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Abstract

This paper connectstwo fundamentaideasfrom theo-
retical computerscience:hard-coresetconstructiona type
of hardnessamplificationfrom computationalcompleity,
andboosting a techniquefromcomputationalearningthe-
ory. Using this connectionwe give fruitful applications
of complity-theoetic techniquesto learning theory and
vice versa. We showthat the hard-core set construction
of Impagliazzo[15], which establisheshe existenceof dis-
tributions underwhich booleanfunctionsare highly inap-
proximable may be viewed as a boostingalgorithm. Us-
ing alternateboostingmethodswve givean improvedbound
for hard-core setconstructionwhich matdesknownlower
boundsfrom boostingand thusis optimal within this class
of techniques.We thenshowhowto apply techniquesfrom
[15] to give a new version of Jadksons celebiated Har-
monic Sieve algorithm for learning DNF formulae under
the uniform distribution using membeship queries. Our
new version has a significantasymptoticimprovementin
runningtime Critical to our argumentds a careful analy-
sisof thedistributionswhich are employedn bothboosting
and hard-core setconstructions.
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1. Intr oduction
1.1 Boostingand Hard-Cor e Sets

This paperconnectdwo fundamentaldeasfrom theoret-
ical computersciencehard-core setconstructionatype of
hardnesamplificationfrom computationatompleity, and
boosting atechniquerom computationalearningtheory

We refer to a hardnessamplificationas a result of the
following form: given a booleanfunction f thatis mildly
inapproximableby circuits of someboundedsize g, con-
struct, from f, a new function f’ thatis highly inapprox-
imableby all circuits of sizecloselyrelatedto g. Hardness
amplificationresultsare a crucial componenbf recentat-
temptsto derandomizeBPP[24, 3, 16]. Perhapghe most
famoushardnesamplificationresultis Yao's XOR-lemma
[14], which stateghatif a booleanfunction f is mildly in-
approximabléeby circuits of sizeg thenthe XOR of several
independentopiesof f is highly inapproximabléfor cir-
cuitsof sizecloselyrelatedto g.

While the goal of hardnessaamplificationis to amplify
somesmall initial “hardness”of a booleanfunction, the
goal of boostingis to “boost” somesmallinitial advantage
overrandomguessinghatalearnercanachierein Valiant's
PAC (Probabilistically Approximately Correct) model of
learning. Roughlyspeakinga strong learningalgorithmin
this modelis an algorithmwhich, given accesgo random
labelled examples{z, f(x)) drawn from ary distribution
D, cangeneratea hypothesish suchthat Pryep[f(z) =
h(z)] > 1 — e for ary e > 0, while a weaklearningal-
gorithm [22] can only do this for somel/2 > ¢ > 0.
Schapire[25] andthen Freund[10, 11] gave boostingal-
gorithmswhich corvert weaklearnersanto stronglearners,
thusproving the equivalenceof weakandstronglearnabil-
ity. Sincethen,boostinghasbeenappliedin awide variety
of contexts and continuesto be an active areaof research
[6,7,8,9,13 20, 26]. All known boostingalgorithmswork
by usingtheweaklearningalgorithmseveraltimeson a se-
guenceof carefully constructedlistributions.



Reference:

‘ Setsizeparameter:

Circuit sizeparameter: ‘

Impagliazzd15] € O(y*€*) -g
Nisan[15] € O(y*(log(1/ve))™") - g
This Paper €/O(log(1/€)) | O(v*(log(1/€)) 1) - g

Table 1. Comparison of known hard-core set constructions.

Superficially boostingand hardnesamplificationseem
to have oppositegoals—boostingconstructsa hypothesis
which closely approximatesa function f while hardness
amplificationresultsprove thatcertainfunctionsarehardto
approximateTheprooftechniquegmployedin bothareas,
however, have a similar structure.All known hardnessim-
plificationresultsgo by contradiction:assuminghereexists
acircuit C capableof mildly approximatingf’, oneproves
the existenceof a slightly larger circuit which closely ap-
proximatesf. Fromthis perspectie, a hardnesamplifica-
tion proof resembles type of boostingprocedurecircuits
which mildly approximatea function f’ (thesecorrespond
to thehypothesesutputby theweaklearner)arecombined
to form a new circuit computingf on a large fraction of
inputs.

In an important paper Impagliazzo[15] reducesthe
problemof amplifying the hardnes®f a function f to the
problem of constructinga distribution D suchthat f is
highly inapproximableby small circuits for inputs chosen
accordingto D. He thenconstructssucha distribution and
usesit to prove an XOR lemma. Impagliazzoalso shavs
that the existenceof sucha distribution implies the exis-
tenceof a“hard-coreset” asdefinedin Section2.1; we thus
referto Impagliazzos methodof constructingsucha distri-
butionasahard-coresetconstruction Schapirg25] wasthe
first to point out that the existenceof a boostingalgorithm
impliesthe existenceof suchadistribution.

1.2 Our Results

In this paperwe give an explicit correspondencée-
tweenthedistributionsthatarisein Impagliazzoshard-core
setconstructiorandthe distributionsconstructedy boost-
ing algorithms. This obsenation allows us to prove that
the hard-coreset constructionof Impagliazzois a boost-
ing algorithmwhenthe initial distribution is uniform. As
we will shaw, thereare two important parametersvhich
boostingand hard-coreset constructionsshare: the num-
ber of “stages”requiredandthe “boundednessbf the dis-
tributionswhich are constructed.Interestingly the proce-
dureswhich have beenusedfor hard-coresetconstruction
have better"boundednessandcanbe usedto improve al-
gorithmsin computationalearningtheory while boosting
algorithmsrequirefewer “stages”and can be usedto im-

prove hard-coresetconstruction.

We first shawv how to useknown boostingalgorithmsto
obtain new hard-coreset constructions.In [15], Impagli-
azzoprovesthefollowing: givena function f suchthatno
circuit of sizelessthang correctlycomputes’ onmorethan
(1 — €)2™ inputs,thenfor ary v < 1/2 thereexistsa setS
of sizee2™ suchthatno circuit of size O(y%€%)g cancor
rectly computef on morethana (1/2 + ) fractionof the
inputsin S. By letting known boostingalgorithmsdictate
the constructiorof thedistributionsin Impagliazzos proof,
we improve on previous resultswith respectto the circuit
sizeparametewith only asmalllossin thesetsizeparame-
ter. As explainedin Section4.3,we believe our circuit size
parameteto be optimal with respectto this classof tech-
nigues.Table1 summarize®ur hard-coresetconstruction
results.

We also shov how to use Impagliazzos hard-coreset
constructionto obtain a new variant of Jacksors break-
through Harmonic Sieve algorithm[17] for learningDNF
formulaewith membershigueriesunderthe uniform dis-
tribution. Our variantis substantiallymore efficient than
the original algorithm. Jacksors original algorithmrunsin
time O(ns®/€'?), wheren is thenumberof variablesin the
DNF formula, s is the numberof terms,ande is the accu-
ray parameterpur variantrunsin time O(ns8/e%). (We
canfurtherimprove the runningtime to O(ns®/€%) at the
costof learningusinga slightly more complicatedclassof
hypotheses).

In recentwork Bshouty Jacksonand Tamon[5] have
improved the running time of the Harmonic Sieve to
O(rs*/e*), wherer is the numberof distinct variables
which appeaiin the minimal DNF representatioof thetar
getformula. Our resultsimprove the runningtime of their
new algorithmto O(rs*/€?) time stepswhichis thefastest
known algorithmfor PAC learningDNF with membership
gueriesunderthe uniform distribution.

Our main technicalcontribution is a carefulanalysisof
the distributions constructedduring the boostingprocess.
We shaw that boostingprocedureavhich constructdistri-
butionswith high minimumentrogy aredesirablefor good
hard-coresetconstructions.



1.3 Related Work

Bonehand Lipton [4] have appliedYao’s XOR-lemma
to provetheequivalenceof weakandstronglearnabilityfor
certaintypesof conceptclassesinderthe uniform distribu-
tion. Their resultappliesto conceptclasseslosedundera
polynomialnumberof XOR operations.

1.4. Organization

In Section2 we give an overview of the hard-coreset
constructionfound in [15]. In Section3 we outline the
structureof all known boostingalgorithms. In Section4
we give an explicit connectionbetweenthe constructions
detailedin Sections2 and3 andshowv how to apply boost-
ing techniquego obtainnew hard-coresetconstructionsin
Section5 we shav how thetechniqueglescribedn section
2 canbeusedo improvetherunningtime of Jacksors algo-
rithm for learningDNF formulae. We alsomentionrelated
algorithmsin learningtheorywhereour techniqguecanbe
applied.

2. Hard-Cor e SetConstruction Overview

2.1 Definitions

Our first definition, taken from [15], formalizesthe no-
tion of a function which is hardto approximate.(Readers
who are familiar with the notationof [15] will noticethat
we are using differentvariables;the reasondgor this will
becomeclearin Sectior4.)

Definition 1 Let f bea booleanfunctionon {0,1}" andD
a distribution on {0,1}™. Let0 < € < 1/2 andletn <
g < 2"/n. We saythat f is e-hardfor size g underD if
for any booleancircuit C with at mostg gates,we have
Prp[f(z) =C(z)] <1—e.

In otherwords,ary circuit of sizeatmostg mustdisagree
with f with probability at leaste for = drawn accordingto
D. Throughoutthe paperwe usel{ to denotethe uniform
distributionon {0,1}".

Definition 2 A measureon {0,1}™ is a function M
{0,1}™ — [0, 1]. Theabsolutesizeof a measue M is de-
notedby | M| andequals) M (x); therelative sizeof M
is denotedu(M) andequals| M |/2™.

Definition 3 For any real valued function &, L. (&) de-
notesmax, [£(z)|.

The quantitylog(L.,(D)~!) is often referredto asthe
minimum entopy of D. Thereis a natural correspon-
dencebetweermeasuresnddistributions: the distribution

D inducedby a measureM is definedby Dy(z) =
M(z)/|M]|. Corversely if D is a distribution, then the
measureMp induced by D is definedby Mp(x) =
D(z)/Ls (D). Thus Mp is the largestmeasurewhich is
a constant-multiplerescalingof D (note that D itself is
a measurethoughtypically one which hasmuch smaller
sizethan Mp). It is clearthat |Mp| = 1/L.(D) and
uw(Mp) = 1/Ls(2™D)). Thus,largemeasuresorrespond
to distributions which do not assignlarge weight to ary
point (i.e., have high minimumentrogy).

Thenext definitionis alsofrom [15]:

Definition 4 Wesaythat f is y-hard-coreon M for sizeg if

Prp,, [f(z) = C(z)] < 1/2 + ~ for everycircuit C of size
at mostg. For S C {0,1}", wesaythat f is y-hard-core
on S for sizeg if f isy-hard-coreon Mg for sizeg, where

Mg(x) is the characteristicfunctionof S.

2.2 Existenceof Hard-Cor e Measures

The following theorem,dueto Impagliazzo[15], is the
startingpoint of all ourresults:

Theorem5 [15] Let f bee-hard for circuitsof sizeg under
U andlet0 < v < 1. Thenthereisameasue M on{0,1}"
with (M) > e sudh that f is y-hard-core on M for size

g9' = 0(e7?)g.

Proof Sketch: Assumeby way of contradictionthatfor ev-
ery measureM with pu(M) > e thereis a circuit Cs of
sizeatmostg’ suchthatPrp,,[f(z) = Cp(z)] > 1/2+7.
Now considerthe algorithm| HA which is givenin Figure
1. This algorithmiteratively modifies M until its relative
sizeis lessthane. After eachmodificationwe obtaina cir-
cuit Cps asabove. Oncetherelative sizeof M becomedess
thane we combinethe circuits obtainedduring the process
to contradictthe original assumption. The following eas-
ily verifiableclaimsareusefulfor understandindgpow | HA
works:

e N;(z) is the mamgin by which the majority vote of
Coy, - - ., C; correctlypredictsthevalueof f(x).

e The measurel;,, assignsweight0 to pointswhere
the magin of correctnesss large, weight 1 to points
where the mamgin is nonpositve, and intermediate
weightto pointswherethemaginis positive but small.

Impagliazzoprovesthatafterat mostioc = O(1/(€24?))
cyclesthroughthe loop, u(M;) mustbe lessthane. Once
this happensand we exit the loop, it is easyto seethat
h = MAJ(Cy,...,C;—1) agreeswith f onall inputsex-
ceptthosewhich have N;(z) < 0 andhenceM;(z) = 1.
Sinceu(M;) < e, thisimpliesthat Pry[f(z) = h(z)] >
1— u(M;) > 1 — €. Buth is amajority circuit over at most



Input: € > 0, v > 0, booleanfunction f
Output: acircuit h suchthatPry[h(z) = f(x)] > 1—¢

MH_l((E) =0if Nl(:c) > 1/’)/7 Mi+1(.’£) =1if Nl(zc) < 0, MH_l((E) =1-— 'le(:c) otherwise

1. seti+0

2 Mo(x) =1

3. until u(M;) < edo

4 let C; beacircuit of sizeatmostg’ with Prp,, [C(z) = f(2)] > 1/2 +~
5. Rc,;(z) =1if f(z) = Ci(x), Rc,; (x) = —1 otherwise

6. Ni(z) = ZOSjSi Rg, ()

7

8 seti < i+1

9. hEMAJ(Co,Ch...,Cifl)

10. return h

Figure 1. The | HA algorithm.

ig circuits eachof sizeat mostg’, andmajority over g in-
putscanbe computedby a circuit of sizeO(ip). It follows
thath hasatmostg'io + O(ig) < g gateswhichcontradicts
theoriginalassumptiorthat f is e-hardfor circuitsof sizeg
underl{. |
Usinga non-constructie proof techniqgue Nisanhases-
tablisheda similar result which is reportedin [15]. In
Nisan's theoremthe circuit sizeparameters slightly worse
asafunctionof v but substantiallybetterasafunctionof e :

Theorem6 [15] Let f bee-hard for circuitsof sizeg under
U andlet0 < v < 1. Thenthereisameasue M on{0,1}"
with (M) > e sudh that f is y-hard-core on M for size

g' = O0(y*(log(2/7e)) H)g.

In Sectiord.2we will establishresultsof thistypewhich
have a bettercircuit size parametei(but a slightly smaller
measure}haneitherTheoreml or Theorem?2.

(We notethatTheoremsl and2, aswell asthetheorems
which we will prove later, assertthe existenceof a large
measurenotalargesetaswaspromisedn Sectionl. Using
a straightforward probabilisticargument,impagliazzohas
shownin [15] thatif f is y-hard-coreon M for sizeg’ with
u(M) > e, thenthereis asetS C {0,1}™ with |S| > e2"
suchthat f is 2-y-hard-coreon S for sizeg’.)

3. Boosting Overview

In this section we define the learning model, weak
and stronglearning,and boosting which corvertsa weak
learnerto astrongone.

3.1 Definitions

Wetakeasourlearningframework Valiant'swidely stud-
ied PAC (ProbablyApproximatelyCorrectymodelof con-
ceptlearning[27]. In this modela conceptlassis acollec-
tion C' = Up>1C,, of boolearfunctionswhereeachf € Cp,

is a booleanfunction on {0, 1}". For example,we might
have C), astheclassof all booleanconjunctionson n vari-
ables. If f andh aretwo booleanfunctionson {0,1}"
andD is a distribution on {0,1}", we saythath is ane-
approximatorfor f underD if Prp[f(z) = h(z)] > 1 —e.
The learner has accessto an example oracle EX(f, D)
which,whenqueried providesalabelledexample(z, f(x))
wherez is drawvn from {0, 1} accordingto thedistribution
D andf € C, is the unknown target conceptwhich the
algorithmis trying to learn. The goal of the learneris to
generatean e-approximatorfor f underD. We thus have
thefollowing definition:

Definition 7 AnalgorithmAis a strongPAC learningalgo-
rithm for aconceptlassC' if thefollowing conditionholds:
foranyn > 1, any f € C,, anydistribution D on{0,1}",
andany0 < ¢,6 < 1, if Ais givenaccesso n,¢,d and
EX(f, D), thenA runsin time polynomialin n, e~*, §71,
andsize(f), andwith probability at least1 — ¢ algorithm
A outputsan e-approximatorfor f underD.

In the above definition size(f) measureshe complex-
ity of thefunction f undersomefixedreasonablencoding
schemeFor the conceptclassDNF whichwe will consider
in Sectionb, size(f) is the minimum numberof termsin
ary disjunctve normalform representatioof f.

If the algorithm A is only guaranteedo find a (1/2 —
~)-approximatorfor some~y > 0, then we say that A
is a (1/2 — v)-approximatelearning algorithm; if v =
Q(1/p(n, size(f))) for somepolynomialp, we saythatAis
aweaklearningalgorithm(Thenotionof weaklearningwas
introducedby Kearnsand Valiantin [22]). We will aluse
notationandsaythatA is a (1/2 — v)-approximatdearn-
ing algorithmfor f if Aisa(1/2 — «)-approximatdearn-
ing algorithmfor the conceptclassC which consistsof the
singlefunction f. In a seriesof importantresults,Schapire
[25] and subsequentlyFreund[10, 11] have shavn that if
A is aweaklearningalgorithmfor a conceptclassC, then
thereexists a stronglearningalgorithmfor C. Their proofs



are highly constructve in that they give explicit boosting
algorithmswhich transformweaklearningalgorithmsinto
strongones. We now formally defineboostingalgorithms
(arelateddefinitioncanbefoundin [12]):

Definition 8 AnalgorithmB is saidto be a boostingalgo-
rithm if it satisfieghefollowing condition: for anyboolean
function f andany distribution D, if B is given0 < ¢€,§ <

1,0 < v < 1/2, an exampleoracle EX(f,D), and a
(1/2—~)-approximatdearningalgorithm\WL. for f, thenal-

gorithm B runsin time polynomialin n, size(f),y %, e 1,

and §—', and with probability at least1 — § algorithm B

outputsan e-approximatorfor f underD.

3.2 Structur e of Boosting Algorithms

All known boostingalgorithmsrely crucially on thefact
thatthe weaklearningalgorithmW. canfind a (1/2 — ~)-
approximatofor f underD’ for anydistributionD’, aslong
asW. is givenaccesgo the exampleoracleEX(f, D). We
givethefollowing high-level definition:

Definition 9 A canonicalboosteris a boostingalgorithm
which hasthefollowing iterative structure:

e At stage 0 thealgorithm startswith Dy = D anduses
W to genemtea (1/2 — v)-approximatorhg for f un-
derDy.

e At stage i theboostingalgorithmdoestwo things: (1)
constructsa distribution D; which favors pointswhere
theprevioushypothesesy, .. ., h; 1 dopoorlyat pre-
dicting the value of f, and (2) simulatesthe example
oracleEX(f, D;) andletsW. accesghis simulatedex-
ampleoracle to producea hypothesish; which is a
(1/2 — ~)-approximatorfor f underD,;.

o Finally, after doingthis repeatedlyfor several stages,
the boosting algorithm combines the hypotheses
ho, - - -, hi—1 in somewayto obtain a final hypothesis
h which is an e-approximatorfor f underD.

Wefeelthatthisdefinitioncapturesheessencef known
boostingalgorithms.

4. Hard-Cor e SetConstruction from Boosting
4.1 A Structural Similarity

From the descriptionsof the hard-coresetconstruction
of Section? andthecanonicaboostingalgorithmof Section
3, one canseea closestructuralresemblancéetweenthe
| HA algorithm and the canonicalboostingalgorithm out-
lined above. To be morespecific,just asl HA assumeshat

ateachstagethereis a circuit C; for which Prp,, [f(z) #
C(z)] < 1/2—+,thecanonicaboostingalgorithmassumes
thatWL cangeneratateachstageahypothesig; for which
Prp,[f(x) # hi(z)] < 1/2 —~. Theinduceddistributions
Dy, of | HA correspongreciselyto thedistributionsD; of
the canonicalboostingalgorithm (note that | HA startsoff
with the measureM, = 1 which correspondso the uni-
form distribution 4 = Dy). Finally, just asthe canonical
boostingalgorithm combinesthe hypotheses, . . ., h;—1
in somefashionto obtain a final hypothesish which has
Pry[f(z) = h(z)] > 1 — ¢, the | HA algorithmcombines
thecircuitsCy, . .., C;—1 by takingmajority to obtaina cir-
cuit h suchthatPry[f(z) = h(z)] > 1 —e.

We concludethatl HA is analgorithmwhich succeedmn
boostingprovided that the starting distribution is the uni-
form distribution /. Sinceboostingalgorithmsfrom com-
putationallearningtheorywill work for any startingdistri-
bution, apriori it seemssif it shouldbepossibleto useary
boostingalgorithmin placeof | HA andobtaina hard-core
setconstruction. In the next sectionwe prove a theorem
which formalizesthis ideaand emphasizeshe parameters
whichareimportantto obtainagoodhard-coresetconstruc-
tion.

4.2 A General Hard-Cor e SetConstruction

Definition 10 LetD beadistributionover{0,1}". Ford >
1, wesaythatD is d-boundedf L., (2"D) < d.

As an immediateconsequencef Definitions2 and 8, we
have

Obsewation 11 A distribution D
u(Mp) > 1/d.

is d-bounded iff

Definition 12 Let B be a canonical boosting algorithm
which takesas input ¢, §, v, an exampleoracle EX(f, D),
anda (1/2 — v)-approximatelearningalgorithmW. for f.

1. We saythat B is a k(e, v)-stageboostingalgorithm if
thefollowing holds: For all exampleoraclesEX(f, D)
and (1/2 — v)-approximatelearneis W. for f, algo-
rithm B simulatesat mostk = k(e,~y) distributions
Do, Dy, - .., Dr_y for W and uses\W. to geneite at
mostk hypothesedy, ..., hg_1-

2. We say that B is a d(e, y)-boundedboosting algo-
rithm if the following holds: For all functionsf and
(1/2 — ~)-approximatelearneis W., whenB is given
EX(f,U) andW., with nonzeo probability bothof the
following eventsoccur: (i) the simulateddistributions
Do, - .., Dr_1 are each d(e,v)-bounded,and (ii) the
hypothesish which B outputssatisfiesPrp[f(z) =
h(z)] >1-—e



Note thatthe propertyof the distributions D; described
in part2 of theabove definitionis similar (but notidentical)
to Levin’s notion of “dominated”distributions[23].

Now we canstatethe following theoremwhich general-
izeslmpagliazzos hard-coresetconstructiorfrom [15].

Theorem13 Let B be a k(e,y)-stage, d(e,y)-bounded
boostingalgorithm which outputsasits final hypothesisa
circuit of sizer overinputshy,...,hig_1. Let f bee-hard
for circuitsof sizeg under/ andlet0 < v < 1. Thenthere
is a measue M on {0, 1}" with u(M) > 1/d(e,v) such
that f is y-hard-coreon M for sizeg’ = (g — r)/k(e, 7).

Proof: The proofis analogoudo the proof of Theorem1.

Assumeby way of contradictionthatfor every measure\/

with u(M) > 1/d(e,~) thereis a circuit Cy; of sizeat

mostg’ suchthatPrp,,[f(z) = Cy(z)] > 1/2 + . By

Obsenation 1, this implies that for every d(e, v)-bounded
distribution D thereis a circuit Cp of sizeatmostg’ such
thatPrp[f(z) = Cp(z)] > 1/2+ 7.

Now run the boostingalgorithmB on inputse, 6, v, and
EX(f,U). SinceB is d(e, y)-boundedwith nonzeroprob-
ability we have that (i) every distribution D; which B sim-
ulateswill bed(e,v)-boundedand(ii) thefinal hypothesis
which B outputsis an e-approximatorto f underthe orig-
inal distribution /. By (i), theremustexist a circuit C; of
atmostg’' gateswhichis a (1/2 — «y)-approximatorfor f
underD;. Give B this circuit whenit calls W. on distribu-
tion D;. Now by (ii), the final hypothesiswvhich B outputs
mustbe ane-approximatotto f underthe original distribu-
tionl{. ButsinceBis k(e, v)-stagethisfinal hypothesiss a
circuit of sizeatmostr + g'k(e,v) < g, which contradicts
theoriginalassumptiornthat f is e-hardfor circuitsof sizeg
underi{. |

4.3. New Hard-Cor e SetConstructions

Here we apply Theorem3 to obtainnew hard-coreset
constructiongrom known boostingalgorithms.We proceed
in stages.First, we shav how two differentboostingalgo-
rithmsyield differenthard-coresetconstructionsNext, we
combinetheseboostingalgorithmsto achieve a new hard-
coresetconstructionvhich subsumesindimprovesresults
of ImpagliazzoandNisanin the circuit sizeparameteand
hasa slightly worsemeasuresizeparameter

We first considerFreunds boost-by-majorityalgorithm
from [10] which, following Jacksorj18], we referto asF1.
Algorithm F1 simulatesat mostk = O(y~2 log(1/e)) dis-
tributionsD; andcombinesdts k£ hypothesesisingthe ma-
jority function. Jacksors analysis([18], pp. 57-59)yields
thefollowing factaboutF1:

Fact 14 If F1 isgiveninputse, 8, v, EX(f, D) anda (1/2—
~)-approximateweaklearnerWL for f, thenwith high prob-
ability eadh distribution D’ which F1 simulatesfor W_ sat-
isfies

Loo(D') = O(1/€*) - Loo(D).

This immediatelyimplies thatF1 is O(1/e2)-bounded.
We thusobtainthefollowing hard-coresetconstruction:

Theorem 15 Let f bee-hard for circuits of sizeg undert/
andlet0 < v < 1. Thenthereis a measue M on {0,1}"
with (M) = Q(e?) sud that f is y-hard-core on M for
sizeg' = O(v*(log(1/¢)) 'g).

Next, we considerFreunds later Bg;; algorithm from
[12] (the name comesfrom the fact that the algorithm
“filters” examplesfrom the original distribution to sim-
ulate new distributions). Like F1, algorithm Bg;; is a
k-stage boosting algorithm for & = O(y~2log(1/¢)).
Brjjt combinests (1/2 — v)-approximatorgo obtainane-
approximatorfor f by usinga majority functionon k in-
puts which may have somerandominputs. A straightfor
ward argumentshawvs that somecircuit of size O(k) is a
e-approximatoffor f. To analyzetheboundednessf Bgj; ,
we usethefollowing factwhichis implicit in [12]:

Fact16 If Bg; is given inputs €,6,v, EX(f,D) and a

(1/2 — v)-approximateweaklearner W. for f, thenwith

high probability ead distribution D' which Bgjj; simulates
for W. satisfies

Loo(D') = O(log(1/€)/(€7)) - Loo (D).

Since Fact 2 implies that Bgjiis O(log(1/e)/(ev))-
boundedywe obtain

Theorem 17 Let f bee-hard for circuits of sizeg underi/
andlet0 < v < 1. Thenthere is a measue M on {0,1}"
with u(M) = Q(ey(log(1/€))~1) sud that f is y-hard-
coreon M for sizeg’ = O(v%(log(1/€))~1g).

Finally we establistour strongeshard-coresetconstruc-
tion by combiningthe previous two approaches.In [11],
Freund describesa two-level boosting algorithm which
worksasfollows: algorithmF1 is usedto boostfrom accu-
racy (1/2 — ~y) to accurag 1/4, andalgorithmBg;j; boosts
from accuray 1/4 to accurag e by taking F1 asits weak
learner We call this combinedalgorithmBgcomp -

Lemma 18 The boosting algorithm BgcgompiS an
O(y~21og(1/e))-stage boostingalgorithm.

Proof: Thetoplevel of Bcomp, WhichusesalgorithmBgij;,
takes O(log(1/€)) stagessincethe weak learnerwhich it
usesis F1 which provides(1/2 — «')-accuratehypotheses



with v/ = 1/4. Thebottomlevel, which usesalgorithmF1,
takesO(y~2) stagesinceit boostsa (1/2—+)-approximate
learnerto accuray 1/4. Consequentlythe combinedalgo-
rithm Bcomp Usesthe claimednumberof stages. |

Lemma 19 Bcompis an O(log(1/€)/e)-boundedboosting
algorithm.

Proof: SinceBg;; is boostingfrom accuray 1/4 to accu-
ragy e usingF1 asits weaklearner Fact2 impliesthateach
distribution D' which Bgjj; passeso F1 satisfies

Loo(D') = O(log(1/€)/€) - Loo(D).

SinceF1 is boostingfrom accuray (1/2 — ) to accurag
1/4, Factl1 impliesthatif D" is the distribution which F1
passeso W, then

Loo(D") = 0(1) - Lo (D").
Combiningthesetwo equationsyve find that
L (D") = O(log(1/€)/€) - Loo(D).

Finally, we notethatthe final hypothesisvhich Bcomp
outputsis adepth2 majority circuit overtheweakhypothe-
sesh;, sinceboth F1 and Bgj; combinetheir hypotheses
usingthemajority function. A straighforvardboundon the
size of this majority circuit yields our strongestard-core
setconstruction:

Theorem 20 Let f bee-hard for circuits of sizeg undert/
andlet0 < v < 1. Thenthereis a measue M on {0,1}"
with u(M) = Q(e(log(1/€))~1) suc that f is y-hard-core
on M for sizeg’ = O(v%(log(1/€))~1g).

Freund[12] hasshown thatary successfuboostingal-
gorithm mustcombineat leastQ(y~2log(1/¢)) weakhy-
pothesedo achieve error lessthane (this matcheshe up-
perboundgivenin Lemmal). Thus,for ary hard-coreset
constructionfalling within this framework our circuit size
parameters optimal.

4.4. A BoostingAlgorithm from IHA

We note that Impagliazzo$ proof shovs that| HA is a
boostingalgorithmunderthe uniform distribution, not un-
der an arbitrary initial distribution. In fact, it is possible
to extend | HA to obtain a true boostingalgorithm which
canbe usedunderary initial distribution. This is doneby
usingstandardboost-by-samplingechniqueg11, 13]; the
basicideais to draw a sampleS of examplesfrom theini-
tial distribution D andthenrun | HA on the uniform dis-
tribution over S to obtaina hypothesish which is correct

onall pointsin S. Well-known resultson PAC learningand
the Vapnik-Cherenenkisdimension2] imply thatif A be-
longsto a conceptclasswhich is “sufficiently simple” (has
low Vapnik-Cherenenkisdimension)thenfor sufficiently
large S ary hypothesish which s correcton all pointsof S
will with high probabilityhave low errorunderD.

5. Faster Algorithms for Learning DNF

In the previous sectionwe saw how boostingalgorithms
canbe usedto obtainnew hard-coresetconstructions.In
this sectionwe go in the oppositedirection and establish
new resultsin learningtheorybasedn Impagliazzos hard-
coresetconstruction We shav thattheuniformdistribution
boostingalgorithmwhichisimplicit in | HA canbeusedsig-
nificantly improve the runningtime of Jacksors Harmonic
Sieve algorithmfor learningDNF underthe uniform distri-
bution usingmembershigueries,which is widely viewed
asoneof themostimportantresultsin computationalearn-
ing theory We alsoshav how a differentmodificationin-
spiredby our analysisin Section4.3 canimprove the run-
ning time even further at the cost of learningusing more
comple hypotheses.

Very recently Bshouty Jacksonand Tamon [5] have
givenavariantof theHarmonicSieve algorithmwhich runs
substantiallyfasterthanthe original algorithm. Their im-
provementis obtainedby speedingup a weaklearningal-
gorithmwhich is a componenbf the HarmonicSieve, and
is “orthogonal” to our improvements. By combiningour
techniqueswith their improvementswe obtainthe fastest
known algorithmfor learningDNF underthe uniform dis-
tribution with membershigueries.

5.1 The DNF Learning Problem

A disjunctivenormal form (DNF) expressionis a dis-
junction of terms where eachterm is a conjunction of
booleanliterals. Sinceevery booleanfunction canbe ex-
pressedn this form, the conceptclassDNF is the classof
all boolearfunctionsover{0, 1}". The DNF-sizeof afunc-
tion f is the minimum numberof termsin ary DNF ex-
pressionfor f. Thus,a learningalgorithmfor the concept
classDNF mustbe ableto learnarny booleanfunction in
time polynomialin thenumberof termsin its smallesDNF
representation.

In his seminal1984paper[27], Valiantposedthe ques-
tion of whetherthereis a strongPAC learningalgorithmfor
DNF. Thelack of progreson this questionled researchers
to considemwealer learningmodels(giving more power to
the learningalgorithmor relaxingthe criteria for success-
ful learning)in the hopeof proving somepositive result.
Oneway of giving more power to the learningalgorithm



is by allowing it to make membeship queries A member

shipqueryis anoraclequeryin which the learnerspecifies
a point z andthe membershipracleMEM( f) returnsthe

value f(z) of the unknawn target function on z. Another
relaxationof the PAC modelis to requirethatthe learning
algorithmsucceedot for anarbitrarydistribution but only

underthe uniformdistribution.

In a breakthroughresultten yearsafter Valiant's paper
Jacksorj17] gave analgorithm,theHarmonicSieve, which
usesmembershigueriesto learnDNF in polynomialtime
undertheuniformdistribution. Althoughhisalgorithmruns
in polynomialtime, it is not consideredo be computation-
ally practical. In this sectionwe shov how to substantially
improve the algorithm’s time dependeng on the error pa-
rametere, thus making progresstowardsa more efficient
implementation.

5.2 An Overview of the Harmonic Sieve

Jacksorprovesthefollowing theorem:

Theorem21 [19] Theclassof DNF formulaeover {0,1}"
is strongly learnableunderthe uniform distribution using
membeship queriesin time O(ns®/€'2) whee s is the
DNF-sizeof the target function f and ¢ is the accuracy
parameter Thealgorithm outputsas its final hypothesisa
majority-of-paritycircuit.

At the heartof Jacksors HarmonicSieve algorithmis a
procedura\DNF [1] which usesquerieto MEM(f) aswell
ascallsto theexampleoracleEX( f, D) for weaklylearning
DNF (seeAppendixA for amoredetaileddescriptiorof the
VADNF algorithm). Jacksorprovesthe following:

Lemma 22 [19] For anybooleanfunction f of DNF-sizes
over {0, 1}™ andany distribution D, algorithm WDNF runs
in time O (ns® (L (2"D))%) and outputsa parity function
whichisa (1/2 — Q(1/s))-approximatorto f underD.

Proof Sketch of Theorem 7: The Harmonic Sieve algo-
rithm works by applying Freunds boosterF1 to VADNF.
Since F1 is an O(y 2log(1/¢))-stage, O(e 2)-bounded
boostingalgorithm, it follows that underthe uniform dis-
tribution, Lo, (2"D) = O(e 2) for every distributionwhich
VDNF will receve. Consequentlythe Harmonic Sieve al-
gorithm runsin time O(ns®/e'?). The hypothesesutput
by the HarmonicSieve aremajority-of-paritycircuits since
eachweak hypothesiss a parity circuit and F1 takesthe
majority. |

5.3 A Faster Version of the Harmonic Sieve

As we have describedabore, the HarmonicSieve algo-
rithm worksby boostingundertheuniformdistribution,and

its runningtime depend$eaily ontheboundednessf the
boostingalgorithm. The following obsenationfollows di-
rectly from the discussiorof | HA in Section2:

Observation 23 For each measue M; constructedn the
executionof | HA, thedistribution Dy, is 1/e-bounded.

Sincel HA is guaranteedo endafter O(y~2¢2) cycles
throughtheloop, it follows thatthe | HA algorithmcanbe
translateddirectly into aa O(y~2¢~2)-stage,1 /e-bounded
boostingalgorithmunderthe uniform distribution. Thus, it
canbe usedinsteadof F1 in thetop layer of the Harmonic
Sieve. We call this modifiedalgorithmHS'. AlthoughHS'
requiresa factorof {2(e~2) moreboostingstagesghanF1,
thisis morethanmadeup for by the betterboundednessf
HS', whichresultsin eachexecutionof WDNF takingatmost
O(ns% /%) time steps Thuswe obtainthefollowing:

Theorem 24 Thek is a membeship-queryalgorithm HS'
for learningDNF undertheuniformdistributionwhich runs
in time O(ns®/€8). Thealgorithm outputsasiits final hy-
pothesisa majority-of-paritycircuit.

We canachieve an evenfastervariantof the Harmonic
Sieve, at the price of usingmore complex hypothesesby
usingthe Bcompboostingalgorithm. As notedin Section
4.2, Bcombis an O(y~2log(1/e€))-stage,O(log(1/€)/€)-
boundedboostingalgorithm. Thus,if we useBcgmpasour
boostingalgorithm, the runinngtime of eachexecutionof
VDNF will still be at mostO(ns®/€%) (herethe O-notation
is hiding a larger polylogarithmicfactor). Sincewe boost
for at mostO(s?log(1/¢)) stageswe have the following
theorem:

Theorem 25 Thek is a membeship-queryalgorithm for
learning DNF formulae under the uniform distribution
which runs in time O(ns8/€%). The algorithm outputsas
its final hypothesis majority-of-majority-of-paritycircuit.

The additional circuit compleity comesfrom the fact
that the hypothesisoutputby Beompis a depth2 majority
circuit overits inputs.

5.4. Extensions

Throughoutthis sectionwe have only discussedising
the HarmonicSieve to learn DNF formulaeunderthe uni-
form distribution. Jacksorj19] generalizeshealgorithmto
several other conceptclassedncluding TOP (majority-of-
parity circuits) and unionsof axis-parallelrectanglesover
{0,1,...,b}". In eachcaseour techniqguesanbe usedto
improve therunningtime of his algorithms.

We alsonotethatin recentwork, Bshouty Jacksorand
Tamon([5] have given a new algorithm for learning DNF



underthe uniform distribution. The new algorithmdiffers
from theoriginal HarmonicSieve in thatit usesafasterver-
sion of the WDNF algorithm. This new versionof VWDNF
runsin O(rs?(Le (2"D))?) time stepswherer is thenum-
ber of distinctvariableswhich appealin the minimal DNF
representationf the targetformula. Bshouty Jacksorand
Tamonrun the original O(e~2)-boundedF1 boostingal-
gorithmfor O(s?) stagesusingthe new \DNF algorithm
asthe weak learner to obtain an overall running time of
O(rs*/e*) for learningDNF. By applying our techniques
asin Section5.3 (usingthe O(log(1/€)/¢)-boundedboost-
ing algorithmBgcomp). We canimprovetherunningtime of
thealgorithmto O(rs*/€?).
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A. The \DNF Algorithm

The WDNF algorithm takes as input an exampleoracle
EX(f, D), amembershipracleMEM(f), adistributionor-
acleDIST(D), anda valued > 0. A distribution oracle
DIST(D) is anoraclewhich, whenqueriedwith a point z
in the domainof D, returnsD(z). All of the boostingal-
gorithmsF1, Bgj; , and Bcomp. aswell asthe uniform-
distribution boostingalgorithmimplicit in | HA, construct
their distributions D; in such a way that they can effi-
ciently simulateDIST(D;). With probability atleastl — ¢
the WDNF algorithm outputsa parity function which is a
(1/2—9(1/s))-approximatofor f underD, wheres is the
DNF-sizeof f.
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