.3. RelatedWork

BonehandLipton [4] have appliedYao’s XOR-lemma
to provetheequivalenceof weakandstronglearnabilityfor
certaintypesof conceptclassesundertheuniform distribu-
tion. Their resultappliesto conceptclassesclosedundera
polynomialnumberof XOR operations.

1.4. Organization

In Section2 we give an overview of the hard-coreset
constructionfound in [15]. In Section3 we outline the
structureof all known boostingalgorithms. In Section4
we give an explicit connectionbetweenthe constructions
detailedin Sections2 and3 andshow how to applyboost-
ing techniquesto obtainnew hard-coresetconstructions.In
Section5 we show how thetechniquesdescribedin section
2canbeusedto improvetherunningtimeof Jackson’salgo-
rithm for learningDNF formulae.We alsomentionrelated
algorithmsin learningtheorywhereour techniquescanbe
applied.

2. Hard-Cor e SetConstruction Overview

2.1. Definitions

Our first definition, taken from [15], formalizesthe no-
tion of a function which is hardto approximate.(Readers
who arefamiliar with the notationof [15] will notice that
we are using different variables;the reasonsfor this will
becomeclearin Section4.)

Definition 1 Let � bea booleanfunctionon bG/9�='�c3R and
�

a distribution on b3/9�@'�c R 8 Let /dSe+.Sf'32�4 and let [5g
�7gh4�R92F[i8 We say that � is + -hard for size � under

�
if

for any booleancircuit P with at most � gates,we have
���N�j� ���
	��k!7P&� 	��W#Og7'l)Q+ .

In otherwords,any circuit of sizeatmost� mustdisagree
with � with probabilityat least + for 	 drawn accordingto� 8 Throughoutthe paperwe use m to denotethe uniform
distributionon bG/9�='�c3R18
Definition 2 A measureon bG/1�@'�c3R is a function n o
bG/9�='�c3Rqpr� /1�@'@#s8 Theabsolutesizeof a measure n is de-
notedby t nut andequalsv � nw�
	��Lx the relative sizeof n
is denotedy��snz� andequals t nut 2�4�R�8
Definition 3 For any real valued function { , |~}q� {�� de-
notes�^�F����t {9�
	��=t .

The quantity ACB�D���| } � � � IKJ � is often referredto asthe
minimum entropy of

�
. There is a natural correspon-

dencebetweenmeasuresanddistributions: thedistribution

���
inducedby a measuren is definedby

��� � 	��7!
nw� 	���29t nut�8 Conversely, if

�
is a distribution, then the

measure n � induced by
�

is defined by n � � 	��(!� � 	���2�| } � � � . Thus n � is the largestmeasurewhich is
a constant-multiplerescalingof

�
(note that

�
itself is

a measure,thoughtypically one which hasmuch smaller
size than n � ). It is clear that t n � t�!�'F2F| } � � � and
y���nQ���~!�'32�|~}���4�R � �N� . Thus,largemeasurescorrespond
to distributions which do not assignlarge weight to any
point (i.e.,havehighminimumentropy).

Thenext definitionis alsofrom [15]:

Definition 4 Wesaythat � is ; -hard-coreon n for size� if
�����O�^� ��� 	��~!�P&� 	��W#ig�'32�4�XQ; for everycircuit P of size
at most ��8 For Vw��b3/9�='�cGR�� we saythat � is ; -hard-core
on V for size � if � is ; -hard-coreon n�� for size ��� where
n��K�
	�� is thecharacteristicfunctionof V�8
2.2. Existenceof Hard-Cor eMeasures

The following theorem,dueto Impagliazzo[15], is the
startingpointof all our results:

Theorem5 [15] Let � be + -hard for circuitsof size� under
m andlet /&S�;.S7'�8 Thenthereis a measure n on bG/1�@'�c3R
with y���nz��%u+ such that � is ; -hard-core on n for size
����!d:&�
+><@;�<G�W��8
Proof Sketch: Assumeby wayof contradictionthatfor ev-
ery measuren with y��snz�q%0+ thereis a circuit P �

of
sizeatmost ��� suchthat �����O�&� ��� 	��k!�P � � 	��W#O-7'F2�4�X�;O8
Now considerthe algorithmIHA which is given in Figure
1. This algorithmiteratively modifies n until its relative
sizeis lessthan + . After eachmodificationwe obtaina cir-
cuit P �

asabove.Oncetherelativesizeof n becomesless
than + we combinethecircuitsobtainedduringtheprocess
to contradictthe original assumption.The following eas-
ily verifiableclaimsareusefulfor understandinghow IHA
works:

�Y��� � 	�� is the margin by which the majority vote of
P~���=8@8@8=�
P � correctlypredictsthevalueof ��� 	��L8

� The measuren ��� J assignsweight / to pointswhere
the margin of correctnessis large, weight ' to points
where the margin is nonpositive, and intermediate
weightto pointswherethemargin is positivebut small.

Impagliazzoprovesthatafterat most   � !¡:&�E'F2��
+><M;�<G�N�
cyclesthroughthe loop, y���n � � mustbe lessthan +G8 Once
this happensand we exit the loop, it is easyto seethat
�Y¢£n�¤¦¥���P � �=8@8=8@�
P � IHJ � agreeswith � on all inputsex-
ceptthosewhich have � � � 	��^gu/ andhencen � � 	���!h'�8
Since y��sn � ��S§+G� this implies that ���E¨�� ��� 	��&!��©� 	��$#¦%
'~)"y��sn � �ª-7'ª)«+G8 But � is amajority circuit overatmost



Input: ¬k­.®�¯L°±­.®�¯ booleanfunction ²
Output: a circuit ³ suchthat ´KµW¶�· ³�¸º¹9»K¼Y²�¸º¹�»�½�¾�¿iÀq¬

1. set Á�Â£®
2. Ã�Ä3¸º¹9»HÅÆ¿
3. until Ç�¸
Ã�È�»�É.¬ do
4. let Ê È bea circuit of sizeat most Ë�Ì with ´HµEÍ �©Î · Êj¸º¹9»K¼�²�¸º¹9»�½�¾Y¿LÏGÐ�Ñq°
5. Ò�Ó Î ¸º¹9»KÅÆ¿ if ²�¸º¹9»K¼�Ê�ÈN¸º¹9»�¯LÒ�Ó Î ¸º¹9»HÅÆÀl¿ otherwise
6. Ô�ÈE¸º¹9»HÅ v Ä
ÕFÖMÕ�È Ò�Ó�×F¸º¹9»
7. Ã�ÈCØ�ÙL¸º¹9»KÅT® if Ô�ÈN¸º¹9»O¾�¿MÏL°�¯GÃ�È�ØHÙL¸º¹�»�ÅÆ¿ if Ô�ÈN¸º¹�»�Ú.®�¯=Ã�ÈCØ�ÙM¸º¹9»HÅÆ¿�À±°9Ô�ÈN¸º¹9» otherwise
8. set Á�ÂÛÁ�ÑQ¿
9. ³ÜÅYÃ�ÝlÞK¸
Ê�ÄG¯NÊ~ÙL¯>ß>ß>ß
¯NÊ�È à�Ù�»
10. return ³

Figure 1. The IHA algorithm.

  � circuitseachof sizeat most ���
� andmajority over   � in-
putscanbecomputedby a circuit of size :&�
  � �M8 It follows
that � hasatmost ���� s��X�:&�  W�3��g�� gates,whichcontradicts
theoriginalassumptionthat � is + -hardfor circuitsof size �
underm�8

Usinga non-constructiveproof technique,Nisanhases-
tablisheda similar result which is reportedin [15]. In
Nisan’s theoremthecircuit sizeparameteris slightly worse
asafunctionof ; but substantiallybetterasafunctionof +�o
Theorem6 [15] Let � be + -hard for circuitsof size� under
m andlet /&S�;áS7'�8 Thenthereis a measure n on bG/9�='�c R
with y���nz�^%§+ such that � is ; -hard-core on n for size
����!�:&�º;H<��
A�B�D��s4�2G;H+L�N� IHJ �$��8

In Section4.2wewill establishresultsof this typewhich
have a bettercircuit sizeparameter(but a slightly smaller
measure)thaneitherTheorem1 or Theorem2.

(We notethatTheorems1 and2, aswell asthetheorems
which we will prove later, assertthe existenceof a large
measure,notalargesetaswaspromisedin Section1. Using
a straightforward probabilisticargument,Impagliazzohas
shown in [15] thatif � is ; -hard-coreon n for size ��� with
y���nz��%7+G� thenthereis a set Vd�UbG/9�='�c3R with t V�t�%7+L4�R
suchthat � is 4F; -hard-coreon V for size ���
8 )

3. BoostingOverview

In this section we define the learning model, weak
andstronglearning,andboosting, which convertsa weak
learnerto a strongone.

3.1. Definitions

WetakeasourlearningframeworkValiant’swidelystud-
ied PAC (ProbablyApproximatelyCorrect)modelof con-
ceptlearning[27]. In thismodelaconceptclassis acollec-
tion Pz!dâ R�ã J P R of booleanfunctionswhereeach�«ä"P R

is a booleanfunction on b3/9�@'�cGR�8 For example,we might
have P R astheclassof all booleanconjunctionson [ vari-
ables. If � and � are two booleanfunctionson bG/1�@'�c3R
and

�
is a distribution on b3/9�='�cGR�� we say that � is an + -

approximatorfor � under
�

if ���N�å� ��� 	���!7�©� 	��$#©%¡'�)æ+G8
The learner has accessto an example oracle EX ����� � �
which,whenqueried,providesalabelledexample �
	��>��� 	����
where	 is drawn from bG/9�='�c3R accordingto thedistribution�

and �§äçP R is the unknown target conceptwhich the
algorithmis trying to learn. The goal of the learneris to
generatean + -approximatorfor � under

� 8 We thus have
thefollowing definition:

Definition 7 AnalgorithmA is a strongPAC learningalgo-
rithm for aconceptclassP if thefollowingconditionholds:
for any [T%�'�� any �.äáP R � anydistribution

�
on b3/9�@'�cGR��

and any /èS�+G��éêSë' , if A is givenaccessto [i�
+G��é and
EX�s��� � �M� thenA runs in time polynomialin [i�9+ IKJ �9é IHJ �
and \= $ìîíî�s�H�L� andwith probability at least '�)�é algorithm
A outputsan + -approximatorfor � under

� 8
In the above definition \= $ìîíî�s�H� measuresthe complex-

ity of thefunction � undersomefixedreasonableencoding
scheme.For theconceptclassDNF whichwewill consider
in Section5, \= $ì�í����H� is the minimum numberof termsin
any disjunctivenormalform representationof ��8

If the algorithmA is only guaranteedto find a �N'32�4^)
;H� -approximatorfor some ;ï-ð/1� then we say that A
is a �N'32�4«)z;K� -approximate learning algorithm; if ;ñ!ò �E'F2>ó©�
[i�
\= $ì�í��s�H�N�N� for somepolynomialó�� wesaythatA is
aweaklearningalgorithm(Thenotionof weaklearningwas
introducedby KearnsandValiant in [22]). We will abuse
notationandsaythatA is a �N'32�4�)Y;H� -approximatelearn-
ing algorithmfor � if A is a �E'32�4¦)T;K� -approximatelearn-
ing algorithmfor theconceptclassP which consistsof the
singlefunction ��8 In a seriesof importantresults,Schapire
[25] andsubsequentlyFreund[10, 11] have shown that if
A is a weaklearningalgorithmfor a conceptclass Pj� then
thereexistsa stronglearningalgorithmfor Pj8 Their proofs



are highly constructive in that they give explicit boosting
algorithmswhich transformweaklearningalgorithmsinto
strongones. We now formally defineboostingalgorithms
(a relateddefinitioncanbefoundin [12]):

Definition 8 An algorithmB is said to bea boostingalgo-
rithm if it satisfiesthefollowingcondition: for anyboolean
function � andanydistribution

� � if B is given /�S�+G��é±S
'��i/eSô;ñgr'F2�49� an exampleoracle EX�s��� � �M� and a
�E'32�49)�;H� -approximatelearningalgorithmWL for ��� thenal-
gorithmB runsin timepolynomialin [i�>\@ $ìîí����H�L�N; IKJ ��+ IHJ �
and é IKJ � and with probability at least '�),é algorithm B
outputsan + -approximatorfor � under

� 8
3.2. Structur eof BoostingAlgorithms

All known boostingalgorithmsrely crucially on thefact
that theweaklearningalgorithmWL canfind a �E'F2�4Ü)T;H� -
approximatorfor � under

� � for anydistribution
� �s� aslong

asWL is givenaccessto theexampleoracleEX �s��� � �õ�L8 We
givethefollowing high-level definition:

Definition 9 A canonicalboosteris a boostingalgorithm
which hasthefollowing iterativestructure:

� At stage 0 thealgorithmstartswith
� ��! �

anduses
WL to generatea �N'32�4ª)�;K� -approximator �1� for � un-
der

� ��8
� At stage   theboostingalgorithmdoestwo things: (1)

constructsa distribution
� � which favorspointswhere

theprevioushypotheses� � �@8=8@8=�
� � IKJ dopoorlyat pre-
dicting the valueof ��� and (2) simulatesthe example
oracleEX�s��� � � � andletsWL accessthissimulatedex-
ampleoracle to producea hypothesis� � which is a
�E'F2�4�)á;K� -approximatorfor � under

� � 8
� Finally, after doing this repeatedlyfor several stages,

the boosting algorithm combines the hypotheses
� � �@8=8@8M�>� � IHJ in somewayto obtaina final hypothesis
� which is an + -approximatorfor � under

� 8
Wefeelthatthisdefinitioncapturestheessenceof known

boostingalgorithms.

4. Hard-Cor e SetConstruction fr om Boosting

4.1. A Structural Similarity

From the descriptionsof the hard-coresetconstruction
of Section2 andthecanonicalboostingalgorithmof Section
3, onecanseea closestructuralresemblancebetweenthe
IHA algorithm and the canonicalboostingalgorithm out-
lined above. To bemorespecific,just asIHA assumesthat

at eachstagethereis a circuit P � for which ���N��� Î � ��� 	���ö!
P&� 	��W#©g¡'32�4�)j;O� thecanonicalboostingalgorithmassumes
thatWL cangenerateateachstageahypothesis� � for which
��� � Î � ��� 	��Üö!z� � �
	��W#�gz'F2�4j)æ;�8 Theinduceddistributions� � Î of IHA correspondpreciselyto thedistributions

� � of
the canonicalboostingalgorithm(note thatIHA startsoff
with the measuren � !÷' which correspondsto the uni-
form distribution m(! � �3�L8 Finally, just as the canonical
boostingalgorithmcombinesthe hypotheses�9���@8@8=8M�
� � IHJ
in somefashionto obtain a final hypothesis� which has
���E¨�� ��� 	��Ü!§���
	��W#j%Û'j)ê+G� theIHA algorithmcombines
thecircuits P~���@8=8@8=�
P � IKJ by takingmajority to obtainacir-
cuit � suchthat �k�$¨�� ��� 	���!��©� 	��W#O%7'l)Q+G8

WeconcludethatIHA is analgorithmwhichsucceedsin
boostingprovidedthat the starting distribution is the uni-
form distribution m . Sinceboostingalgorithmsfrom com-
putationallearningtheorywill work for anystartingdistri-
bution,apriori it seemsasif it shouldbepossibleto useany
boostingalgorithmin placeof IHA andobtaina hard-core
set construction. In the next sectionwe prove a theorem
which formalizesthis ideaandemphasizesthe parameters
whichareimportantto obtainagoodhard-coresetconstruc-
tion.

4.2. A General Hard-Cor eSetConstruction

Definition 10 Let
�

bea distributionover b3/9�='�cGR�8 For ø±%
'�� wesaythat

�
is ø -boundedif | } ��4 R � ��gêø�8

As an immediateconsequenceof Definitions2 and8, we
have

Observation 11 A distribution
�

is ø -bounded iff
y���nQ����%�'F2Fø�8
Definition 12 Let B be a canonical boosting algorithm
which takesas input +G��éF�N;O� an exampleoracle EX�s��� � �M�
anda �N'32�4j).;K� -approximatelearningalgorithmWL for ��8

1. We saythat B is a ùH�
+G�N;H� -stageboostingalgorithm if
thefollowingholds:For all exampleoraclesEX����� � �
and �E'32�4�)Y;K� -approximatelearners WL for ��� algo-
rithm B simulatesat most ùU!úùH�
+G�N;H� distributions� ��� � J �@8=8@8@� ��û

IHJ for WL and usesWL to generateat
most ù hypotheses� � �@8=8@8@�>� û

IHJ 8
2. We say that B is a ø���+=�N;H� -boundedboostingalgo-

rithm if the following holds: For all functions � and
�E'F2�4�)�;K� -approximatelearners WL, whenB is given
EX�s���sm¦� andWL, with nonzero probabilitybothof the
following eventsoccur: (i) thesimulateddistributions� ���=8@8@8=� ��û

IKJ are each ø��
+G�E;K� -bounded,and (ii) the
hypothesis� which ü outputssatisfies �k�N�å� ���
	��Æ!
�©� 	��$#©%¡'�)æ+G8



Note that the propertyof the distributions
� � described

in part2 of theabovedefinitionis similar (but not identical)
to Levin’snotionof “dominated”distributions[23].

Now we canstatethefollowing theoremwhich general-
izesImpagliazzo’shard-coresetconstructionfrom [15].

Theorem13 Let ý be a ùH�
+G�N;H� -stage, ø��
+G�N;H� -bounded
boostingalgorithm which outputsas its final hypothesisa
circuit of size ` over inputs �1���@8=8@8M�>� û

IHJ . Let � be + -hard
for circuitsof size� under m andlet /&SY;áS�'�8 Thenthere
is a measure n on b3/9�='�cGR with y���nz��%ë'32Fø��
+G�N;H� such
that � is ; -hard-coreon n for size����!U�º��).`���2�ùH�
+G�N;H�M8
Proof: Theproof is analogousto the proof of Theorem1.
Assumeby way of contradictionthat for every measuren
with y���nz�T%þ'F2Fø��
+G�E;K� there is a circuit P �

of size at
most � � suchthat ��� � �&� ��� 	���!eP � � 	��$#j%0'F2�4åXè;�8 By
Observation 1, this implies that for every ø��
+G�N;H� -bounded
distribution

�
thereis a circuit P � of sizeat most ��� such

that ���N�å� ��� 	���!7P~�j�
	��$#©%¡'32�4lXT;O8
Now run theboostingalgorithmB on inputs +=�
éF�E;�� and

EX �����Wm¦�L8 SinceB is ø��
+G�N;H� -bounded,with nonzeroprob-
ability we have that (i) every distribution

� � which B sim-
ulateswill be ø��
+G�N;H� -bounded,and(ii) thefinal hypothesis
which B outputsis an + -approximatorto � underthe orig-
inal distribution m�8 By (i), theremustexist a circuit P � of
at most ��� gateswhich is a �N'32�4�)ê;K� -approximatorfor �
under

� � 8 Give B this circuit whenit callsWL on distribu-
tion

� � 8 Now by (ii), the final hypothesiswhich B outputs
mustbean + -approximatorto � undertheoriginal distribu-
tion m�8 But sinceB is ùH�
+G�N;H� -stage,thisfinal hypothesisis a
circuit of sizeat most `�X����CùK�
+G�E;K��gè��� which contradicts
theoriginalassumptionthat � is + -hardfor circuitsof size �
underm�8

4.3. New Hard-Cor eSetConstructions

Herewe apply Theorem3 to obtain new hard-coreset
constructionsfrom knownboostingalgorithms.Weproceed
in stages.First, we show how two differentboostingalgo-
rithmsyield differenthard-coresetconstructions.Next, we
combinetheseboostingalgorithmsto achieve a new hard-
coresetconstructionwhich subsumesandimprovesresults
of ImpagliazzoandNisanin thecircuit sizeparameterand
hasa slightly worsemeasuresizeparameter.

We first considerFreund’s boost-by-majorityalgorithm
from [10] which, following Jackson[18], wereferto asF1.
Algorithm F1 simulatesat most ù�!�:&�º; I <�A�B�D��N'32F+L��� dis-
tributions

� � andcombinesits ù hypothesesusingthema-
jority function. Jackson’s analysis([18], pp. 57–59)yields
thefollowing factaboutF1:

Fact 14 If F1 is giveninputs +G��éF�N;O� EX����� � � anda �E'F2�4©)
;H� -approximateweaklearnerWL for ��� thenwithhighprob-
ability each distribution

� � which F1 simulatesfor WL sat-
isfies

|~}q� � � ��!�:&�N'32�+ < �O?=|ª}q� � �M8
This immediatelyimplies that ÿ�� is :&�E'F2F+><=� -bounded.

We thusobtainthefollowing hard-coresetconstruction:

Theorem15 Let � be + -hard for circuitsof size � under m
andlet /�S�;YS5'�8 Thenthere is a measure n on bG/1�@'�c3R
with y���nz��! ò �
+><G� such that � is ; -hard-core on n for
size����!�:&� ;�<�� ACB�D��E'32�+L�N� IKJ �9�L8

Next, we considerFreund’s later BFilt algorithm from
[12] (the name comesfrom the fact that the algorithm
“filters” examplesfrom the original distribution to sim-
ulate new distributions). Like F1, algorithm BFilt is a
ù -stage boosting algorithm for ù�! :&�º; I <�A�B�D��N'32F+L���L8
BFilt combinesits �N'32�4å)æ;H� -approximatorsto obtainan + -
approximatorfor � by usinga majority function on ù in-
putswhich may have somerandominputs. A straightfor-
ward argumentshows that somecircuit of size :&��ù9� is a
+ -approximatorfor � . To analyzetheboundednessof BFilt ,
weusethefollowing factwhich is implicit in [12]:

Fact 16 If BFilt is given inputs +G��é��E;�� EX�s��� � � and a
�E'F2�4&)Æ;K� -approximateweaklearner WL for ��� thenwith
high probability each distribution

� � which BFilt simulates
for WL satisfies

|~}q� � � ��!�:&�
A�B�D��N'32F+L�
2��
+�;K�N�©?=|ª}q� � �M8
Since Fact 2 implies that BFilt is :&� ACB�D��E'F2F+L��29�
+�;H��� -
bounded,we obtain

Theorem17 Let � be + -hard for circuitsof size � under m
andlet /�S�;YS5'�8 Thenthere is a measure n on bG/1�@'�c3R
with y���nz�q! ò �
+�;i� ACB�D��N'32�+>��� IKJ � such that � is ; -hard-
coreon n for size����!7:&�º;H<�� ACB�D��E'F2F+L�N� IHJ ���M8

Finally weestablishourstrongesthard-coresetconstruc-
tion by combiningthe previous two approaches.In [11],
Freund describesa two-level boosting algorithm which
worksasfollows: algorithmF1 is usedto boostfrom accu-
racy �N'32�4�)æ;K� to accuracy 'F2���� andalgorithmBFilt boosts
from accuracy 'F2�� to accuracy + by takingF1 asits weak
learner. We call this combinedalgorithmBComb.

Lemma 18 The boosting algorithm BCombis an
:&�º;OI < ACB�D��E'F2F+L�N� -stageboostingalgorithm.

Proof: Thetoplevelof BComb, whichusesalgorithmBFilt ,
takes :&� ACB�D��E'F2F+L�N� stagessincethe weak learnerwhich it
usesis F1 which provides �E'F2�4å)�;��õ� -accuratehypotheses



with ;H��!z'F2���8 Thebottomlevel,whichusesalgorithmF1,
takes :&�º; I <G� stagessinceit boostsa �E'32�4�)�;K� -approximate
learnerto accuracy '32��18 Consequently, thecombinedalgo-
rithm BCombusestheclaimednumberof stages.

Lemma 19 BCombis an :&� ACB�D��E'F2F+L��2�+L� -boundedboosting
algorithm.

Proof: SinceBFilt is boostingfrom accuracy 'F2�� to accu-
racy + usingF1 asits weaklearner, Fact2 impliesthateach
distribution

� � whichBFilt passesto F1 satisfies

|~}q� � � ��!d:&� ACB�DH�N'32F+L�
2F+L�©?@|~}q� � �L8
SinceF1 is boostingfrom accuracy �E'F2�4å)Q;K� to accuracy
'32���� Fact1 implies that if

� � � is thedistribution which F1
passesto WL, then

| } � � � � ��!7:&�E'3��?@| } � � � �L8
Combiningthesetwo equations,wefind that

| } � � � � ��!7:&� ACB�D��E'F2F+L��2�+L��?G| } � � �L8

Finally, we notethat the final hypothesiswhich BComb
outputsis adepth2 majoritycircuit over theweakhypothe-
ses � � � sinceboth F1 andBFilt combinetheir hypotheses
usingthemajority function.A straighforwardboundon the
sizeof this majority circuit yields our strongesthard-core
setconstruction:

Theorem20 Let � be + -hard for circuitsof size � under m
andlet /qS7;YS5'�8 Thenthere is a measure n on bG/9�='�c R
with y��snz�k! ò ��+G�
A�B�D��N'32�+>��� IKJ � such that � is ; -hard-core
on n for size����!d:&� ;�<î� ACB�D��E'F2F+L�N� IHJ �9�L8

Freund[12] hasshown that any successfulboostingal-
gorithm mustcombineat least

ò � ; I <HA�B�D��N'32F+L��� weakhy-
pothesesto achieve error lessthan + (this matchesthe up-
perboundgiven in Lemma1). Thus,for any hard-coreset
constructionfalling within this framework our circuit size
parameteris optimal.

4.4. A BoostingAlgorithm fr om IHA

We note that Impagliazzo’s proof shows that IHA is a
boostingalgorithmunderthe uniform distribution, not un-
der an arbitrary initial distribution. In fact, it is possible
to extendIHA to obtain a true boostingalgorithm which
canbe usedunderany initial distribution. This is doneby
usingstandardboost-by-samplingtechniques[11, 13]; the
basicideais to draw a sampleV of examplesfrom the ini-
tial distribution

�
and then run IHA on the uniform dis-

tribution over V to obtaina hypothesis� which is correct

on all pointsin Vi8 Well-known resultson PAC learningand
theVapnik-Chervonenkisdimension[2] imply that if � be-
longsto a conceptclasswhich is “sufficiently simple” (has
low Vapnik-Chervonenkisdimension),thenfor sufficiently
large V any hypothesis� which is correcton all pointsof V
will with high probabilityhave low errorunder

� 8

5. FasterAlgorithms for Learning DNF

In theprevioussectionwe saw how boostingalgorithms
canbe usedto obtainnew hard-coresetconstructions.In
this sectionwe go in the oppositedirection and establish
new resultsin learningtheorybasedonImpagliazzo’shard-
coresetconstruction.Weshow thattheuniformdistribution
boostingalgorithmwhichis implicit in IHA canbeusedsig-
nificantly improvetherunningtime of Jackson’s Harmonic
Sieve algorithmfor learningDNF undertheuniform distri-
bution usingmembershipqueries,which is widely viewed
asoneof themostimportantresultsin computationallearn-
ing theory. We alsoshow how a differentmodificationin-
spiredby our analysisin Section4.3 canimprove the run-
ning time even further at the cost of learningusing more
complex hypotheses.

Very recently Bshouty, Jacksonand Tamon [5] have
givenavariantof theHarmonicSievealgorithmwhichruns
substantiallyfasterthan the original algorithm. Their im-
provementis obtainedby speedingup a weaklearningal-
gorithmwhich is a componentof theHarmonicSieve, and
is “orthogonal” to our improvements. By combiningour
techniqueswith their improvements,we obtain the fastest
known algorithmfor learningDNF underthe uniform dis-
tributionwith membershipqueries.

5.1. The DNF Learning Problem

A disjunctivenormal form (DNF) expressionis a dis-
junction of terms where each term is a conjunction of
booleanliterals. Sinceevery booleanfunction canbe ex-
pressedin this form, theconceptclassDNF is the classof
all booleanfunctionsover b3/9�='�cGR . TheDNF-sizeof afunc-
tion � is the minimum numberof termsin any DNF ex-
pressionfor ��8 Thus,a learningalgorithmfor the concept
classDNF must be able to learn any booleanfunction in
timepolynomialin thenumberof termsin its smallestDNF
representation.

In his seminal1984paper[27], Valiantposedthe ques-
tion of whetherthereis astrongPAC learningalgorithmfor
DNF. Thelack of progresson this questionled researchers
to considerweaker learningmodels(giving morepower to
the learningalgorithmor relaxingthe criteria for success-
ful learning)in the hopeof proving somepositive result.
One way of giving more power to the learningalgorithm



is by allowing it to make membershipqueries. A member-
shipqueryis anoraclequeryin which the learnerspecifies
a point 	 andthe membershiporacleMEM ���H� returnsthe
value ��� 	�� of the unknown target function on 	�8 Another
relaxationof the PAC modelis to requirethat the learning
algorithmsucceednot for anarbitrarydistribution but only
undertheuniformdistribution.

In a breakthroughresult ten yearsafter Valiant’s paper,
Jackson[17] gaveanalgorithm,theHarmonicSieve,which
usesmembershipqueriesto learnDNF in polynomialtime
undertheuniformdistribution. Althoughhisalgorithmruns
in polynomialtime, it is not consideredto becomputation-
ally practical. In this sectionwe show how to substantially
improve the algorithm’s time dependency on the error pa-
rameter +=� thus making progresstowardsa more efficient
implementation.

5.2. An Overview of the Harmonic Sieve

Jacksonprovesthefollowing theorem:

Theorem21 [19] Theclassof DNF formulaeover bG/9�='�c R
is strongly learnableunder the uniform distribution using
membership queries in time Z:&�
[�\G]32�+ J <@� where \ is the
DNF-sizeof the target function � and + is the accuracy
parameter. Thealgorithm outputsas its final hypothesisa
majority-of-paritycircuit.

At theheartof Jackson’s HarmonicSieve algorithmis a
procedureWDNF [1] whichusesqueriesto MEM ���H� aswell
ascallsto theexampleoracleEX ����� � � for weaklylearning
DNF (seeAppendixA for amoredetaileddescriptionof the
WDNF algorithm).Jacksonprovesthefollowing:

Lemma 22 [19] For anybooleanfunction � of DNF-size\
over b3/9�='�cGR andanydistribution

� � algorithmWDNF runs
in time Z:^�
[�\G_��
|ª}q��4�R � �N�N_G� andoutputsa parity function
which is a �E'F2�4�) ò �N'32�\G��� -approximatorto � under

� 8
Proof Sketch of Theorem 7: The HarmonicSieve algo-
rithm works by applying Freund’s boosterF1 to WDNF.
SinceF1 is an :&�º;OI < ACB�D��E'F2F+L�N� -stage, :&�
+=I < � -bounded
boostingalgorithm, it follows that underthe uniform dis-
tribution, |ª}q��4�R � ��!�:&��+ I <3� for everydistributionwhich
WDNF will receive. Consequently, the HarmonicSieve al-
gorithm runs in time Z:^� [�\G]32F+ J <=� . The hypothesesoutput
by theHarmonicSieve aremajority-of-paritycircuitssince
eachweakhypothesisis a parity circuit andF1 takes the
majority.

5.3. A FasterVersionof the Harmonic Sieve

As we have describedabove, the HarmonicSieve algo-
rithm worksby boostingundertheuniformdistribution,and

its runningtimedependsheavily on theboundednessof the
boostingalgorithm. The following observationfollows di-
rectly from thediscussionof IHA in Section2:

Observation 23 For each measure n � constructedin the
executionof IHA, thedistribution

� � Î is 'F2F+ -bounded.

SinceIHA is guaranteedto endafter :&�º; I <=+ I <=� cycles
throughthe loop, it follows that theIHA algorithmcanbe
translateddirectly into a a :&�º; I <@+ I <=� -stage,'F2F+ -bounded
boostingalgorithmundertheuniform distribution. Thus,it
canbeusedinsteadof F1 in thetop layerof theHarmonic
Sieve. We call this modifiedalgorithmHS � . AlthoughHS �
requiresa factorof Zò �
+ I <G� moreboostingstagesthanF1,
this is morethanmadeup for by thebetterboundednessof
HS � , whichresultsin eachexecutionof WDNF takingatmost
Z:&� [�\G_F2F+>_@� time steps.Thuswe obtainthefollowing:

Theorem24 There is a membership-queryalgorithmHS �
for learningDNF undertheuniformdistributionwhich runs
in time Z:&�
[�\=]F2F+>]@�M8 Thealgorithm outputsas its final hy-
pothesisa majority-of-paritycircuit.

We canachieve an even fastervariantof the Harmonic
Sieve, at the price of usingmorecomplex hypotheses,by
usingtheBCombboostingalgorithm. As notedin Section
4.2, BComb is an :&�º;OI < A�B�D��E'F2F+L�N� -stage, :&�
A�B�D��N'32F+L�
2F+L� -
boundedboostingalgorithm.Thus,if we useBCombasour
boostingalgorithm,the runinngtime of eachexecutionof
WDNF will still beat most Z:&�
[�\G_32�+
_=� (herethe Z: -notation
is hiding a larger polylogarithmicfactor). Sincewe boost
for at most :&��\G<KACB�D��E'32�+L�N� stages,we have the following
theorem:

Theorem25 There is a membership-queryalgorithm for
learning DNF formulae under the uniform distribution
which runs in time Z:^� [�\G]G2�+>_=�L8 The algorithm outputsas
its final hypothesisa majority-of-majority-of-paritycircuit.

The additionalcircuit complexity comesfrom the fact
that the hypothesisoutputby BComb is a depth2 majority
circuit over its inputs.

5.4. Extensions

Throughoutthis sectionwe have only discussedusing
the HarmonicSieve to learnDNF formulaeunderthe uni-
form distribution. Jackson[19] generalizesthealgorithmto
several otherconceptclassesincluding TOP (majority-of-
parity circuits) andunionsof axis-parallelrectanglesover
bG/1�@'��=8@8=8L���Gc3R�8 In eachcaseour techniquescanbe usedto
improvetherunningtimeof his algorithms.

We alsonotethat in recentwork, Bshouty, Jacksonand
Tamon[5] have given a new algorithm for learningDNF



underthe uniform distribution. The new algorithmdiffers
from theoriginalHarmonicSievein thatit usesafasterver-
sion of the WDNF algorithm. This new versionof WDNF
runsin Z:&�
`F\G<î�
| } ��4�R � �N�E<F� timesteps,wherè is thenum-
berof distinctvariableswhich appearin theminimal DNF
representationof the target formula. Bshouty, Jacksonand
Tamonrun the original :&�
+ I <3� -boundedF1 boostingal-
gorithm for Z:&�s\G<G� stages,using the new WDNF algorithm
as the weak learner, to obtain an overall running time of
Z:&� `�\=aF2�+�a3� for learningDNF. By applyingour techniques

asin Section5.3 (usingthe Z:&� ACB�D��E'F2F+L��2�+>� -boundedboost-
ing algorithmBComb), wecanimprovetherunningtimeof
thealgorithmto Z:&� `�\=a�2F+><@�L8
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A. The WDNF Algorithm

The WDNF algorithm takes as input an exampleoracle
EX ����� � �L� amembershiporacleMEM ���H�M� adistributionor-
acle DIST � � �M� and a value é7-ë/18 A distribution oracle
DIST � � � is an oraclewhich, whenqueriedwith a point 	
in the domainof

� � returns
� � 	��M8 All of the boostingal-

gorithmsF1, BFilt , andBComb, as well as the uniform-
distribution boostingalgorithm implicit in IHA, construct
their distributions

� � in such a way that they can effi-
ciently simulateDIST � � � �M8 With probabilityat least '�)�é
the WDNF algorithm outputsa parity function which is a
�E'32�4�) ò �E'32�\3�N� -approximator for � under

� � where\ is the
DNF-sizeof ��8
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